

# 1. General Description

The DA6021 PMIC is a monolithic single chip power management IC for Intel® Atom<sup>™</sup> Z3000 processor. It provides all power supplies for tablet PC's and can also be used in multiple embedded applications as well as Netbooks and Nettops. It is designed to support platforms based on Intel's Z3000 Atom processor series, including DDR3 memory and various peripherals.

#### Integrated power management

Dialog Semiconductor's new DA6021 uses a single supply voltage at a wide range of input voltage and provides low noise supplies to all SoC voltage domains, DDR3 memory and many peripherals.

The DA6021 integrates 6 high performance low dropout (LDO) voltage regulators using Dialog's patented Smart Mirror<sup>™</sup> technology for very low quiescent current. It includes 11 internal power switches and the control logic for 9 external switching devices. These include in-rush current control for platform power distribution simplification. Six fully integrated high efficiency DC-DC buck converters provide current to Intel Atom platform's various low voltage domains as well as to the memory and the peripherals. Two buck-boost and one boost converter also supply energy for the platform. All nine regulators are designed to support external component height of 1mm.

#### Ultra flexible power sequencer

The ultra-flexible power sequencer takes care of the complete platform start-up, state-transitioning and powerdown procedure. The DA6021 operates autonomously and reduces the power consumption when entering stand-by or power down mode. The DA6021 is fully programmable and allows adaption to all Intel Atom processor Z3000 and platform sequences. The OTP programmed power sequence is copied into operational registers during power-up. Those registers can be overwritten by EEPROM after initial OTP copy routine or via operational processor.

#### Auxiliary function

An analogue to digital converter (ADC) with 10-bit resolution combined with a multi-channel input multiplexer allows measurement of the input supply voltage, battery ID, PMIC die temperature as well as 5 battery pack & system temperatures. The number of external components is significantly reduced due to the integration of 16 GPIO's, 3 channel PWM output signal generators, a multi-input detector with a charger control as well as a programmable IRQ controller.

## 2. Key Features

- Two high efficiency buck converters with integrated SVID interface running IMVP-7 protocol. These two quad phase DC/DC regulators generate the voltages for CPU and graphic cores
- One dual phase buck regulator for memory supply supporting DDR3-L and -LP memory types
- 3 single phase buck regulators supplying 1.0V, 1.05V and 1.8V towards the platform
- 2 buck-boost converters generating 2.85V and 3.3V for the platform even if the input supply is down to 2.7V
- Boost converter providing 5V for the USB components
- 3 LDOs with fixed output voltage
- 2 LDO with programmable output voltage
- 1 push-pull LDO used for DDR3 address line termination
- 11 integrated power rail switching devices
- 9 external power rail switching devices

- Ultra flexible power sequencer programmable via OTP/ EEPROM and register
- I2C communication interface for SoC access
- EEPROM interface for optional OTP over-writing
- 16 general purpose I/Os with alternate functions
- 16 channel 10-bit ADC including conditioning circuits and programmable flexible sequencing for automatic and manual measurements
- System voltage and temperature monitoring, supervising
- Programmable IRQ controller
- 1-wire digital battery interface including 2-wire conversion
- 3 channel PWM signal generation, flexible frequency and duty cycle programmable
- Input power source detection, included with charger control



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# Contents

| 2. Key Features       1         3. Revision History       13         4. Overview       16         5. Block Diagram       17         5.1 Overview Diagram       17         5.2 Detailed Block Diagram       18         6. Operating Conditions       19         6.1 Absolute Maximum Ratings       19         6.2 Recommended Operating Conditions       19         7. Ordering Information       20         8. Pinning Information       21         9. Operating Conditions       26         9.1 System Control Signals       26         9.1.1 VDCIN SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHGDET B       26         9.1.5 VSYS1/2       26         9.1.6 CHGSTAT       26         9.1.7 LIM(1:0)       26         9.1.8 I2C_DATA       26         9.1.9 I2C_DATA       26         9.1.10 IRQ       26         9.1.11 I2CM_CLK       26         9.1.12 I2M_DATA       26         9.1.13 PWRBTNIA B       26         9.1.14 PWRBTN B       26         9.1.15 PLTRST_B       27         9.1.16 SLP_SOX_B                                                                              | 1.              | General Description1    |                  |                             |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|------------------|-----------------------------|----------|
| 3. Revision History       13         4. Overview       16         5. Block Diagram       17         5.1 Overview Diagram       17         5.2 Detailed Block Diagram       18         6. Operating Conditions       19         6.1 Absolute Maximum Ratings       19         6.2 Recommended Operating Conditions       19         7. Ordering Information       20         8. Pinning information       20         9. Pinning information       21         9. Operating Conditions       26         9.1 System Control Signals       26         9.1.1 VDCIN_SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHODET B.       26         9.1.5 VSYS1/2       26         9.1.6 CHGSTAT       26         9.1.7 ILUM[1:0]       26         9.1.8 I2C_CLK       26         9.1.10 IRQ       26         9.1.11 I2CM CLK       26         9.1.12 UZM_DATA       26         9.1.13 PWRENIN B.       26         9.1.14 PWRENT B.       27         9.1.15 PURSTIN B.       26         9.1.14 PWRENT B.       27         9.1.15 RUM_DA                                                                   | 2.              | Key Features1           |                  |                             |          |
| 4. Overview       16         5. Block Diagram       17         5.1 Overview Diagram       17         5.2 Detailed Block Diagram       17         5.2 Detailed Block Diagram       18         6. Operating Conditions       19         6.1 Absolute Maximum Ratings       19         6.2 Recommended Operating Conditions       19         7. Ordering Information       20         8. Pinning Information       20         9. Operating Conditions       26         9.1 System Control Signals       26         9.1.1 VDCIN_SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHODET B.       26         9.1.5 VSYS1/2       26         9.1.6 CHOSTAT       26         9.1.7 ILLIM[1:0]       26         9.1.8 I2C_CLK       26         9.1.9 I2C_DATA       26         9.1.10 IRQ       26         9.1.11 I2CM_CLK       26         9.1.12 I2CM_DATA       26         9.1.13 PWRBTNIN_B.       26         9.1.14 PWRBTN_B       26         9.1.15 PLTRST_B.       27         9.1.16 SLP_SOIX_B       27         9.1.17 SLP_S                                                                   | 3.              | Revision History        |                  |                             |          |
| 5. Block Diagram       17         5.1 Overview Diagram       17         5.2 Detailed Block Diagram       18         6. Operating Conditions       19         6.1 Absolute Maximum Ratings       19         6.2 Recommended Operating Conditions       19         7. Ordering Information       20         8. Pinning information       20         9. Operating Conditions       26         9.1 Vystem Control Signals       26         9.1.1 VDCIN_SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHOBET B.       26         9.1.5 VSYS1/2       26         9.1.6 CHOSTAT       26         9.1.7 ILLIM[1:0]       26         9.1.8 I2C_CLK       26         9.1.1 I2CM_CLK       26         9.1.1 I2CM_CLK       26         9.1.11 I2CM_CLK       26         9.1.12 I2CM_DATA       26         9.1.13 PWRBTNIN_B.       26         9.1.14 PWNRTN_B       26         9.1.15 PLTST_B.       27         9.1.16 SLP_SOLE_B.       27         9.1.17 SLP_S3_B.       27         9.1.18 SLP_S4_B.       27         9.1.19 RSMRST                                                                   | 4.              | Over                    | view             | -                           | 16       |
| 5.1       Overview Diagram       17         5.2       Detailed Block Diagram       18         6.       Operating Conditions       19         6.1       Absolute Maximum Ratings       19         6.2       Recommended Operating Conditions       19         7.       Ordering Information       20         8.       Pinning Information       20         9.       Operating Conditions       26         9.1       System Control Signals       26         9.1.1       VDCIN_SENSE       26         9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.10       IRO       26         9.1.11       I2CMATA       26         9.1.12       I2CM_DATA       26         9.1.14       I2CM_DATA       26         9.1.15       I2C                                                                                                            | 5 Block Diagram |                         |                  |                             | 17       |
| 5.2       Detailed Block Diagram       18         6.       Operating Conditions       19         6.1       Absolute Maximum Ratings       19         6.2       Recommended Operating Conditions       19         7.       Ordering Information       20         8.       Pinning Information       21         9.       Operating Conditions       26         9.1       System Control Signals       26         9.1.1       VDCIN_SENSE       26         9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIN[1:0]       26         9.1.8       IZC_OLK       26         9.1.9       IZC_OLK       26         9.1.10       IRQ       26         9.1.11       IZCM_CLK       26         9.1.12       IZCM_OLK       26         9.1.13       PWRBTNIN_B       26         9.1.14       PWRBTNIN_                                                                                                            |                 | 5.1                     | Overvie          | ew Diagram                  | 17       |
| 6. Operating Conditions       19         6.1 Absolute Maximum Ratings       19         6.2 Recommended Operating Conditions       19         7. Ordering Information       20         8. Pinning Information       21         9. Operating Conditions       26         9.1 System Control Signals       26         9.1.1 VDCIN_SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHGDET_B       26         9.1.5 VSYS1/2       26         9.1.6 CHGSTAT       26         9.1.7 ILIM[1:0]       26         9.1.8 I2C_CLK       26         9.1.9 I2C_DATA       26         9.1.10 IRQ       26         9.1.11 I2CM_CLK       26         9.1.12 I2CM_DATA       26         9.1.13 PWRBTINI_B       26         9.1.14 PWRBTIN_B       26         9.1.15 PLTRST_B       27         9.1.16 SLP_SOX_B       27         9.1.17 SLP_S3_B       27         9.1.18 SLP_SOX_B       27         9.1.19 RSMRST_B       27         9.1.20 DRAMEWROK       27         9.1.21 VCCAPWROK       27         9.1.22 COREPWROK       27 <td></td> <td>5.2</td> <td>Detaile</td> <td>d Block Diagram</td> <td> 18</td> |                 | 5.2                     | Detaile          | d Block Diagram             | 18       |
| 6.1       Absolute Maximum Ratings       19         6.2       Recommended Operating Conditions       19         7.       Ordering Information       20         8.       Pinning Information       21         9.       Operating Conditions       26         9.1       System Control Signals       26         9.1.1       VDCIN_SENSE       26         9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIMI:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.10       IRQ       26         9.1.11       IRQ       26         9.1.12       IACM DATA       26                                                                                                                                                        | 6.              | δ. Operating Conditions |                  |                             | 19       |
| 6.2       Recommended Operating Conditions       19         7.       Ordering Information       20         8.       Pinning Information       21         9.       Operating Conditions       26         9.1       System Control Signals       26         9.1.1       VDCIN_SENSE       26         9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       LIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.11       I2C_DATA       26         9.1.12       I2CM_DATA       26         9.1.13       PWRBTNIN_B       26         9.1.14       I2CM_CLK       26         9.1.15       PLTRST_B       27         9.1.16       SLP_SOIX_B       27         9.1.16       SLP_SOIX_B       27         9.1.17       SLP_S3.B       27         9.1.18       SLP_S4_B       27         9.1.21       NCCAPWROK       27<                                                                                                                     |                 | 6.1                     | Absolu           | te Maximum Ratings          | 19       |
| 7. Ordering Information       20         8. Pinning Information       21         9. Operating Conditions       26         9.1 System Control Signals       26         9.1.1 VDCIN_SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHGDET_B       26         9.1.5 VSYS1/2       26         9.1.6 CHGSTAT       26         9.1.7 ILIM[1:0]       26         9.1.8 I2C_CLK       26         9.1.9 I2C_DATA       26         9.1.1 I2CM_CLK       26         9.1.1 I2CM_DATA       26         9.1.1 PWRBTNIN_B       26         9.1.1 PWRBTNIN_B       26         9.1.12 I2CM_DATA       26         9.1.13 PWRBTNIN_B       26         9.1.14 PWRBTNIN_B       26         9.1.15 PLTRST_B       27         9.1.16 SLP_SOX_B       27         9.1.17 SLP_S3_B       27         9.1.18 SLP_S4_B       27         9.1.20 DRAMPWROK       27         9.1.21 VCCAPWROK       27         9.1.22 COREPWROK       27         9.1.23 SUSPWRDNOK       27         9.1.24 BATLOW_B       27         9.                                                                                                      |                 | 6.2                     | Recom            | mended Operating Conditions | 19       |
| 8. Pinning Information       21         9. Operating Conditions       26         9.1 System Control Signals       26         9.1.1 VDCIN_SENSE       26         9.1.2 ACPRESENT       26         9.1.3 VBUS_SENSE       26         9.1.4 CHGDET_B       26         9.1.5 VSVS1/2       26         9.1.6 CHGSTAT       26         9.1.7 ILIM[1:0]       26         9.1.8 I2C_CLK       26         9.1.9 I2C_DATA       26         9.1.1 I2CM_CLK       26         9.1.1 I2CM_DATA       26         9.1.1 PWRBTNIN_B       26         9.1.12 I2CM_DATA       26         9.1.14 PWRBTNIN_B       26         9.1.15 PLTRST_B       27         9.1.16 SLP_SOX_B       27         9.1.17 SLP_S3_B       27         9.1.18 SLP_S4_B       27         9.1.20 DRAMPWROK       27         9.1.21 VCCAPWROK       27         9.1.22 COREPWROK       27         9.1.23 SUSPWRDNOK       27         9.1.25 SUSCLK       28         9.1.26 THERMTRIP_B       28         9.1.27 PROCHOT_B       28                                                                                                                                                           | 7.              | Orde                    | ring Info        | ormation                    | 20       |
| 9. Operating Conditions.       26         9.1 System Control Signals       26         9.1.1 VDCIN_SENSE.       26         9.1.2 ACPRESENT.       26         9.1.3 VBUS_SENSE.       26         9.1.4 CHGDET_B.       26         9.1.5 VSYS1/2.       26         9.1.6 CHGSTAT.       26         9.1.7 ILIM[1:0]       26         9.1.8 I2C_CLK.       26         9.1.9 I2C_DATA       26         9.1.1 I2CM_CLK.       26         9.1.12 I2CM_DATA.       26         9.1.13 PWRBTNIN_B.       26         9.1.14 PWRBTN_B.       26         9.1.15 PLTRST_B.       27         9.1.16 SLP_S0X_B.       27         9.1.17 SLP_S3_B.       27         9.1.18 SLP_S4_B.       27         9.1.19 RSMRST_B.       27         9.1.20 DRAMPWROK.       27         9.1.21 VCCAPWROK.       27         9.1.22 COREPWROK.       27         9.1.23 SUSPWRDNOK       27         9                                                                                                      | 8.              | Pinni                   | na Info          | rmation                     | 21       |
| 9.1       System Control Signals       26         9.1.1       VDCIN_SENSE       26         9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.10       IRQ       26         9.1.11       I2C_DATA       26         9.1.11       I2C_DATA       26         9.1.11       I2C_DATA       26         9.1.11       I2C_DATA       26         9.1.12       I2CM_DATA       26         9.1.12       I2CM_DATA       26         9.1.13       PWRBTNI_B       26         9.1.14       PWRBTN_B       26         9.1.15       PLTRST_B       27         9.1.16       SLP_SA_B       27         9.1.17       SLP_SA_B       27         9.1.18       SLP_S4_B       27         9.1.19       RSMRST_B       27         9.1.20       <                                                                                                                                                    | <u>a</u>        | Oper                    | ating C          | anditions                   | 26       |
| 9.1.1       VDCIN_SENSE.       26         9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B.       26         9.1.5       VSYS12       26         9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK.       26         9.1.10       IRQ       26         9.1.11       I2C_DATA       26         9.1.11       I2C_CLK.       26         9.1.12       I2C_DATA       26         9.1.13       PWBTNIN_B       26         9.1.14       PWRBTN_B       26         9.1.15       PLTRST_B       27         9.1.16       SLP_SA_B       27         9.1.17       SLP_SA_B       27         9.1.18       SLP_SA_B       27         9.1.20       DRAMPWROK       27         9.1.21       VCCAPW                                                                                                                                                        | 5.              | 9 1                     | System           | Control Signals             | 20       |
| 9.1.2       ACPRESENT       26         9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.10       IRQ       26         9.1.11       I2C_DATA       26         9.1.11       I2CM_CLK       26         9.1.12       I2CM_DATA       26         9.1.12       I2CM_DATA       26         9.1.13       PWRBTNIN_B       26         9.1.14       I2CM_DATA       26         9.1.15       PLTRST_B       27         9.1.16       SLP_SOIX_B       27         9.1.16       SLP_SOIX_B       27         9.1.17       SLP_S3_B       27         9.1.18       SLP_S4_B       27         9.1.20       DRAMPWROK       27         9.1.21       VCCAPWROK       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24 <td< td=""><td></td><td>0.1</td><td>9.1.1</td><td>VDCIN SENSE</td><td> 26</td></td<>                                                                         |                 | 0.1                     | 9.1.1            | VDCIN SENSE                 | 26       |
| 9.1.3       VBUS_SENSE       26         9.1.4       CHGDET_B       26         9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.10       IRQ       26         9.1.11       I2CM_CLK       26         9.1.12       I2CM_DATA       26         9.1.11       I2CM_CLK       26         9.1.12       I2CM_DATA       26         9.1.13       PWRBTNIN_B       26         9.1.14       PWRBTN_B       26         9.1.15       PLTRST_B       27         9.1.16       SLP_SOIX_B       27         9.1.17       SLP_S3_B.       27         9.1.18       SLP_S4_B.       27         9.1.20       DRAMPWROK       27         9.1.21       VCCAPWROK       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24       BATLOW_B       27         9.1.25       SUSCLK       28         9.1.27       PR                                                                                                                                                        |                 |                         | 9.1.2            | ACPRESENT                   |          |
| 9.1.4       CHGDET_B.       26         9.1.5       VSYS1/2.       26         9.1.6       CHGSTAT.       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK.       26         9.1.9       I2C_DATA.       26         9.1.10       IRQ.       26         9.1.11       I2CM_CLK.       26         9.1.12       I2CM_DATA.       26         9.1.12       I2CM_DATA.       26         9.1.13       PWRBTNIN_B.       26         9.1.14       PWRBTN_B.       26         9.1.15       PLTRST_B.       27         9.1.16       SLP_SOIX_B.       27         9.1.16       SLP_SOIX_B.       27         9.1.17       SLP_SA_B.       27         9.1.18       SLP_SA_B.       27         9.1.19       RSMRST_B.       27         9.1.20       DRAMPWROK.       27         9.1.21       VCCAPWROK.       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24       BATLOW_B.       27         9.1.25       SUSCLK.       28         9.1.                                                                                                                                               |                 |                         | 9.1.3            | VBUS SENSE                  |          |
| 9.1.5       VSYS1/2       26         9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.10       IRQ       26         9.1.11       I2CM_CLK       26         9.1.12       I2CM_DATA       26         9.1.13       PWRBTNIN_B       26         9.1.14       PWRBTNIN_B       26         9.1.15       PLTRST_B       26         9.1.14       PWRBTN_B       26         9.1.15       PLTRST_B       27         9.1.16       SLP_S0IX_B       27         9.1.17       SLP_S3_B       27         9.1.18       SLP_S4_B       27         9.1.19       RSMRST_B       27         9.1.20       DRAMPWROK       27         9.1.21       VCCAPWROK       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24       BATLOW_B       27         9.1.25       SUSCLK       28         9.1.26       THERMTRIP_B       28         9.1.27                                                                                                                                                               |                 |                         | 9.1.4            | CHGDET B                    | 26       |
| 9.1.6       CHGSTAT       26         9.1.7       ILIM[1:0]       26         9.1.8       I2C_CLK       26         9.1.9       I2C_DATA       26         9.1.1       IRQ       26         9.1.1       I2CM_CLK       26         9.1.11       I2CM_CLK       26         9.1.12       I2CM_DATA       26         9.1.13       PWRBTNIN_B       26         9.1.14       PWRBTN_B       26         9.1.15       PLTRST_B       26         9.1.16       SLP_SOIX_B       27         9.1.16       SLP_SOIX_B       27         9.1.17       SLP_S3_B.       27         9.1.18       SLP_S4_B.       27         9.1.19       RSMRST_B.       27         9.1.20       DRAMPWROK       27         9.1.21       VCCAPWROK       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24       BATLOW_B.       27         9.1.25       SUSCLK       28         9.1.26       THERMTRIP_B.       28                                                                                                                                                                                                                |                 |                         | 9.1.5            | VSYS1/2.                    | 26       |
| 91.7       ILIM[1:0]       26         91.8       I2C_CLK       26         91.9       I2C_DATA       26         91.10       IRQ       26         91.11       I2CM_CLK       26         91.12       I2CM_DATA       26         91.12       I2CM_DATA       26         91.13       PWRBTNIN_B       26         91.14       PWRBTN_B       26         91.15       PLTRST_B       26         91.16       SLP_SOIX_B       27         91.16       SLP_SOIX_B       27         91.17       SLP_S3_B       27         91.18       SLP_S4_B       27         91.20       DRAMPWROK       27         91.21       VCCAPWROK       27         91.22       COREPWROK       27         91.23       SUSPWRDNOK       27         91.24       BATLOW_B       27         91.25       SUSCLK       28         91.26       THERMTRIP_B       28         91.27       PROCHOT_B       28                                                                                                                                                                                                                                                                            |                 |                         | 9.1.6            | CHGSTAT                     | 26       |
| 9.1.8       I2C_CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                         | 9.1.7            | ILIM[1:0]                   | 26       |
| 9.1.9       I2C_DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                         | 9.1.8            | I2C_CLK                     | 26       |
| 9.1.10       IRQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                         | 9.1.9            | I2C_DATA                    | 26       |
| 9.1.11       I2CM_CLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         | 9.1.10           | IRQ                         | 26       |
| 9.1.12       I2CM_DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                         | 9.1.11           | I2CM_CLK                    | 26       |
| 9.1.13       PWRBTNIN_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                         | 9.1.12           | I2CM_DATA                   | 26       |
| 9.1.14       PWRBTN_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         | 9.1.13           | PWRBTNIN_B                  | 26       |
| 9.1.15       PLTRST_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         | 9.1.14           | PWRBTN_B                    | 26       |
| 9.1.16       SLP_S0iX_B       27         9.1.17       SLP_S3_B       27         9.1.18       SLP_S4_B       27         9.1.19       RSMRST_B       27         9.1.20       DRAMPWROK       27         9.1.21       VCCAPWROK       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24       BATLOW_B       27         9.1.25       SUSCLK       28         9.1.26       THERMTRIP_B       28         9.1.27       PROCHOT_B       28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                         | 9.1.15           | PLTRST_B                    | 27       |
| 9.1.17       SLP_S3_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         | 9.1.16           | SLP_S0iX_B                  | 27       |
| 9.1.18       SLP_S4_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         | 9.1.17           | SLP_S3_B                    | 27       |
| 9.1.19       RSMRST_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         | 9.1.18           | SLP_S4_B                    | 27       |
| 9.1.20       DRAMPWROK       27         9.1.21       VCCAPWROK       27         9.1.22       COREPWROK       27         9.1.23       SUSPWRDNOK       27         9.1.24       BATLOW_B       27         9.1.25       SUSCLK       28         9.1.26       THERMTRIP_B       28         9.1.27       PROCHOT_B       28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                         | 9.1.19           | RSMRST_B                    | 27       |
| 9.1.21 VCCAPWROK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                         | 9.1.20           |                             | 27       |
| 9.1.22 COREPWROK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                         | 9.1.21           |                             | 27       |
| 9.1.23 SUSPWRDNOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                         | 9.1.22           |                             | 27       |
| 9.1.24 BATLOW_B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                         | 9.1.23           |                             | 27       |
| 9.1.25 SUSCER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                         | 9.1.24           |                             | 21       |
| 9.1.20 THERIVITRIF_D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                         | 9.1.20           |                             | ŏ∠       |
| ΰτι 27 ΓΙΛΟΟΠΟΤ_D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                         | 9.1.20<br>0.1.27 |                             | ∠0<br>ວ໑ |
| 9.1.28 SDMMC3 1P8 EN 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                         | 9128             | SDMMC3 1P8 FN               | 20<br>28 |



|     |        | 9.1.29 SDMMC3_PWR_EN_B                                           | 28 |
|-----|--------|------------------------------------------------------------------|----|
|     |        | 9.1.30 MODEM_OFF_B                                               | 28 |
|     |        | 9.1.31 SDWN_B                                                    | 28 |
|     |        | 9.1.32 USBRST_B                                                  | 28 |
|     |        | 9.1.33 GPIOs                                                     | 28 |
|     |        | 9.1.34 Burst Control Unit                                        | 29 |
|     |        | 9.1.35 PWM[2:0]                                                  | 29 |
|     |        | 9.1.36 DISPLAY                                                   | 29 |
|     |        | 9.1.37 ADC                                                       | 29 |
|     | 9.2    | DA6021 Power States                                              | 30 |
|     | 9.3    | SoC Power States                                                 | 32 |
|     |        | 9.3.1 SOC_S0 State                                               | 32 |
|     |        | 9.3.2 SOC S0iX State                                             | 33 |
|     |        | 9.3.3 SOC S3 State                                               | 34 |
|     |        | 9.3.4 SOC S4 State                                               | 35 |
|     |        | 9.3.5 Truth Table of Sleep Signals and DA6021 Final Power States | 35 |
|     |        | 9.3.6 DA6021 Power State Transitions and Sleep Signals           | 36 |
|     | 9.4    | Register File and Address Range                                  | 37 |
|     |        | 9.4.1 Slave ID versus DA6021 Pages                               | 37 |
| 10. | Powe   | r Controller State Machine                                       | 38 |
|     | 10.1   | Overview                                                         | 38 |
|     | 10.2   | Power State Transitions                                          | 38 |
|     |        | 10.2.1 Sequencing                                                | 39 |
|     | 10.3   | DA6021 Power Sequences                                           | 40 |
|     |        | 10.3.1 Cold Boot                                                 | 41 |
|     |        | 10.3.2 Warm Reset Sequence                                       | 46 |
|     |        | 10.3.3 Enter SOC S0iX Mode                                       | 46 |
|     |        | 10.3.4 Exit SOC S0iX Mode                                        | 49 |
|     |        | 10.3.5 Enter SOC S3 Mode                                         | 52 |
|     |        | 10.3.6 Exit SOC S3 Mode                                          | 54 |
|     |        | 10.3.7 Enter SOC S4 Mode                                         | 55 |
|     |        | 10.3.8 Exit SOC S4 Mode                                          | 56 |
|     |        | 10.3.9 Cold Off                                                  | 57 |
|     |        | 10.3.10Modem Reset Sequence                                      | 64 |
|     | 10.4   | PMIC Resets                                                      | 65 |
|     | 10.5   | Wake Events                                                      | 65 |
| 11. | Platfo | orm Power Domains                                                | 66 |
|     | 11.1   | Power Domains Summary                                            | 66 |
|     | 11.2   | Voltage Rail ON/OFF On Various Power States                      | 68 |
|     | 11.3   | PMIC Current Consumption in Various States                       | 68 |
|     | 11.4   | Voltage Rail Control Mechanism                                   | 69 |
|     | 11.5   | SVID Interface                                                   | 69 |
|     |        | 11.5.1 SVID DC Electrical Parameters                             | 69 |
|     |        | 11.5.2 VCLK Timing Parameters                                    | 70 |
|     |        | 11.5.3 Data Sampling and Timing                                  | 71 |
|     |        | 11.5.4 SVID Command Set                                          | 73 |

**DA6021** 



## **Company Confidential**

|              | 11.5.5 SVID Register Set                                       | 74         |
|--------------|----------------------------------------------------------------|------------|
|              | 11.5.6 VID DAC Table                                           | 78         |
|              | 11.5.7 Low Power State Control Signals                         | 79         |
| 11.6         | Power Supplies                                                 | 79         |
|              | 11.6.1 DC/DC Buck Regulator VCC                                | 79         |
|              | 11.6.2 DC/DC Buck Regulator VNN                                | 82         |
|              | 11.6.3 DC/DC Buck Regulator V1P0A                              | 84         |
|              | 11.6.4 DC/DC Buck Regulator V1P05S                             | 89         |
|              | 11.6.5 DC/DC Buck Regulator V1P8_A                             | 92         |
|              | 11.6.6 DC/DC Buck Regulator VDDQ                               | 98         |
|              | 11.6.7 Power Rail VSYSU                                        | . 103      |
|              | 11.6.8 Power Rail VSYS_SX                                      | . 104      |
|              | 11.6.9 Power Rail VSYS_S                                       | . 105      |
|              | 11.6.10Buck Boost Regulator V2P85S                             | . 105      |
|              | 11.6.11Buck Boost Regulator V3P3A                              | . 109      |
|              | 11.6.12Boost Regulator V5P0S                                   | . 113      |
|              | 11.6.13VLP Low Power Regulator                                 | . 117      |
| 11.7         | Current Monitor                                                | . 118      |
|              | 11.7.1 VCC/VNN Current vs ADC data                             | . 119      |
|              | 11.7.2 V1P0A Current vs ADC data                               | . 120      |
|              | 11.7.3 V1P5S Current vs ADC data                               | . 121      |
|              | 11.7.4 VDDQ Current vs ADC data                                | . 122      |
| 12. I2C Ir   | nterface                                                       | 123        |
| 12.1         | Overview                                                       | . 123      |
| 12.2         | Slave Addresses                                                | . 123      |
| 12.3         | Protocol                                                       | . 123      |
| 12.4         | Electrical Requirements                                        | . 124      |
| 13. Exter    | nal EEPROM Controller                                          | 125        |
| 13.1         | Overview                                                       | . 125      |
| 13.2         | Electrical Characteristics                                     | . 125      |
| 13.3         | Functions                                                      | . 125      |
| 14. Powe     | er Source Detection                                            | . 126      |
| 14.1         | Overview                                                       | . 126      |
| 14.2         | VBAT Power Source Detection                                    | . 126      |
|              | 14.2.1 Battery Voltage Monitor & Removal / Insertion Detection | . 126      |
|              | 14.2.2 Battery Pack Interface                                  | . 127      |
|              | 14.2.3 Battery Presence Detection                              | . 128      |
|              | 14.2.4 BSI Sensing                                             | . 128      |
|              | 14.2.5 Digital Battery Communications                          | . 128      |
|              | 14.2.6 System Voltage Monitor                                  | . 129      |
| 14.3         | VBUS Power Source Detection                                    | . 129      |
| 14.4         | VDCIN Power Source Detection Comparators                       | 130        |
|              |                                                                |            |
| 14.5         | BATLOW Definition                                              | 131        |
| 14.5<br>14.6 | BATLOW Definition<br>Power Source Detection Events             | 131<br>132 |



|     | 14.8  | DA6021 Catastrophic and Critical Events           | 133 |
|-----|-------|---------------------------------------------------|-----|
|     | 14.9  | Power Source Registers                            | 134 |
| 15. | Analo | og–to–Digital Converter                           | 139 |
|     | 15.1  | Electrical Characteristics                        | 139 |
|     | 15.2  | Analog Overview                                   | 140 |
|     |       | 15.2.1 ADC Measurement Support                    | 141 |
|     |       | 15.2.2 Preamplifier                               | 141 |
|     | 15.3  | ADC Sequencer                                     | 142 |
|     |       | 15.3.1 Manual Measurements                        | 142 |
|     |       | 15.3.2 Reference Source                           | 145 |
|     |       | 15.3.3 Event and Status Generation                | 145 |
|     |       | 15.3.4 Result register                            | 146 |
|     |       | 15.3.5 CH0: Battery Pack Voltage                  | 146 |
|     |       | 15.3.6 CH1: Battery ID resistance                 | 146 |
|     |       | 15.3.7 CH2: Die Temperature                       | 146 |
|     |       | 15.3.8 CH3-4: Battery Pack Temperature            | 146 |
|     |       | 15.3.9 CH5-7: System Temperature Thermistor       | 147 |
|     |       | 15.3.10CH8-12: VR Current Measurement             | 147 |
|     |       | 15.3.11CH8: VSYS Voltage Measurements             | 147 |
|     | 15.4  | ADC Registers                                     | 148 |
| 16. | Syste | m Voltage & Temperature Monitoring                | 153 |
|     | 16.1  | Overview                                          | 153 |
|     | 16.2  | SVTM Block Diagram                                | 158 |
|     | 16.3  | Functional Description                            | 158 |
|     |       | 16.3.1 VSYS Input Trip Points for ADC Measurement | 158 |
|     |       | 16.3.2 VSYS Related Output Control                | 160 |
|     |       | 16.3.3 Under- & Over- Voltage Condition           | 165 |
|     |       | 16.3.4 Permanent Temperature Monitoring           | 165 |
|     |       | 16.3.5 Temperature Monitoring via ADC             | 166 |
|     | 16.4  | Critical Thermal Events                           | 175 |
|     |       | 16.4.1 System Temperature                         | 175 |
|     |       | 16.4.2 Battery Critical Temperature               | 176 |
|     |       | 16.4.3 DA6021 die Temperature                     | 176 |
|     |       | 16.4.4 Thermal Monitoring Event Table             | 177 |
|     | 16.5  | Backup Battery Management                         | 177 |
|     |       | 16.5.1 Backup Battery Charger                     | 178 |
|     |       | 16.5.2 Power Consumption                          | 178 |
| 17. | Gene  | ral Purpose IOs                                   | 179 |
|     | 17.1  | Overview                                          | 179 |
|     | 17.2  | Analog Block, Control & Data Signals              | 179 |
|     | 17.3  | GPIO Digital Features                             | 180 |
|     |       | 17.3.1 De-Bouncing                                | 180 |
|     |       | 17.3.2 Status Register                            | 180 |
|     |       | 17.3.3 Interrupt Functionality                    | 180 |
|     | 17.4  | Analogue Mode                                     | 180 |



|                   | 17.5                                                                                                                                       | Alternative Functions                                                                                                                                                                                                     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 17.6                                                                                                                                       | Defining an Output Value                                                                                                                                                                                                  | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 17.7                                                                                                                                       | Supported Alternate Functions                                                                                                                                                                                             | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.1 GPIO0P0 – BATIDIN                                                                                                                                                                                                  | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.2 GPIO0P1 – BATIDOUT                                                                                                                                                                                                 | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.3 GPIO0P2 – GPIO0P7-PCSMCNT                                                                                                                                                                                          | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.4 GPIO1P0 – UIBTN_B                                                                                                                                                                                                  | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.5 GPIO1P1 – CLK32OUT                                                                                                                                                                                                 | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.6 GPIO1P2 – TRIG1                                                                                                                                                                                                    | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.7 GPIO1P3 – TRIG2                                                                                                                                                                                                    | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.8 GPIO1P4 – WAKE1                                                                                                                                                                                                    | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                            | 17.7.9 GPIO1P5 – WAKE2                                                                                                                                                                                                    | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 17.8                                                                                                                                       | Electrical Characteristics                                                                                                                                                                                                | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 17.9                                                                                                                                       | GPIO Registers                                                                                                                                                                                                            | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18.               | Exter                                                                                                                                      | nal Battery Charger Control                                                                                                                                                                                               | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 18.1                                                                                                                                       | Overview                                                                                                                                                                                                                  | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 18.2                                                                                                                                       | Charger Current Limit                                                                                                                                                                                                     | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 18.3                                                                                                                                       | External Charger Control Signals                                                                                                                                                                                          | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 18.4                                                                                                                                       | Battery Charger Registers                                                                                                                                                                                                 | 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10                | Intorr                                                                                                                                     |                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19.               | 10.1                                                                                                                                       |                                                                                                                                                                                                                           | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 10.1                                                                                                                                       |                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 19.2                                                                                                                                       | Second Level Interrupt                                                                                                                                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 19.5                                                                                                                                       | Critical Page Condition (set vs. clear)                                                                                                                                                                                   | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 19.4                                                                                                                                       | Interrupt Controller Registers                                                                                                                                                                                            | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ~~                | 19.5<br>D                                                                                                                                  |                                                                                                                                                                                                                           | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 20.               | Powe                                                                                                                                       | Cuertieur                                                                                                                                                                                                                 | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 20.1                                                                                                                                       | Overview                                                                                                                                                                                                                  | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 20.2                                                                                                                                       |                                                                                                                                                                                                                           | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 20.3                                                                                                                                       | PWRBININ_B Electrical Parameters                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | <b><i><i>Z</i></i>IIIIIIIIIIIII</b>                                                                                                        | Device Dutter                                                                                                                                                                                                             | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 20.4                                                                                                                                       | Power Button                                                                                                                                                                                                              | 195<br>196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | 20.4                                                                                                                                       | Power Button<br>Power Button Cold Boot Flow Diagram                                                                                                                                                                       | 195<br>196<br>196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | 20.4<br>20.5<br>20.6                                                                                                                       | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence                                                                                                                                          | 195<br>196<br>196<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | 20.4<br>20.5<br>20.6<br>20.7                                                                                                               | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence<br>Force Cold Off Flow Diagram                                                                                                           | 195<br>196<br>196<br>197<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 20.4<br>20.5<br>20.6<br>20.7<br>20.8                                                                                                       | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence<br>Force Cold Off Flow Diagram<br>UIBTN_B                                                                                                | 195<br>196<br>196<br>197<br>197<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9                                                                                               | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence<br>Force Cold Off Flow Diagram<br>UIBTN_B<br>Power Button Registers                                                                      | 195<br>196<br>196<br>197<br>197<br>197<br>198                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b>                                                                               | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence<br>Force Cold Off Flow Diagram<br>UIBTN_B<br>Power Button Registers<br>Width Modulation Generation.                                      | 195<br>196<br>196<br>197<br>197<br>197<br>197<br>198<br><b>200</b>                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1                                                                       | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence<br>Force Cold Off Flow Diagram<br>UIBTN_B<br>Power Button Registers<br>Width Modulation Generation<br>Overview                           | 195<br>196<br>197<br>197<br>197<br>198<br><b>200</b><br>200                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2                                                               | Power Button<br>Power Button Cold Boot Flow Diagram<br>Force a Cold Off Sequence<br>Force Cold Off Flow Diagram<br>UIBTN_B<br>Power Button Registers<br>Width Modulation Generation<br>Overview<br>Functional Description | 195<br>196<br>197<br>197<br>197<br>197<br>198<br><b>200</b><br>200                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2<br>21.3                                                       | Power Button<br>Power Button Cold Boot Flow Diagram                                                                                                                                                                       | 195<br>196<br>197<br>197<br>197<br>197<br>198<br><b>200</b><br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2<br>21.3<br>21.4                                               | Power Button                                                                                                                                                                                                              | 195<br>196<br>197<br>197<br>197<br>197<br>198<br><b>200</b><br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2<br>21.3<br>21.4<br><b>Pane</b>                                | Power Button<br>Power Button Cold Boot Flow Diagram                                                                                                                                                                       | 195         196         197         197         197         197         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                 |
| 21.               | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2<br>21.3<br>21.4<br><b>Pane</b><br>22.1                        | Power Button                                                                                                                                                                                                              | 195<br>196<br>197<br>197<br>197<br>197<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                         |
| 21.<br>22.        | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2<br>21.3<br>21.4<br><b>Pane</b><br>22.1<br>22.2                | Power Button                                                                                                                                                                                                              | 195         196         197         197         197         197         198         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         203         203 |
| 21.<br>22.<br>23. | 20.4<br>20.5<br>20.6<br>20.7<br>20.8<br>20.9<br><b>Pulse</b><br>21.1<br>21.2<br>21.3<br>21.4<br><b>Pane</b><br>22.1<br>22.2<br><b>Debu</b> | Power Button                                                                                                                                                                                                              | 195         196         197         197         197         197         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         203         204             |



|     | 23.2  | I2C Debug port                  | 205 |
|-----|-------|---------------------------------|-----|
| 24. | Regis | ster Map                        | 207 |
| 25. | Packa | age Information                 | 210 |
|     | 25.1  | DA6021 Package Details          | 210 |
|     |       | 25.1.1 Pin Description, Pin Out | 210 |
|     |       | 25.1.2 Ball Order               | 210 |
|     | 25.2  | DA6021 325 Pin FCBGA Package    | 218 |
|     | 25.3  | Component Marking               | 219 |
|     | 25.4  | Package Outline                 | 219 |
|     | 25.5  | Soldering Profile               | 220 |



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# Figures

| Figure 1: Overview Diagram                                            | . 17       |
|-----------------------------------------------------------------------|------------|
| Figure 2: Detailed Block Diagram                                      | . 18       |
| Figure 3: Maximum Allowed Peak Power                                  | . 20       |
| Figure 4: DA6021 Power States                                         | . 30       |
| Figure 5: VSYS Areas                                                  | . 31       |
| Figure 6: SoC Power States                                            | . 32       |
| Figure 7: Address Range and Pages                                     | . 37       |
| Figure 8: State Transitions                                           | . 38       |
| Figure 9: Cold Boot Power Sequencing Diagram, Valid Battery Insertion | . 43       |
| Figure 10: Enter S0iX Sequencing Diagram (VCCAPWROKCFG=1)             | . 47       |
| Figure 11: Enter S0iX Sequencing Diagram (VCCAPWROKCFG=0)             | . 48       |
| Figure 12: Exit S0iX Sequencing Diagram (VCCAPWROKCFG=1)              | . 50       |
| Figure 13: Exit S0iX Sequencing Diagram (VCCAPWROKCFG=0)              | . 51       |
| Figure 14: Enter S3 Sequencing Diagram                                | 53         |
| Figure 15: Exit S3 Sequencing Diagram                                 | 54         |
| Figure 16: Enter S4 Sequencing Diagram                                | 55         |
| Figure 17: Evit S/ Sequencing Diagram                                 | 56         |
| Figure 18: Cold Off Power Sequencing Diagram (SUSPW/RDNACKCEG-1)      | 58         |
| Figure 10: Cold Off Fower Sequencing Diagram (SOSF WIXDIACKOF G=1)    | . JO<br>62 |
| Figure 19. Fowel Bullon folced Cold Off                               | . UZ       |
| Figure 20. Calasirophic Event (except vorsovr) Shuldown Sequence      | . 03       |
| Figure 21. VS150VP Shuldown Sequence                                  | . 03       |
| Figure 22: Modem Reset Sequencing Diagram                             | . 64       |
| Figure 23: Definition of VHYS                                         | . 70       |
| Figure 24: Measurement Points for VCLK                                | . 71       |
| Figure 25: SoC Driving Timing Definition                              | . 72       |
| Figure 26: DA6021 Driving Liming Definition                           | . 72       |
| Figure 27: VCC Block Diagram                                          | . 79       |
| Figure 28: VCC Timings                                                | . 80       |
| Figure 29: VCC Efficiency                                             | . 81       |
| Figure 30: Buck VNN Block Diagram                                     | . 82       |
| Figure 31: VNN Efficiency                                             | . 83       |
| Figure 32: V1P0A Power Rail Block Diagram                             | . 84       |
| Figure 33: V1P0A Efficiency                                           | . 86       |
| Figure 34: Buck V1P05S Block Diagram                                  | . 89       |
| Figure 35: V1P05S Efficiency                                          | . 91       |
| Figure 36: Buck V1P8A Power Rail Block Diagram                        | . 92       |
| Figure 37: V1P8A Efficiency                                           | . 93       |
| Figure 38: VDDQ Power Domain Block Diagram                            | . 98       |
| Figure 39: VDDQ Efficiency                                            | 100        |
| Figure 40: Buck Boost V2P85S Power Domain Block Diagram               | 105        |
| Figure 41: V2P85S Efficiency                                          | 107        |
| Figure 42:V3P3A Power Domain Block Diagram                            | 109        |
| Figure 43:V3P3A Efficiency                                            | 110        |
| Figure 44:V5P0S Power Domain Block Diagram                            | 113        |
| Figure 45:V/5P0S Efficiency                                           | 114        |
| Figure 46: Current Measurement Tolerance Boundary                     | 118        |
| Figure 47: VCC/VNN ADC Current Coding                                 | 110        |
| Figure 48: Typical VCC Current Sensing Error                          | 110        |
| Figure 40: Typical VCC Current Sensing Error                          | 110        |
| Figure 49. Typical VNN Current Ceding                                 | 120        |
| Figure 50. VIFUA ADD Current Coully                                   | 120        |
| Figure 51. Typical VTFUA Current Ceding                               | 120        |
| Figure 52. VIFU00 ADD Current Consists From                           | 121        |
| Figure 55. Typical V 1P055 Current Sensing Error                      | 121        |
| Figure 54. VDDQ ADC Current Cooling                                   | 122        |
| Figure 55: Typical VDDQ Current Sensing Error                         | 122        |
| Figure 56. IZC Fast Speed Write                                       | 123        |



| Figure 57: 12C Fast Speed Read<br>Figure 58: High Speed Write<br>Figure 59: High Speed Read<br>Figure 60: VBAT Input Detection<br>Figure 61: Battery Single Wire Block Diagram for Analog sensing, Digital communication<br>Figure 62: VSYS Valid Input Power Detection<br>Figure 63: USB Detection<br>Figure 64: DCIN Detection<br>Figure 65: Valid Battery Thresholds<br>Figure 66: SVTM Block Diagram<br>Figure 67: BCU Warning Flag Generation<br>Figure 68: VSYS Trip Points Flag Logic<br>Figure 69 : GPIO Block Diagram<br>Figure 70: 1st Level Interrupts<br>Figure 71 : Power/Utility Button Detection Logic<br>Figure 73: Power Button Boot Flow Diagram<br>Figure 74: SVID Debug Port Bus Diagram<br>Figure 75: I2C Debug Port Bus Diagram | 124<br>124<br>124<br>126<br>127<br>129<br>129<br>130<br>131<br>158<br>161<br>164<br>179<br>190<br>196<br>197<br>197<br>204<br>205 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Figure 75: I2C Debug Port Bus Diagram<br>Figure 76: Package Outline Drawing and Dimensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 205<br>220                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                   |



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# Tables

| Table 1: DA6021 Absolute Maximum Patings                             | 10 |
|----------------------------------------------------------------------|----|
| Table 1. DA0021 Absolute Maximum Kalings                             | 10 |
| Table 2. DA6021 Recommended Operating Conditions                     | 19 |
| Table 3: Abbreviations of Validation Status                          | 20 |
| Table 4: Pin Description                                             | 25 |
| Table 5: Pin Type Definition                                         | 25 |
| Table 6 : G3 State Transition                                        | 31 |
| Table 7: SOC_G3 State Transition                                     | 31 |
| Table 8:SOC S0 State Transition                                      | 33 |
| Table 9: SOC S0iX State Transition                                   | 34 |
| Table 10: SOC S3 State Transition                                    | 34 |
| Table 11: SOC S4 State Transition                                    | 35 |
| Table 12: Truth Table of Sleen Signals and DA6021 Final Power States | 35 |
| Table 13: DA6021 State Transition and Sleep Signals                  | 36 |
| Table 14: Slave ID versus DA6021 Storage Page                        | 37 |
| Table 14. Slave DV Fisus DA0021 Slolage Fage                         | 20 |
| Table 15.02 & D2 Event Generation Table                              | 39 |
|                                                                      | 42 |
| Table 17: Truth Table of Cold Boot Triggers                          | 42 |
| Table 18: Cold Boot Timings                                          | 45 |
| Table 19: Enter S0iX timing                                          | 49 |
| Table 20: Exit S0iX timing                                           | 52 |
| Table 21: Cold Off Triggers                                          | 57 |
| Table 22: Cold Off Sequencing Timing                                 | 61 |
| Table 23: Catastrophic Event (except VSYSOVP) Shutdown Sequence      | 63 |
| Table 24: VSYSOVP Shutdown Timing                                    | 63 |
| Table 25: Modem Reset Timing Intervals                               | 64 |
| Table 26 : PMIC Reset Sources                                        | 65 |
| Table 27 <sup>.</sup> Power Domains                                  | 67 |
| Table 28. Status Power Domains                                       | 68 |
| Table 29: PMIC Current Consumption                                   | 68 |
| Table 30: V/CC & VNN Addresses                                       | 69 |
| Table 31: SVID DC Electrical Characteristics                         | 60 |
| Table 32: SVID buffer AC Electrical Parameters                       | 70 |
| Table 32: V/CLK &C Timing Parameters                                 | 70 |
| Table 30: VOLICAO Tilling Latameters                                 | 72 |
| Table 24: SVID Supported Commanus                                    | 75 |
| Table 35. SVID Supported Registers                                   | 70 |
| Table 30. VID Values                                                 | 10 |
| Table 37: Electrical Parameters for BUCK_VCC                         | 81 |
| Table 38: Electrical Parameters for BUCK_VIN                         | 83 |
| Table 39: Electrical Parameter for BUCK_V1PUA                        | 85 |
| Table 40: V1P0A Truth Table                                          | 87 |
| Table 41: V1P0S_EN Truth Table                                       | 87 |
| Table 42: V1P0SX_EN Truth Table                                      | 88 |
| Table 43: VDDQ_VTT Truth Table                                       | 89 |
| Table 44: Electrical Parameter for VDDQ_VTT                          | 89 |
| Table 45: Electrical Parameter for BUCK_V1P05S                       | 90 |
| Table 46: V1P05S Truth Table                                         | 92 |
| Table 47: Electrical Parameter for BUCK_V1P8A                        | 93 |
| Table 48: V1P8A Truth Table                                          | 94 |
| Table 49: V1P8U EN B Truth Table                                     | 95 |
| Table 50: V1P8S Power Switch Specification                           | 95 |
| Table 51: V1P8S Truth Table                                          | 95 |
| Table 52: V1P8S Power Switch Specification                           | 96 |
| Table 53: V1P8SX Truth Table                                         | 96 |
| Table 54: Electrical Parameter for V1P2A                             | 97 |
| Table 55: Electrical Parameter for VREFDQ1/2                         | 98 |
| Table 56: Electrical Parameter for BUCK VDDQ                         | 99 |



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Table 57: VDDQ Truth Table                              | 10        | )1             |
|---------------------------------------------------------|-----------|----------------|
| Table 58: V1P2S Power Switch Specification              | 10        | )1             |
| Table 59: Electrical Parameter for V1P2S LDO            | 10        | )1             |
| Table 60: V1P2S Truth Table                             | 10        | )2             |
| Table 61: V1P2SX Power Switch Specification             | 10        | )2             |
| Table 62: V1P2SX Truth Table                            | 10        | 13             |
| Table 62: VSVI EN R Truth Table                         | 10        | 13             |
|                                                         | 10        | 10             |
| Table 64: VSYSSX_EN_B Truth Table                       | 10        | )4             |
| Table 65: VSYS_S Power Switch Specification             | 10        | )5             |
| Table 66: VSYS_S Truth Table                            | 10        | )5             |
| Table 67: Electrical Parameter for BUCKBOOST_V2P85S     | 10        | )6             |
| Table 68: V2P85S Truth Table                            | 10        | )7             |
| Table 69: V2P85SX Power Switch Specification            | 10        | )8             |
| Table 70: V2P85SX Truth Table                           | 10        | 18             |
| Table 71: Electrical Daramotr for PLICKPOOST \/2P2A     | 11        | in in          |
|                                                         | 11        | 10             |
|                                                         |           |                |
| Table 73: V3P3U_EN_B Truth Table                        | 11        | 1              |
| Table 74: V3P3S_EN_B Truth Table                        | 11        | 2              |
| Table 75: VUSBPHY Power Switch Specification            | 11        | 2              |
| Table 76: VSDIO Power Switch Specification              | 11        | 3              |
| Table 77: VSDIO Output Voltage Selection                | 11        | 3              |
| Table 78: Electrical Parameter for BOOST_V5P0S          | 11        | 4              |
| Table 79: VSPOS Truth Table                             | 11        | 15             |
|                                                         | 11        | 16             |
| Table 60. VHOST_EN Hull Table                           | 11        |                |
| Table 81: VHOST External Power Switch Driver Capability | 11        | 6              |
| Table 82: VBUS_EN Truth Table                           | 11        | 6              |
| Table 83: VBUS External Switch Driver Capability        | 11        | 6              |
| Table 84: VHDMI Power Switch Specification              | 11        | 17             |
| Table 85: VHDMI Truth Table                             | 11        | 17             |
| Table 86: Electrical Parameter for LDO LP               | 11        | 8              |
| Table 87: Current Measurement Resolution                | 11        | 18             |
| Table 91: 12C Slave Addresses                           | 12        | 22             |
| Table 00, 12C Slave Addresses                           | 12        | 10<br>N/       |
| Table 69. IZC Signal Electrical Specification           |           | <u>14</u>      |
| Table 90: EEPROM Signal Electrical Specifications       | 12        | <u>25</u>      |
| Table 91: BATID Comparator Threshold                    | 12        | 27             |
| Table 92: VBAT Removal Comparator Threshold             | 12        | 27             |
| Table 93: BATID Electrical Specification                | 12        | 28             |
| Table 94: Digital Battery Interface Specification       | 12        | 28             |
| Table 95: VSYSREF Definition                            | 12        | 29             |
| Table 96: VBLIS Detection, Analog Electrical Parameters | 12        | 30             |
| Table 07: VDCIN Detection Analog Electrical Parameters  | 12        | 20<br>21       |
| Table 91. VDGIND Detection, Analog Liebthoan Falameters | 10        | וי<br>רי       |
| Table 96. System wake-op condition                      |           | )Z             |
| Table 99: ADC Electrical Charakteristics.               | 14        | 10             |
| Table 100: ADC Channel Overview                         | 14        | 11             |
| Table 101: ADC Channel Data Format                      | 14        | 12             |
| Table 102: VSYS Event Table                             | 16        | 35             |
| Table 103: Thermal Monitoring Events                    | 17        | 77             |
| Table 104: GPIO Direction Configuration                 | 18        | 30             |
| Table 105: GPIO Pull-un/Pull-down Configuration         | 18        | 20             |
| Table 106: CPIO 1 81/ Electrical Specification          | 18        | 22             |
| Table 107: CDIO 2 21/ Electrical Specification          | 10        | 20             |
|                                                         | 10<br>A C | )∠<br>)C       |
| Table 108: External Charger Current Limits              | 18        | 38             |
| Table 109: Charger Control Pins                         | 18        | 38             |
| Table 110: Second Level Interrupts                      | 19        | <del>)</del> 3 |
| Table 111: PWM Output Signals                           | 20        | )0             |
| Table 112: SVID Debug Port Truth Table                  | 20        | )4             |
| Table 113: I2C Debug Port Truth Table                   | 20        | )6             |
| Table 114 <sup>.</sup> DA6021 Register Map              | 20        | )9             |
|                                                         | -0        |                |



| Table 115: DA6021 Ball Order   |  |
|--------------------------------|--|
| Table 116: Soldering Profile   |  |
| Table 117: DA6021 BOM Proposal |  |



**Company Confidential** 

# 3. Revision History

| Version    | Date                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.A        | 2012.09.08               | First preliminary datasheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.B        | 2012.09.26               | Updated ordering information<br>Updated package outline drawing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2.B<br>2.C | 2012.09.26<br>2013.05.03 | Updated ordering information<br>Updated package outline drawing<br>Corrected VSYSU pin types table 4: Pin Description<br>Updated figure 16: Buck VNN Block Diagram<br>Corrected IMAX value in chapter 11.5.2.1<br>Updated electrical parameters for buck VCC<br>Updated electrical parameters for buck V1P0A<br>Updated electrical parameters for buck VDDQ<br>Updated electrical parameters for buck boost V2P85S<br>Updated electrical parameters for buck boost V2P85S<br>Updated electrical parameters for buck boost V3P3A<br>Updated electrical parameters for buck boost V3P3A<br>Updated electrical parameters for boost V5P0S<br>Corrected table 51 naming<br>VDCIN replaced by VDCIN_SENSE<br>VBUS replaced by VDCIN_SENSE<br>Updated SVID Status1 registers<br>Included chapter 23 "Debug Ports"<br>Updated ICCMAX alert in Status1 SVID register<br>Included chapter 11.6 "Current Monitor" including typical current sensing<br>errors on the 5 power rails<br>Removed SVID registers 0x07 and 0x0A<br>Added SVID registers 0x14, 0x15, 0x1D, 0x1E, 0x1F, 0x20, 0x2D, 0x2E<br>and 0x2F<br>Updated chapter 10.3 "DA6021 Power Sequences", included timing<br>diagrams and tables<br>Added efficiency curves for all DC/DC regulators<br>Updated descriptions of internal and external switches<br>Updated descriptions of internal and external switches |
|            |                          | Updated PBCONFIG register with new feature of programmable power<br>button debounce time<br>Updated PBSTATUS register with new feature disabling the power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                          | button detection for a programmable time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                          | Updated register map chapter 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                          | Updated the content of the following registers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                          | IRQLVL1, MIRQLVL1, VCRIT_CFG, EVENTMAN1, MEVENTMAN1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## **Data Sheet**

Version 3.A - Final



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Version | Date       | Description                                                                    |  |  |  |  |  |
|---------|------------|--------------------------------------------------------------------------------|--|--|--|--|--|
|         |            | MANCONV1, TSENABLE, TS_CRIT_ENABLE, A0_ST, A1_ST and CRIT_ST,                  |  |  |  |  |  |
| 2.D     | 2013.05.28 | Added information how electrical parameters are validated                      |  |  |  |  |  |
|         |            | Included SVID Buffer AC parameters                                             |  |  |  |  |  |
|         |            | Platform SVID bus timing requirements                                          |  |  |  |  |  |
|         |            | Included maximum power path routing DC resistance requirement on several rails |  |  |  |  |  |
|         |            | Added further electrical parameters for Vref                                   |  |  |  |  |  |
|         |            | Included electrical parameters for VHOST & VBUS output signal                  |  |  |  |  |  |
|         |            | Updated ADC channel allocation                                                 |  |  |  |  |  |
|         |            | Updated several register names and dedicated bits                              |  |  |  |  |  |
|         |            | Included state transitions tables and conditions                               |  |  |  |  |  |
|         |            | Added detailed information on critical events including timings                |  |  |  |  |  |
|         |            | Included current monitor function details                                      |  |  |  |  |  |
|         |            | Added charger control pin details                                              |  |  |  |  |  |
|         |            | Several editorial updates                                                      |  |  |  |  |  |
| 2.E     | 2013.07.15 | Updated MPWRSRCIRQS0 register content                                          |  |  |  |  |  |
|         |            | Corrected MPWRSRCIRQSX register content                                        |  |  |  |  |  |
|         |            | Updated reset value of register LOWBATDET0                                     |  |  |  |  |  |
|         |            | Corrected reset value of register LOWBATDET1                                   |  |  |  |  |  |
|         |            | Updated and corrected the description of the reset source register RESETSCR1   |  |  |  |  |  |
|         |            | Added register PWRSEQCFG into register map chapter 24                          |  |  |  |  |  |
|         |            | Corrected reset value of register MADCIRQ1                                     |  |  |  |  |  |
|         |            | Added S0iX_SVID register in table 34 SVID Supported Registers                  |  |  |  |  |  |
|         |            | Corrected number of output caps for VDDQ, V3P3A & V5P0S                        |  |  |  |  |  |
|         |            | Corrected table 76 SDIO voltage selection                                      |  |  |  |  |  |
|         |            | Updated bit naming of SPWRSRC register                                         |  |  |  |  |  |
|         |            | Renamed MSYS3ALRTx by MSYS2ALRTx in MTHERMIRQ0/1 register                      |  |  |  |  |  |
|         |            | Updated reset value of VWARNA_CFG register                                     |  |  |  |  |  |
|         |            | Corrected description of MBCUIRQ register                                      |  |  |  |  |  |
| 2.F     | 2013.12.13 | Changed "new Intel Atom processor" into "Intel Atom processor Z3000"           |  |  |  |  |  |
|         |            | Updated figure 11. Enter SOL Seguencies Discrete                               |  |  |  |  |  |
|         |            | (VCCAPWROKCFG=0)                                                               |  |  |  |  |  |
| 2.G     | 2013.12.17 | Added note regarding behaviour V2P85S chapter 11.6.10                          |  |  |  |  |  |

# DA6021



## **Company Confidential**

| Version | Date       | Description                                    |
|---------|------------|------------------------------------------------|
| 3.A     | 2013.01.27 | Version after receiving Intel's PRQ statement  |
|         |            | Editorial changes in the register descriptions |
|         |            | Corrected typo in VHDMI_CTRL register          |
|         |            | Updated BOM, cost and size optimized           |



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 4. Overview

DA6021 features:

 Power sequencer & System control: DA6021 includes an ultra-flexible power sequencer programmable via OTP during manufacturing process and modifiable via external EEPROM data. It controls the DA6021 blocks, the power sequences, the programmed ADC sequence, interacts with the SoC and the peripherals

## • Supply Sources

- 6 Buck Regulators
- 2 Buck-Boost Regulators
- 1 Boost Regulator
- 6 LDO Regulators
- 11 internal power rail switches
- 9 external power rail switches
- 2 Power mux switches where the supply source can be selected

#### Communication Interfaces

- I2C (slave device) mastered from the SoC
- Handshake/control signals from/towards the SoC and peripherals
- SVID (slave device) mastered from the SoC, but capable of interrupt from the PMIC
- I2C (master device) or EEPROM Interface, used to read EEPROM during first power up.
- Input Source Power Detection: DA6021 will detect connected power sources and provide such information towards the SoC and/or charger. VBAT, VBUS\_SENSE, VDCIN\_SENSE and VSYS nodes will be permanently monitored via comparators for insertion, removal events. Furthermore they will be measured via the GPADC in order to take decision on the boot process.
- System Voltage and Temperature Measurement: it monitors the DA6021 input voltage at VSYS, the on-die temperature as well as the battery and platform sensor temperatures. It detects over- and under-voltage conditions. If activated, it can issue critical events.
- **GPADC**: The GPADC is primarily for temperature and voltage measurements. It can run predefined sequences or a single programmable one. It supports automatic and manual measurement methods and can also run also in a standby mode at programmable long intervals.
- **Digital Battery Interface:** 1-wire protocol agnostic digital communication between battery and SoC. It introduces a level shifting between the SoC and the main battery
- **OTP & EEPROM Interface:** DA6021 will read its parameters from integrated OTP during power on reset. Optionally those OTP parameter settings can be overwritten by an external EEPROM for back-up solution, debugging or development. Note, The OTP can't be overwritten and the EEPROM can't be programmed via the DA6021
- **Platform Back-up Battery Charger:** DA6021 includes an autonomous charger for platform backup batteries such as coin cells or "supercaps".
- Display control:
- **BCU**: Battery controller unit, supervising peripherals based on system voltage
- **PWM**: to accommodate some external functionality, DA6021 can generate up to 3 PWM signals with programmable duty-cycle and frequency.
- **GPIOs**: 16 general purpose I/O with alternate functions.



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 5. Block Diagram

## 5.1 Overview Diagram



## Figure 1: Overview Diagram

Version 3.A - Final

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 5.2 Detailed Block Diagram





# 6. Operating Conditions

All Voltages are referenced to VSS unless otherwise stated. Currents flowing into DA6021 are deemed positive, currents flowing out are deemed negative.

All parameters are valid over the full operating temperature range and power supply range unless otherwise noted. Please note that the power dissipation must be limited to avoid overheating of DA6021. The maximum power dissipation should not be reached with maximum ambient temperature.

## 6.1 Absolute Maximum Ratings

| Parameter                      | Conditions                        | Min  | Max      | Unit | Val |
|--------------------------------|-----------------------------------|------|----------|------|-----|
| Storage Temperature            | TSTOR                             | -65  | +150     | °C   | Q   |
| Operating Temperature free-air | ТАМВ                              | -30  | +85      | °C   | E   |
| Power Supply Input             | VSUP                              | -0.3 | +5.5     | V    | E/Q |
| IO Input                       | (All unless otherwise stated)     | -0.3 | VSUP+0.3 | V    | Q   |
| Maximum power dissipation      | 60°C ambient temperature          |      | 2.0      | W    | D,E |
|                                | 55mmx100mmx0.75mm PCB             |      |          |      |     |
| Package thermal resistance     |                                   |      | TBD      | K/W  | D,E |
| ESD CDM                        | All pins unless otherwise stated. |      | ±500     | V    | Q   |
| (Charge Device Model)          |                                   |      |          |      |     |
| ESD HBM                        | All pins unless otherwise stated. |      | ±2       | kV   | Q   |
| (Human Body Model)             |                                   |      |          |      |     |

Table 1: DA6021 Absolute Maximum Ratings

## 6.2 Recommended Operating Conditions

| Parameter                      | Conditions | Min | Max | Unit | Val |
|--------------------------------|------------|-----|-----|------|-----|
| Operating Temperature free-air | ТАМВ       | -30 | +85 | °C   | E,Q |
| Power Supply Input             | VSUP       | 2.7 | 4.5 | V    | E,Q |

 Table 2: DA6021 Recommended Operating Conditions

The maximum allowed operational die temperature is defined to 125°C. Below you can find the time constraints in relation to the peak power dissipation. The simulation results are based on

- 10 layer board, 70x170x0.8mm<sup>3</sup>
- Natural convection, air velocity 0m/s
- Surface-to –surface radiation
- Package initializes at 0.25W with initial temperature of 38°C
- Surrounding ambient temperature in immediate vicinity at 31°C
- Maximum power burst exposure of 100s

Various power burst scenarios at: 0.76, 0.96, 1.20, 2.90, 3.72, 4.52 and 7.0W



## **Company Confidential**



## Figure 3: Maximum Allowed Peak Power

| VAL status | Description of Abbreviation                             |
|------------|---------------------------------------------------------|
| D          | Parameter is guaranteed by design                       |
| E          | Parameter is confirmed by silicon evaluation            |
| Q          | Parameter is verified by silicon qualification          |
| A          | Parameter is screened during final ATE test             |
| A*         | Parameter is screened during final ATE test by indirect |
|            | measurement or with a special test set-up               |

 Table 3: Abbreviations of Validation Status

# 7. Ordering Information

The order number consists of the part number followed by a suffix indicating a.o. the packing method. For details, please consult the Dialog customer portal on our web site or your local sales representative.

| Part<br>Number | Package Name | Package description                | Package Outline |
|----------------|--------------|------------------------------------|-----------------|
| DA6021         | FCBGA        | 325 pin, FCBGA 11x6mm, 0.4mm pitch | Figure 76       |

Current OTP variant: -08 (Intel approved)



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 8. Pinning Information

The "\_B" symbol at the end of a signal name indicates that the active or asserted state occurs when the signal is at a low voltage level (active low). When the "\_B" is not present after the signal name the signal is asserted when the signal is at a high voltage level.

|        | Pin Name   | Pins | Power Domain | Description              | Туре |
|--------|------------|------|--------------|--------------------------|------|
| VCC    | VCC_VIN    | 8    | VSYS         | VCC buck input supply    | IP   |
|        | VCC_GND    | 8    | GND          | VCC buck ground          | IP   |
|        |            | 8    | VSVS         | Quad phase switching     | OP   |
|        | 100_EX     |      | 0010         | nodes                    |      |
|        | VCC FBP    | 1    | VCC          | VCC feedback positive    | IA   |
|        |            |      |              | sense                    |      |
|        | VCC FBN    | 1    | VCC          | VCC feedback ground      | IA   |
|        |            | -    | ) (O) (O     | sense                    |      |
| VINN   | VNN_VIN    | 8    | VSYS         |                          |      |
|        |            | 8    | GND          |                          | IP   |
|        | VNN_LX     | 8    | VSYS         | Quad phase switching     | OP   |
|        |            | 1    |              | VCC feedback positive    |      |
|        | VNN_FBP    | 1    | VNN          | sense                    | IA   |
| V1P0A  | V1P0A VIN  | 2    | VSYS         | V1P0A buck input supply  | IP   |
| -      | V1P0A GND  | 2    | GND          | V1P0A buck ground        | IP   |
|        |            | 2    | Veve         | V1P0A phase switching    |      |
|        | VIPUA_LX   |      | VSYS         | nodes                    | OP   |
|        |            | 1    |              | VCC feedback positive    | 14   |
|        | VIFUA_FBF  |      | VIFUA        | sense                    | IA   |
|        | V1P0A FBN  | 1    |              | VCC feedback negative    | IΔ   |
|        |            |      | VII OA       | sense                    | 1/~  |
| V1P05S | V1P05S_VIN | 1    | VSYS         | V1P05S buck input supply | IP   |
|        | V1P05S_GND | 1    | GND          | V1P05S buck ground       | IP   |
|        | V1P05S LX  | 1    | VSYS         | V1P05S phase switching   | OP   |
|        |            |      |              | nodes                    |      |
|        | V1P05S_FBP | 1    | V1P05S       | V1P05S feedback sense    | IA   |
|        |            | 1    |              | V1P05S foodback sonso    |      |
|        | V1P05S_FBN | 1    | V1P05S       | neg                      | IA   |
| VDDQ   |            | 4    | VSYS         | VDDQ buck input supply   | IP   |
|        | VDDQ GND   | 4    | GND          | VDDQ buck around         | IP   |
|        |            | 4    |              | VDDQ phase switching     | 0.5  |
|        | VDDQ_LX    |      | VSYS         | nodes                    | OP   |
|        |            | 1    |              | VDDQ feedback positive   | 1.4  |
|        | VDDQ_FBF   |      | VDDQ         | sense                    | IA   |
|        |            | 1    | VDDO         | VDDQ feedback negative   | IΔ   |
|        |            |      | VDDQ         | sense                    | 1/7  |
| V1P8A  | V1P8A_VIN  | 2    | VSYS         | V1P8A buck input supply  | IP   |
|        | V1P8A_GND  | 2    | GND          | V1P8A buck ground        | IP   |
|        | V1P8A LX   | 2    | VSYS         | V1P8A phase switching    | OP   |
|        |            | 4    |              |                          |      |
|        | V1P8A_FBP  | 1    | V1P8A        | V1P8A feedback positive  | IA   |
|        |            | 1    |              | V1P8A feedback pagative  |      |
|        | V1P8A_FBN  |      | V1P8A        | sense                    | IA   |
| V3P3A  |            | 3    |              | V3P3A buck boost input   |      |
|        | V3P3A_VIN  |      | VSYS         | supply                   | IP   |
|        | V3P3A GND  | 3    | GND          | V3P3A buck boost ground  | IP   |

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

|         | V3P3A_LX1   | 3 | VSYS     | V3P3A LX node 1          | IA  |
|---------|-------------|---|----------|--------------------------|-----|
|         | V3P3A_LX2   | 3 | VSYS     | V3P3A LX node 2          | IA  |
|         | V3P3A       | 3 | V3P3A    | V3P3A output             | OP  |
|         |             | 1 |          | V3P3A feedback positive  | 1.4 |
|         | V3F3A_FBF   |   | VOFOA    | sense                    | IA  |
|         |             | 1 | \/3D3V   | V3P3A feedback ground    | ١٨  |
|         |             |   | V01 0A   | sense                    |     |
| V2P85S  | V2P85S VIN  | 2 | VSYS     | V2P85S buck boost input  | IP  |
|         | 121 000_111 |   |          | supply                   |     |
|         | V2P85S_GND  | 2 | GND      | V2P85S buck boost ground | IP  |
|         | V2P85S_LX1  | 2 | VSYS     | V2P85S LX node 1         | IA  |
|         | V2P85S_LX2  | 2 | VSYS     | V2P85S LX node 2         | IA  |
|         | V2P85S      | 2 | V2P85S   | V2P85S output            | OP  |
|         | V2P85S FBP  | 1 | V2P85S   | V2P85S feedback positive | IA  |
|         |             |   |          | sense                    |     |
|         | V2P85S FBN  | 1 | V2P85S   | V2P85S feedback ground   | IA  |
|         |             |   | 0.15     | sense                    |     |
| V5P0S   | V5P0S_GND   | 2 | GND      | V5PUS buck boost ground  | IP  |
|         | V5PUS_LX    | 2 | VSYS     | V5PUS LX node 1          |     |
|         | V5P05       | 2 | V5P0S    |                          | OP  |
|         | V5P0S_FBP   | 1 | V5P0S    | V5PUS feedback positive  | IA  |
|         |             | 1 |          | VEDOS foodbook positivo  |     |
|         | V5P0S_FBN   | 1 | V5P0S    | v5P0S leedback positive  | IA  |
|         |             | 1 |          |                          | ID  |
|         |             | 1 |          | VDDQ_VTT input voltage   |     |
|         |             | 1 |          | VDDQ_VTT ground          |     |
|         |             | 1 |          |                          | OF  |
|         | VDDQ_VTT_R  |   | VDDQ_VTT | voltage                  | OP  |
| V1P8U   | V1P8U EN B  | 1 | V1P8A    | V1P8U enable signal      | OD  |
|         | V1P8U FB    | 1 | V1P8U    | V1P8U sense line         | IA  |
| V1P8S   | V1P8S VIN   | 1 | V1P8A    | V1P8S input voltage      | IP  |
|         | V1P8S       | 1 | V1P8S    | V1P8S output voltage     | OP  |
| V1P8SX  | V1P8SX      | 1 | V1P8SX   | V1P8SX output voltage    | OP  |
| V1P2S   | V1P2S       | 1 | V1P2S    | V1P2S output voltage     | OP  |
| V1P2A   | V1P2A       | 1 | V1P2A    | V1P2A output voltage     | OP  |
| V1P2SX  | V1P2SX      | 1 | V1P2SX   | V1P2SX output voltage    | OP  |
|         | V1P2SX IN   | 1 | V1P8A    | V1P2SX input voltage     | IP  |
| VREFDQ0 | VREFDQ0     | 1 | VREFDQ0  | VREFDQ0 output voltage   | OP  |
| VREFDQ1 | VREFDQ1     | 1 | VREFDQ1  | VREFDQ1 output voltage   | OP  |
| V3P3U   | V3P3U_EN    | 1 | V3P3A    | V3P3U input voltage      | IP  |
|         | V3P3U_FB    | 1 | V3P3U    | V3P3U output voltage     | OP  |
| V3P3S   | V3P3S_EN_B  | 1 | V3P3A    | V3P3S enable signal      | OD  |
|         | V3P3S_FB    | 1 | V3P3S    | V3P3S sense signal       | IA  |
| VSDIO   | VSDIO_VIN   | 1 | V3.3A    | VSDIO input voltage      | OP  |
|         | VSDIO       | 1 | VSDIO    | VSDIO output voltage     | OP  |
| VUSBPHY | VUSBPHY     | 1 | VUSBPHY  | VUSBPHY output voltage   | OP  |
| VHOST   | VHOST_EN    | 1 | VHOST    | VHOST enable signal      | OD  |
| VBUS    | VBUS_EN     | 1 | VBUS     | VBUS enable signal       | OD  |
|         |             | 1 | VSVS     | Input signal to enable   |     |
|         |             |   | V010     | VBUS                     |     |
| VHDMI   | VHDMI_VIN   | 1 | VHDMI    | VHDMI input voltage      | IP  |
|         | VHDMI       | 1 | VHDMI    | VHDMI output voltage     | OP  |
| V2P85SX | V2P85SX_VIN | 1 | V2P85S   | V2P85SX input voltage    | IP  |

## **Data Sheet**



**Company Confidential** 

IA

V3P3A LX node 1



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

|             | V2P85SX      | 1 | V2P85SX   | V2P85SX output voltage                       | OP  |
|-------------|--------------|---|-----------|----------------------------------------------|-----|
| VSYSU       | VSYSU_EN     | 1 | VSYS      | VSYSU input voltage                          | OP  |
|             | VSYSU_FB     | 1 | VSYSU     | VSYSU output voltage                         | IP  |
| VSYSS       | VSYSS        | 1 | VSYSS     | VSYSS output voltage                         | OP  |
| VSYS_SX     | VSYS_SX_EN#  | 1 | VSYS_SX   | VSYS_SX enable signal                        | OD  |
|             | VSYS_SX_FB   | 1 | VSYS_SX   | VSYS_SX sense signal                         | IA  |
| V1P0S       | V1P0SEN      | 1 | V1P0A     | V1P0S enable signal                          | OD  |
|             | V1P0S FB     | 1 | V1P0A     | V1P0S sense signal                           | IA  |
| V1P0SX      | V1P0SXEN     | 1 | V1P0A     | V1P0SX enable signal                         | OD  |
|             | V1P0SX FB    | 1 | V1P0A     | V1P0SX sense signal                          | IA  |
| BG          | VREF12       | 1 | VREF12    | Bandgap reference voltage                    | OP  |
|             | IREF12       | 1 | IREF12    | Bandgap reference current                    | OP  |
|             | VREF12 QUIET | 1 | VSS QUIET | quiet ground connection                      | IP  |
| VLP         | VLP          | 1 | VLP       | VLP output voltage                           | OP  |
|             | VLP GND      | 1 | VLP GND   | VLP around                                   | IP  |
| VSYS1/2     |              | 2 | <u> </u>  | DA6021 input supply                          |     |
|             | VSYS         |   | VSYS      | voltage                                      | IP  |
| SVID        | SVID CLK     | 1 | V1P0S     | Serial VID clock signal                      | ID  |
|             | SVID_DIO     | 1 | V1P0S     | Serial VID data in/out                       | IOD |
|             | SVID ALERT B | 1 | V1P0S     | Serial VID to SoC interrupt                  | OD  |
| Power       |              | 1 |           | AC/DC adapter input                          |     |
| source      | VDCIN_SENSE  |   | 5V        | voltage detection (20V via                   | IP  |
| detection & |              |   |           | ext. components)                             |     |
| charger     |              | 1 |           | Valid AC/DC adapter                          |     |
| control     | ACPRESENT    |   | VIP8      | voltage detection                            | UD  |
|             |              | 1 |           | USB input voltage                            |     |
|             | VBUSSENSE    |   | VUSBPHY   | detection (20V via ext.                      | IP  |
|             |              |   |           | components)                                  |     |
|             | CHGDET_B     | 1 | VSYS      | USB DCP detection from<br>USBPHY (0=USB DCP) | ID  |
|             |              | 1 |           |                                              |     |
|             |              |   |           | Battery charging status                      |     |
|             | CHGRINI_B    |   |           | 0=charging in progress                       | IA  |
|             |              |   |           | 1=charging complete                          |     |
|             | ILIM[1:0]    | 2 | VSYS      | Charging current limit                       | OD  |
| System      | I2C CLK      | 1 | V1P8S     | I2C clock signal                             | ID  |
| control     |              | 1 | V1P8S     | I2C data IO                                  | IOD |
|             | IRQ          | 1 | V1P8S     | Interrupt signal to So                       | OD  |
|             | I2CM CLK     | 1 | VSYS      | I2C clock signal                             | OD  |
|             | I2CM DATA    | 1 | VSYS      | I2C data IO                                  | IOD |
|             | PWRBTNIN B   | 1 | VSYS      | System power button input                    | ID  |
|             |              | 1 | )/// D0 / | System power button                          | 0.5 |
|             | PWRBIN       |   | V1P8A     | output                                       | OD  |
|             | PLTRST_B     | 1 | V1P8A     | Platform reset signal                        | OD  |
|             |              | 1 |           | Standby S0iXtrigger                          |     |
|             | SLP S0iX B   |   | V1P8A     | 0=enter S0iX                                 | ID  |
|             |              |   |           | 1=exit S0iX                                  |     |
|             |              | 1 |           | Sleep S3 triager                             |     |
|             | SLP S3 B     |   | V1P8A     | 0=enter S3                                   | ID  |
|             |              |   |           | 1=exit S3                                    |     |
|             |              | 1 |           | Sleep S4 trigger                             | 1   |
|             | SLP S4 B     |   | V1P8A     | 0=enter S4                                   | ID  |
|             |              |   |           | 1=exit S4                                    | _   |
|             |              | 1 | \/0D04    | Resume reset to SoC, de-                     | 05  |
|             | KOMKOI R     |   | V3P3A     | assertion (=1) after V3P3A                   |     |

#### **Data Sheet**

Version 3.A - Final

© 2014 Dialog Semiconductor GmbH



| Company | Confidential |
|---------|--------------|
|---------|--------------|

|                       | DRAMPWROK        | 1 | VDDQ       | Asserted after VDDQ<br>stable                                    | OD  |
|-----------------------|------------------|---|------------|------------------------------------------------------------------|-----|
|                       | VCCAPWROK        | 1 | VDDQ       | Power good indication to SoC                                     | OD  |
|                       | COREPWROK        | 1 | V3P3A      | Power good indication to<br>SoC                                  | OD  |
|                       | SUSPWRDNACK      | 1 | V1P8A      | power off indication for _A                                      | ID  |
|                       | BATLOW_B         | 1 | V1P8A      | Indicating that battery<br>voltage is not high enough<br>to boot | OD  |
|                       | THERMTRIP_B      | 1 | V1P8S      | Catastrophic thermal<br>event, shut down all power<br>rails      | ID  |
|                       | PROCHOT_B        | 1 | V1P0S      | Open drain output to SoC indicating to limit the power           | OD  |
|                       | SDMMC3_1P8_EN    | 1 | V1P8S      | 1.8/3.3V selection for SD<br>card<br>0=3.3V<br>1=1.8V            | ID  |
|                       | SDMMC3_PWR_EN_B  | 1 | V1P8S      | SD card power enable<br>1=off                                    | ID  |
|                       | MODEM_OFF_B      | 1 | V1P8A      | Modem reset signal                                               | OD  |
|                       | SDWN_B           | 1 | V1P8A      | System shut down warning<br>or SIM card removal                  | OD  |
|                       | RTCPOR           | 1 | VRTC       | Power on reset from<br>system to PMIC                            | ID  |
| Low voltage           | GPIO0P0_BATIDIN  | 1 | GPIO0VDD   |                                                                  | IOD |
| GPIOs                 | GPIO0P1_BATIDOUT | 1 | GPIO0VDD   |                                                                  | IOD |
|                       | GPIO0P[7:2]      | 6 | GPIO0VDD   |                                                                  | IOD |
|                       | GPIO0VDD         | 1 | V1P8A      | Low voltage GPIO supply                                          | IP  |
|                       | GPIO0GND         | 1 | GND        | Low voltage GPIO ground                                          | IP  |
| High voltage          | GPIO1P0_UIBTN_B  | 1 | GPIO1VDD   |                                                                  | IOD |
| GPIOs                 | GPIO1P[7:1]      | 7 | GPIO1VDD   |                                                                  | IOD |
|                       | GPIO1VDD         | 1 | V3P3A/VSYS | High voltage GPIO supply                                         | IP  |
|                       | GPIO1GND         | 1 | GND        | High voltage GPIO ground                                         | IP  |
| Burst control<br>unit | BCUDISA          | 1 | V1P8A      | BCU warning zone A output disable signal                         | OD  |
|                       | BCUDISB          | 1 | V1P8A      | BCU warning zone B<br>output disable signal                      | OD  |
|                       | BCUDISCRIT       | 1 | V1P8A      | BCU critical zone output<br>disable signal                       | OD  |
| PWM                   | PWM[2:0]         | 3 | PWMVDD     | PWM output signals                                               | OD  |
|                       | PWMVDD           | 1 | V1P8A      | PWM supply voltage                                               | IP  |
|                       | PWMGND           | 1 | GND        | PWM ground                                                       | IP  |
| Display               | BACKLIGHT_EN     | 1 | V3P3A      | Backlight enable                                                 | OD  |
|                       | PANEL_EN         | 1 | V3P3A      | LCD panel enable                                                 | OD  |
| ADC                   | SYSTHERM[2:0]    | 3 | VLP        | System temperature thermistor input                              | IA  |
|                       | BPTHERM0         | 1 | VLP        | Battery temperature input of pack 0                              | IA  |
|                       | BPTHERM1         | 1 | VLP        | Battery temperature input of pack 1                              | IA  |
|                       | BATID            | 1 | VLP        | Battery identification                                           | IA  |
|                       | VBATSENSE        | 1 | VBAT       | battery sense voltage                                            | IA  |
| Test                  | PMICTEST         | 1 | 5V         | Test pin                                                         | IA  |

#### **Data Sheet**

Version 3.A - Final



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| VBATBKUP           | 1 |       | Coin Cell backup battery                     | OP |
|--------------------|---|-------|----------------------------------------------|----|
| VREFB              | 1 | VLP   | Battery ID bias voltage                      | OP |
| VREFT              | 1 | VLP   | battery thermistor bias voltage              | OP |
| DEBUG_CS           | 1 | VSYS  | Selecting SVID and I2C channel for debugging | I  |
| DEBUG_SVID_CLK     | 1 | V1P0S | SVID clock from Valleyview 2 debug channel   | I  |
| DEBUG_SVID_DATA    | 1 | V1P0S | SVID data in/out, debug channel              | ю  |
| DEBUG_SVID_ALERT_B | 1 | V1P0S | SVID interrupt from PMIC debug channel       | 0  |
| DEBUG_I2C_CLK      | 1 | V1P8S | I2C clock debug channel                      | I  |
| DEBUG_I2C_DATA     | 1 | V1P8A | I2C data debug channel                       | 10 |

## Table 4: Pin Description

| Pin Type | Description | Pin Type | Description |
|----------|-------------|----------|-------------|
| I        | Input       | D        | Digital     |
| 0        | Output      |          |             |
| Р        | Power       |          |             |
| А        | Analog      |          |             |

Table 5: Pin Type Definition



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 9. Operating Conditions

## 9.1 System Control Signals

## 9.1.1 VDCIN\_SENSE

Input voltage, limited to the maximum input voltage via resistor divider, of the AC/DC adaptor.

#### 9.1.2 ACPRESENT

ACPRESENT is an active high dedicated output signal that indicates the AC/DC adapter or USB DCP/CDP/ACA (CHGDET\_B=0) is connected to a valid voltage.

#### 9.1.3 VBUS\_SENSE

USB input voltage detection

#### 9.1.4 CHGDET\_B

USB DCP detection from USBPHY to DA6021. (0=USB DCP/CDP/ACA)

#### 9.1.5 VSYS1/2

Input power supplies and input voltage supervision

#### 9.1.6 CHGSTAT

Input to DA6021 indicating the battery charger status and fault indicator from charger IC

#### 9.1.7 ILIM[1:0]

Output signals providing information the external connected power sources like AC adaptor, USB DCP/CDP/ACA and USB SDP)

#### 9.1.8 I2C\_CLK

I2C clock signal from SoC to DA6021

#### 9.1.9 I2C\_DATA

I2C data connection between SoC and DA6021

#### 9.1.10 IRQ

IRQ is an active high dedicated output signal that generates interrupts to the SOC. It is asserted when at least one unmasked interrupt bit is set in the 1st level interrupt register. It is valid when RSMRST\_B=1 (de-asserted). The maximum latency from the IRQ detection to the assertion of the IRQ line is 1ms.

## 9.1.11 I2CM\_CLK

I2C clock signal from DA6021 to external I2C EEPROM

#### 9.1.12 I2CM\_DATA

I2C data line between DA6021 and external I2C EEPROM

#### 9.1.13 PWRBTNIN\_B

System power button input signal, internally connected to VSYS via a  $20k\Omega$  resistor and includes a 30ms debouncer from proper function avoiding detection during bouncing contacts

## 9.1.14 PWRBTN\_B

DA6021 passes the power button input information via the PWRBTN\_B output signal to the SOC. PWRBTN\_B is a level shifted copy of PWRBTNIN\_B after the 30ms de-bouncer. PWRBTN\_B is valid when RSMRST\_B=1 (de-asserted).



## 9.1.15 PLTRST\_B

PLTRST\_B is an active low dedicated input signal from the SOC that indicates the SOC already comes out of reset upon de-assertion (PLTRST\_B=1). Please note that PLTRST\_B is not a power state indication signal while SLP\_S\*\_B (i.e. SLP\_SOIX\_B or SLP\_S3\_B or SLP\_S4\_B) signals are. PMIC ignores the PLTRST\_B if it is in one of the standby states.

## 9.1.16 SLP\_S0iX\_B

SLP\_SOIX\_B is an active low dedicated input signal from the SOC that indicates SX state entry upon assertion (SLP\_SOIX=LOW) and exit upon de-assertion (SLP\_SOIX=HIGH). The assertion of the SLP\_SOIX\_B signal from the SOC launches SOC\_SX entry sequence. It is only considered if RSMRST\_B=1.

#### 9.1.17 SLP\_S3\_B

SLP\_S3\_B is an active low dedicated input signal from the SOC that indicates S3 state entry upon assertion (SLP\_S3\_B=LOW) and exit upon de-assertion (SLP\_S3\_B=HIGH). The assertion/de-assertion of the SLP\_S3\_B signal from the SOC launches SOC\_S3 state entry/exit sequence. It is valid when RSMRST\_B=1 (de-asserted).

#### 9.1.18 SLP\_S4\_B

SLP\_S4\_B is an active low dedicated input signal from the SOC that indicates S4 state entry upon assertion (SLP\_S4\_B=LOW) and exit upon de-assertion (SLP\_S4\_B=HIGH). The assertion/de-assertion of the SLP\_S4\_B signal from the SOC launches SOC\_S4 state entry/exit sequence. It is valid only when RSMRST\_B=1.

#### 9.1.19 RSMRST\_B

RSMRST\_B is an active low dedicated output signal. RSMRST\_B asserts when voltage rail V3P3A is enabled. RSMRST\_B shall be actively driven to low in SOC G3 state when SUS rails are turned off. This is down via a pull-down integrated resistor. The nominal voltage of RSMRST\_B is 0V when asserted, 3.3V when de-asserted.

#### 9.1.20 DRAMPWROK

DRAMPWROK is an active high dedicated output signal. DRAMPWROK asserts when voltage rail VDDQ is enabled. The nominal voltage of DRAMPWROK is VDDQ when asserted, 0V when de-asserted.

## 9.1.21 VCCAPWROK

VCCAPWROK is an active high dedicated output signal. VCCAPWROK asserts when all voltage rails that are supposed to be on in SOC\_S0 and SOC\_SX states are at nominal voltage. The nominal voltage of VCCAPWROK is VDDQ when asserted, 0V when de-asserted. VCCAPWROK will de-assert only if both PLTRST\_B and SLP\_S0IX\_B are asserted (=0) during sleep state entry.

#### 9.1.22 COREPWROK

COREPWROK is an active high dedicated output signal. COREPWROK asserts when all voltage rails that are supposed to be on in SOC\_S0 and SOC\_SX states, are at nominal voltage. COREPOWROK shall be actively driven to low in SOC G3 state when SUS rails (\*\_A rails) are turned off. The nominal voltage of COREPWROK is 3.3V when asserted, 0V when de-asserted. COREPWROK will de-assert only if both PLTRST\_B and SLP\_S0IX\_B are asserted (=0) during sleep state entry.

#### 9.1.23 SUSPWRDNOK

SUSPWRDNACK is an active high dedicated input signal from the SOC that indicates the PMIC to turn off the SUS rails (A) rails (V3P3A, V1P8A, V1P0A) in junction with assertion of SLP\_S4\_B. It is valid when RSMRST\_B=1 (de-asserted) and SLP=S4\_B=0 (asserted).

#### 9.1.24 BATLOW\_B

BATLOW\_B is an active low dedicated output signal to the SOC indicating that the battery voltage is not sufficiently high to boot the SoC.

**Data Sheet** 

Version 3.A - Final



## 9.1.25 SUSCLK

SUSCLK is the 32.768kHz RTC clock that is supplied from the SoC. It is available to DA6021 about 100ms after RSMRST\_B is de-asserted and continue to be available in S0, S0iX, S3 and S4 state. It is not available if the platform will be in G3 mode when the suspend voltage rails are disable.

## 9.1.26 THERMTRIP\_B

THERMTRIP\_B is an active low dedicated input signal that notifies the PMIC of a SOC thermal event. It is valid when RSMRST\_B=1 and PLTRST\_B=1 (de-asserted). Upon sensing the THERMTRIP\_B signal has transitioned low, the PMIC shuts down all rails immediately (hard shutdown, not waiting for SLP\_S\*\_B signals from the SOC to execute a Cold Off power down sequence). To avoid spurious detection during power sequencing, the THERMTRIP\_B signal is only sampled if PLTRST\_B is de-asserted. THERMTRIP has internal pull-up.

## 9.1.27 PROCHOT\_B

PROCHOT\_B is an active low dedicated output signal used to notify the SOC of a PMIC, battery or system thermal event. PROCHOT\_B will be asserted when the PMIC temperature, battery temperature or system temperature has crossed the alert thresholds define in the thermal monitoring section. It will also assert when battery voltage drops to the threshold set in SVTM. PROCHOT\_B is asserted if the PMIC die temperature rises above the internally set alert threshold, for example 110°C, to prevent the PMIC from reaching critical temperature. It is valid when RSMRST\_B=1 and PLTRST\_B=1 (de-asserted). The SOC will go into a lower power state until the PMIC thermal event is cleared and the pin is de-asserted. PROCHOT\_B has internal pull-up.

#### 9.1.28 SDMMC3\_1P8\_EN

SDMMC3\_1P8\_EN is a dedicated input signal from the SOC to select 1.8V or 3.3V for SD card.

- SDMMC3\_1P8\_EN=1 to select 1.8V for SD card.
- SDMMC3\_1P8\_EN=0 to select 3.3V for SD card.

It is valid when RSMRST\_B=1 (de-asserted) and COREPWROK=1 (asserted).

#### 9.1.29 SDMMC3\_PWR\_EN\_B

SDMM3\_PWR\_EN\_B is an active low dedicated output signal to enable SD card power. It is valid when RSMRST\_B=1 (de-asserted) and COREPWROK=1 (asserted).

#### 9.1.30 MODEM\_OFF\_B

#### 9.1.31 SDWN\_B

The SDWN\_B (Shut-Down Warning) signal is sent by the PMIC to the modem as a warning that a system shutdown event is about to take place.

The SDWN\_B signal is asserted (set low) during power down Task Lists. If the PMIC enters a catastrophic shutdown condition which would normally bypass a Cold Off Task List being run, the SDWN\_B pin must be asserted a minimum of 900us prior to this catastrophic shutdown commencing. The nominal voltage of SDWN\_B is 0V when asserted, 1.8V when de-asserted.

#### 9.1.32 USBRST\_B

USBRST\_B is an active low dedicated output signal to reset the USB PHY. The minimum pulse is 100µs when asserted. The nominal voltage of USBRST\_B is 0V when asserted, 1.8V when de-asserted.

#### 9.1.33 GPIOs

## 9.1.33.1 Low Voltage GPIOs

#### GPIO0P1 BATIDIN:

Battery ID input signal from SOC for digital battery communication. Optional function multiplexed with low voltage GPIO0P1

**Data Sheet** 

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## **GPIO0P2\_BATIDOUT:**

Battery ID output to SoC for digital battery communication. Optional function multiplexed with low voltage GPIO0P2

## GPIO0P[7:3]:

Low voltage GPIOs with no alternate functions

## 9.1.33.2 High Voltage GPIOs

#### GPIO1P0\_UIBTN\_B:

The UIBTN\_B pin is an input from a platform-defined functional interface button, such as the Home button. It includes a 30ms de-bouncer to ensure that spurious transitions aren't logged while the switch contacts bounce on initial contact. The output of the de-bouncer enters the edge detect circuits.

#### GPIO1P[7:1]:

High voltage GPIOs with no alternate functions

#### 9.1.34 Burst Control Unit

#### 9.1.34.1 BCUDISA

Burst controller unit warning zone A. Output signal to disable peripherals (functions)

#### 9.1.34.2 BCUDISB

Burst controller unit warning zone B. output signal to disable peripherals (functions)

## 9.1.34.3 BCUDISCRIT

Burst controller unit critical zone. Output signal to disable peripherals (functions)

#### 9.1.35 PWM[2:0]

Pulse width modulated output control signals

#### 9.1.36 DISPLAY

#### 9.1.36.1 BACKLIGHT\_EN

Output signal to control the display backlight

#### 9.1.36.2 PANEL\_EN

Output signal to enable the display

#### 9.1.37 ADC

#### 9.1.37.1 SYSTHERM[2:0]

System temperature thermistor input signal to be multiplexed to DA6021 ADC

#### 9.1.37.2 BPTHERM[1:0]

Battery pack temperature input signal to be multiplexed to DA6021 ADC

#### 9.1.37.3 BATID

Battery identification from the battery for battery presence detection and battery size indication

## 9.1.37.4 VBATSENSE

Battery voltage sense input



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 9.2 DA6021 Power States

Following is a brief description of these states:

- **OFF**: No power at all. The platform coin cell has no valid power.
- **COIN**: COIN domain is powered and not under reset. Coin domain refers to a small logic portion inside DA6021, which gets a reset signal and supply from the coin cell or a supercap. These logic registers retain data when DA6021 supply fails or PMIC goes under the POR. These register are sitting on the analog side. The COIN state is not related to any operation in the PMIC and is not coded. It represents just a possible supply scenario.
- **RESET**: The digital core which is not supplied from the COIN is under POR due to the fact that the VSYS input has not crossed yet the POR release threshold.
- **OTP**: Just after POR is released DA6021 goes into OTP state and reads the OTP. In this state all the trimming, calibration, power sequencing, and platform variant data is read and copied into the operational registers. This state is crossed only during first power up or when DA6021 is forced by POR or soft reset to go back into RESET state.
- **EEPROM**: For debugging purpose or as a fallback solution in the field it's possible to overwrite the operational registers via an external EEPROM. This step is always performed from DA6021 after the OTP state and is done once during first power up if the EEPROM contains. It is assumed that the EEPROM is supplied at the time of the access.
- **G3**: This state corresponds to a non-valid system supply VSYS (VSYS < VSYSREF = 3.0V). VSYS is not considered to be good enough for booting.
- **SOC\_G3**: This is by definition the "system power down" state. Application will be mainly looping between active state and this state. VSYS valid event makes the PMIC going from G3 to SOC\_G3 state. Critical events and power button can lead the PMIC to this state. Only in this state it is possible to be sensitive to the external wakeup events.



This states are indipendent from the supply on the COIN domain. PMIC can boot or stay in this stats even the COIN domain is not supplied.



DA6021 will issue an under voltage flag when VSYS will fall below the 2.7V threshold. In this case a shutdown will be executed bringing down all rails in an ordered fashion. The final state will be G3. The following figure shows different thresholds which generate events in DA6021.

When VSYS reaches the 2.0 Volt (point B) the POR will happen and DA6021 will go to reset. All the registers will be initialized with default values. Only registers supplied from RTC will retain their value. POR will be released



once the VSYS increases and reaches the 2.375V, point C. In this case the digital core will no longer be in a reset condition and can read the OTP content.

In this case the device again in G3 is waiting for the VSYS to become valid, VSYS > VSYSREF = 3.0. DA6021 will go then to SOC\_G3 state waiting for wakeup condition to be met. In order to have valid VSYS de-bouncing of 100ms will be needed. The monitor of the system voltage will be done via ADC once the system is in SOC\_S0 state or active state.

VSYS voltage and events generated:



Figure 5: VSYS Areas

| Event Trigger                  | Conditions (all mandatory) | Next state | Note                          |
|--------------------------------|----------------------------|------------|-------------------------------|
| Main Battery Insertion         | VSYS > VMIN                | SOC_G3     | VLP ramps when VSYS input     |
| Main Battery becomes valid     |                            |            | power becomes sufficient high |
| USV or AC/DC Adapter Insertion |                            |            |                               |
|                                |                            |            | I2C Register map is reset to  |
|                                |                            |            | default settings              |

Table 6 : G3 State Transition

| Event Trigger                                                    | Conditions (all mandatory)                                                                                                                                  | Next state | Note                                                                                                                |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|
| Input power Source removal and<br>Main Battery Removal/Depletion | VSYS < VMIN<br>VBATBKUP>VMIN                                                                                                                                | G3         | DA6021 loses states, except<br>RTC powered registers<br>Restart with default values<br>except RTC powered registers |
|                                                                  | VSYS < VMIN<br>VBATBKUP <vmin< td=""><td></td><td>DA6021 loses states, RTC<br/>powered registers loses states<br/>Re-start with default values</td></vmin<> |            | DA6021 loses states, RTC<br>powered registers loses states<br>Re-start with default values                          |
| See event and conditions in Cold Boot Triggers                   |                                                                                                                                                             | SOC_S4     | DA6021 transitions to<br>SOC_S4 to start cold boot<br>sequence based on SOC<br>handshake                            |

Table 7: SOC\_G3 State Transition



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 9.3 SoC Power States

The following diagram depicts the DA6021 power states, related to the SoC and the platform rails.



Figure 6: SoC Power States

State description:

- SOC\_S4: or hibernate. This is the most power saving from all the standby states. Content is saved onto disk. DA6021 runs only with low frequency oscillator. All \*\_A power rails are active and in low power pulse skipping mode
- SOC\_S3: or standby: Content is saved in the RAM. It requires more power than SOC\_S4, although still
  considered a low power state. DA6021 has a low power oscillator and in addition all \*\_U power rails are
  switched on, running in pulse skipping mode. Temperature monitoring is in-active as power consumption is
  low and no temperature event is expected. Furthermore the ADC is still disabled, reducing the idle power.
- SOC\_SX: a power saving active standby mode with very fast recovery time. High frequency oscillator is active as well as all \*\_S power domains. Temperature supervision is active, but ADC runs on reduced speed.
- **SOC\_SO**: This represents the active state for the SoC where most of the rails are on. SoC executes the code and software plus operating system decide on power up/down of the "on-demand" power rails.

Generally the OTP and optionally the external EEPROM are read out only once during first power-up. However, it will be possible via OTP/software to configure the sequencer to go again through the OTP and/or EEPROM between some of the standby states as indicated in the figure above.

## 9.3.1 SOC\_S0 State

In the "SOC S0 State", DA6021 completed the bring-up of the platform, and released the SOC from reset. In this state, the DA6021 state machines may be modified and controlled by the SOC, through commands issued over the I2C and SVID interfaces.

In this state, the tablet will appear "on" to the user.

The events causing a transition out of the 'SOC S0' state are shown in the table below.

**Data Sheet** 

Version 3.A - Final

31-Jan-14

# **C** dialog

## **Company Confidential**

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Event Trigger                                                    | Conditions (all mandatory)                                                                                                                                  | Next state | Note                                                                                                                |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|
| Input power Source removal and<br>Main Battery Removal/Depletion | VSYS < VMIN<br>VBATBKUP>VMIN                                                                                                                                | G3         | DA6021 loses states, except<br>RTC powered registers<br>Restart with default values<br>except RTC powered registers |
|                                                                  | VSYS < VMIN<br>VBATBKUP <vmin< td=""><td></td><td>DA6021 loses states, RTC<br/>powered registers loses states<br/>Re-start with default values</td></vmin<> |            | DA6021 loses states, RTC<br>powered registers loses states<br>Re-start with default values                          |
| See event and conditions in Cold of                              | f Triggers                                                                                                                                                  | SOC_G3     | See "Cold Off Triggers"                                                                                             |
| Power Button Held                                                | Power Button held<br>time < PBCONFIG<br>.FCOT[3:0]                                                                                                          | S0iX       | DA6021 passes PWRBTN_B<br>information to SoC. SoC<br>toggles SLP_S0iX_B = 0 to<br>enter S0iX                        |
| Warm Reset                                                       | PLTRST_B=0                                                                                                                                                  | SOC_S0     | Resets I2C and SVID                                                                                                 |
| SLP_S0iX_B                                                       | SLP_S0iX_B=0<br>Or SLP_S3_B=0<br>Or SLP_S\$_B =0                                                                                                            | SOC_S0iX   | Enter S0iX state                                                                                                    |

Table 8:SOC S0 State Transition

## 9.3.2 SOC S0iX State

The SOC supports three possible standby states: S0IX, S3, and S4. Each of these states represents a different level of SOC standby, with S0IX being the "shallowest" (highest power) and S4 being the "deepest" (lowest power). Each of these three sub-states has its own entry task list, required because of the different states of power rails in each.

The entering and exiting of the SOC S0IX state is controlled by a signal which is delivered to DA6021 by the SOC via a dedicated physical pin SLP\_S0IX\_B.

- Rails that are on:
  - They are shown in the power sequencing diagrams
  - VRs shall be placed in PFM/power save mode
  - Internal PMIC rails
- Interfaces available:
  - o SVID is ON in S0IX
  - I2C is ON in S0IX
- Input source comparators and interrupts active.
- All registers powered, with states retained.
- Thermal monitoring and VR current measurements are disabled by default. If enabled, the measurements are taken at standby frequency.

The events causing a transition out of the 'SOC SOIX' state are shown in the table below.

| Event Trigger                                                    | Conditions (all mandatory)                                                   | Next state | Note                                                                                                                                            |
|------------------------------------------------------------------|------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Input power Source removal and<br>Main Battery Removal/Depletion | VSYS < VMIN<br>VBATBKUP>VMIN<br>VSYS < VMIN                                  | G3         | DA6021 loses states, except<br>RTC powered registers<br>Restart with default values<br>except RTC powered registers<br>DA6021 loses states, RTC |
|                                                                  | VBATBKUP <vmin< td=""><td></td><td>Re-start with default values</td></vmin<> |            | Re-start with default values                                                                                                                    |
| See event and conditions in Cold of                              | f Triggers                                                                   | SOC_G3     | See "Cold Off Triggers"                                                                                                                         |
| Power Button Held                                                | Power Button held<br>time < PBCONFIG                                         | S0iX       | DA6021 passes PWRBTN_B<br>information to SoC. SoC                                                                                               |



|            | .FCOT[3:0]                                |        | toggles SLP_S0iX_B = 1 to<br>exit S0iX |
|------------|-------------------------------------------|--------|----------------------------------------|
| SLP_S0iX_B | SLP_S0iX_B=1<br>SLP_S3_B=1<br>SLP_S4_B =1 | SOC_S0 | Exit S0iX state                        |
| SLP_S3_B   | SLP_S3_B=0<br>Or SLP_S4_B=0               | SOC_S3 | Enter S3 state                         |

Table 9: SOC S0iX State Transition

## 9.3.3 SOC S3 State

The entering and exiting of each the SOC S3 state is controlled by a signal which is delivered to DA6021by the SOC via a dedicated physical pin SLP\_S3\_B. The exiting of SLP\_S3\_B is also gated by BATLOW\_B.

- Rails that are on:
  - $\circ$   $\;$  They are shown in the power sequencing diagrams
  - VRs shall be placed in PFM/power save mode
  - o Internal PMIC rails
- Interfaces available:
  - SVID is OFF in S3
  - o I2C is OFF in S3
- Input source comparators and interrupts active.
- All registers powered, with states retained.
- Thermal monitoring and VR current measurements are disabled by default. If enabled, the measurements are taken at standby frequency.

The events causing a transition out of the 'SOC S3' state are shown in the table below.

| Event Trigger                       | Conditions (all mandatory)                                                     | Next state | Note                           |
|-------------------------------------|--------------------------------------------------------------------------------|------------|--------------------------------|
| Input power Source removal and      | VSYS < VMIN                                                                    | G3         | DA6021 loses states, except    |
| Main Battery Removal/Depletion      | VBATBKUP>VMIN                                                                  |            | RTC powered registers          |
|                                     |                                                                                |            | Restart with default values    |
|                                     |                                                                                |            | except RTC powered registers   |
|                                     | VSYS < VMIN                                                                    |            | DA6021 loses states, RTC       |
|                                     | VBATBKUP <vmin< td=""><td></td><td>powered registers loses states</td></vmin<> |            | powered registers loses states |
|                                     |                                                                                |            | Re-start with default values   |
| See event and conditions in Cold of | f Triggers                                                                     | SOC_G3     | See "Cold Off Triggers"        |
| Power Button Held                   | Power Button held                                                              | S0iX       | DA6021 passes PWRBTN_B         |
|                                     | time < PBCONFIG                                                                |            | information to SoC. SoC        |
|                                     | .FCOT[3:0]                                                                     |            | toggles first SLP_S3_B=1 to    |
|                                     |                                                                                |            | exit S3 state followed by      |
|                                     |                                                                                |            | $SLP_S0iX_B = 1$ to exit S0iX  |
| SLP_S3_B                            | SLP_S3_B=1                                                                     | SOC_S0iX   | Exit S3 state                  |
|                                     | SLP_S4_B =1                                                                    |            |                                |
|                                     | BATLOW_B=1                                                                     |            |                                |
| SLP_S4_B                            | SLP_S4_B=0                                                                     | SOC_S4     | Enter S4                       |

Table 10: SOC S3 State Transition

**Data Sheet** 



## 9.3.4 SOC S4 State

The entering and exiting of each the SOC S4 state is controlled by a signal which is delivered to the PMIC by the SOC via a dedicated physical pin SLP\_S4\_B. The exiting of SLP\_S4\_B is also gated by BATLOW\_B.

- Rails that are on:
  - $\circ$   $\;$  They are shown in the power sequencing diagrams
  - VRs shall be placed in PFM/power save mode
  - o Internal PMIC rails
- Interfaces available:
  - SVID is OFF in S4
  - I2C is OFF in S4
- Input source comparators and interrupts active.
- All registers powered, with states retained.
- Thermal monitoring and VR current measurements are disabled by default. If enabled, the measurements are taken at standby frequency.

The events causing a transition out of the 'SOC S4' state are shown in the table below.

| Event Trigger                                                    | Conditions (all mandatory)                                                                                                                                  | Next state | Note                                                                                                                                                                                 |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input power Source removal and<br>Main Battery Removal/Depletion | VSYS < VMIN<br>VBATBKUP>VMIN                                                                                                                                | G3         | DA6021 loses states, except<br>RTC powered registers<br>Restart with default values<br>except RTC powered registers                                                                  |
|                                                                  | VSYS < VMIN<br>VBATBKUP <vmin< td=""><td></td><td>DA6021 loses states, RTC<br/>powered registers loses states<br/>Re-start with default values</td></vmin<> |            | DA6021 loses states, RTC<br>powered registers loses states<br>Re-start with default values                                                                                           |
| See event and conditions in Cold of                              | f Triggers                                                                                                                                                  | SOC_G3     | See "Cold Off Triggers"                                                                                                                                                              |
| Power Button Held                                                | Power Button held time<br>< PBCONFIG<br>.FCOT[3:0]<br>If exit S4 to SOC_S3,<br>BATLOW_B=1                                                                   | SOC_S3     | DA6021 passes PWRBTN_B<br>information to SoC. SoC<br>toggles first SLP_S4_B=1 to<br>exit S4 state, then<br>SLP_S3_B=1 to exit S3 state<br>followed by SLP_S0iX_B = 1<br>to exit S0iX |
| SLP_S3_B                                                         | SLP_S4_B =1<br>BATLOW_B=1                                                                                                                                   | SOC_S3     | Exit S4 state                                                                                                                                                                        |
| SLP_S4_B                                                         | SLP_S4_B=0<br>SUSPWRDNACK=1<br>SUSPWRDNACKCFG=1                                                                                                             | SOC_G3     | SOC can toggle<br>SUSPWRDNACK to 1 when<br>SLP_S4_B=0 to enter<br>SOC_G3 state                                                                                                       |

Table 11: SOC S4 State Transition

#### 9.3.5 Truth Table of Sleep Signals and DA6021 Final Power States

| SUSPWDNA<br>CK | SUSPWRDN<br>ACKCFG | SLP_S4_B | SLP_S3_B | SLP_S0iX_B | Final Power<br>State | Comment |
|----------------|--------------------|----------|----------|------------|----------------------|---------|
| 1              | 1                  | 0        | х        | х          | SOC_G3               | Note 5  |
| 0              | Х                  | 0        | Х        | Х          | SOC_S4               | Note 5  |
| Х              | 0                  | 0        | Х        | Х          | SOC_S4               | Note 5  |
| Х              | Х                  | 1        | 0        | Х          | SOC_S3               | Note 6  |
| Х              | Х                  | 1        | 1        | 0          | SOC_S0iX             | Note 7  |
| Х              | Х                  | 1        | 1        | 1          | SOC_S0               | Note 7  |

Table 12: Truth Table of Sleep Signals and DA6021 Final Power States



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

Notes:

- 1. X don't care
- 2. RSMRST\_B=1 for any sleep signal assertion to be valid
- 3. The normal (except catastrophic or critical events) power state transition sequence is: SOC G3->SOC S4->SOC S3->SOC S0IX->SOC S0 based on the conditions or in reverse order. Power state transition is from one state to the next state based on sleep signals from the SOC without skipping states. For example, if the PMIC is currently in SOC S0 state, sleep signals SLP\_S0IX, SLP\_S3\_B, SLP\_S4\_B are all asserted. The PMIC will not jump directly to SOC S4 without first going to SOC S0IX then to SOC S3.
- 4. 4. To exit from SOC S3 and SOC S4, BATLOW\_B=1.
- 5. 5. Normally SLP\_S0IX\_B =0, SLP\_S3\_B=0 when SLP\_S4\_B=0.
- 6. 6. Normally SLP\_S0IX\_B =0 when SLP\_S3\_B=0. SUSPWRDNACK=1 in this power state.
- 7. 7. Normally SUSPWRDNACK=1 in this power state.

## 9.3.6 DA6021 Power State Transitions and Sleep Signals

The table below summarizes how DA6021 transitions from one power state to the next based on sleep signals and SUCPWRDNACK.

| SUSPWDNA | SUSPWRDN | SLP_S4_B | SLP_S3_B | SLP_S0iX_B | Present  | Next State |
|----------|----------|----------|----------|------------|----------|------------|
| CK       | ACKCFG   |          |          |            | State    |            |
| 1        | 1        | 0        | Х        | Х          | SOC_S4   | SOC_G3     |
| 0        | Х        | 0        | Х        | Х          | SOC_S4   | SOC_S4     |
| Х        | 0        | 0        | Х        | Х          | SOC_S4   | SOC_S4     |
| Х        | Х        | 1        | Х        | Х          | SOC_S4   | SOC_S3     |
| Х        | Х        | 0        | 0        | Х          | SOC_S3   | SOC_S4     |
| Х        | Х        | 1        | 0        | Х          | SOC_S3   | SOC_S3     |
| Х        | Х        | 1        | 1        | Х          | SOC_S3   | SOC_S0iX   |
| Х        | Х        | 1        | 1        | 0          | SOC_S0iX | SOC_S0iX   |
| Х        | Х        | 1        | 1        | 1          | SOC_S0iX | SOC_S0     |
| Х        | Х        | 1        | 0        | Х          | SOC_S0iX | SOC_S3     |
| Х        | Х        | Х        | Х        | 0          | SOC_S0   | SOC_S0iX   |

Table 13: DA6021 State Transition and Sleep Signals


## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 9.4 Register File and Address Range

There are 5 register blocks, one for VNN, one for VCC, one for test purpose, one for Intel and another block controlling the power sequence. These blocks can either be accessed via the SVID or I2C interface, via OTP or the external EEPROM, see picture blow.



Figure 7: Address Range and Pages

The power sequence is located in the page 0 of the register map and shall not be modified by customer. It is highly recommended not to modify any register in page 0 as this may damage the system. Please contact Dialog Semiconductor if you need changes in the sequencing. Such updates can be made in 2 ways, via new OTP, This would mean producing a new DA6021 variant, or via an external EEPROM.

Page 1 includes all the registers to control the ADC functions, GPIO's, PWM controller, controllable voltage domains and further functions described in the document below.

Page 2 and 3 include the SVID functions for the core and the graphics regulators.

Page 4 is an internal register block for DA6021 internal test functions.

## 9.4.1 Slave ID versus DA6021 Pages

Each page can be accessed via the I2C interface while using a certain slave ID to address the corresponding I2C slave. The table below shows the relation between slave ID and page to be accessed:

| PAGE Accessed | SLAVE_ID | Read<br>Address | Write<br>Address |
|---------------|----------|-----------------|------------------|
| Page 1        | 0x6E     | 0xDD            | 0xDC             |
| Page 2 – SVID | 0x5C     | 0xB9            | 0xB8             |
| Page 3 – SVID | 0x6C     | 0xD9            | 0xD8             |

Table 14: Slave ID versus DA6021 Storage Page



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## **10. Power Controller State Machine**

#### 10.1 Overview

The power controller state machine is the main state machine of DA6021. It is comprises a first phase related to the power up sequence where all the condition for a safe boot are evaluated and the parameter are taken from the OTP/EEPROM, and a second phase related to the SoC power sequence where all the power rails for the SoC and platform are turned on according to certain sequencing rules.

The sequencer is very flexible in terms of components ordering and the intermediate delays between them. Optionally the sequencer can wait for a certain condition, for example a breakpoint, an external programmed trigger or waiting in a system power state like SOC\_S4. In case of power-up direction, the components will be enabled. In the power-down direction the components will be disabled.

The sequence configuration is stored in the OTP memory the contents of which are read out during the first power up cycle. The sequencer also controls the clock request of different blocks. Refer to the Introduction section on the power states for an overview on power up states and SoC sequencer states.



## **10.2 Power State Transitions**

Figure 8: State Transitions

Version 3.A - Final



The figure above represents DA6021 power state transitions. There are several events and condition for these transitions to occur. Following is the list of conditions used in the figure.

- **PH\_EVENT**: this is a catastrophic event. At any time the system does an immediate shutdown 90µs after the shutdown warning and goes directly to the SOC\_G3 state.
- **CT\_EVENT**: these are all critical events. DA6021 will shut down via power down sequencing which is driven from the PMIC, regardless of the SoC handshake.
- **U2S\***: Indicates a move to the next SOC\_S\* state. The direction is upwards. The reason can be that one of the SLP\_S\*\_B signals have changed or PWRBTN has been pressed.
- **D2S\***: Indicates a move to the next SOC\_S\* state. The direction I downwards. Reason can be a change on one of the SLP\_S\*\_B signals.
- **D2G3**: Can be asserted if DA6021 is sensitive to SUSPWRDNACK input and SUSPWRDNACK = 1.
- **SYS\_WAKEUP**: represents a valid wakeup event from system power down. This event is generated from the sysco block.
- **UV\_EVENT**: represents an under voltage event in DA6021. Under voltage event belongs to the critical event but the final state will be G3, instead of SOC\_G3.
- VSYS\_VALID: this means that VSYS has crossed the 3.0V and can proceed to SOC\_G3 and wait for boot condition

| Condition |          |          | ST     | NX_ST  | Events |      |      |      |      |      |
|-----------|----------|----------|--------|--------|--------|------|------|------|------|------|
| SLP_S4_B  | SLP_S3_B | SLP_SX_B |        |        | U2S3   | U2SX | U2S0 | D2SX | D2S3 | D2S4 |
| 0         | Х        | Х        | SOC_S4 | SOC_S4 | 0      | 0    | 0    | 0    | 0    | 0    |
| 1         | Х        | Х        | SOC_S4 | SOC_S3 | 1      | 0    | 0    | 0    | 0    | 0    |
| 0         | Х        | Х        | SOC_S3 | SOC_S4 | 0      | 0    | 0    | 0    | 0    | 1    |
| 1         | 0        | Х        | SOC_S3 | SOC_S3 | 0      | 0    | 0    | 0    | 0    | 0    |
| 1         | 1        | Х        | SOC_S3 | SOC_SX | 0      | 1    | 0    | 0    | 0    | 0    |
| 1         | 1        | 0        | SOC_SX | SOC_SX | 0      | 0    | 0    | 0    | 0    | 0    |
| 1         | 1        | 1        | SOC_SX | SOC_S0 | 0      | 0    | 1    | 0    | 0    | 0    |
| Х         | 0        | Х        | SOC_SX | SOC_S3 | 0      | 0    | 0    | 0    | 1    | 0    |
| 0         | Х        | Х        | SOC_SX | SOC_S3 | 0      | 0    | 0    | 0    | 1    | 0    |
| Х         | Х        | 0        | SOC_S0 | SOC_SX | 0      | 0    | 0    | 1    | 0    | 0    |
| 1         | 1        | 1        | SOC_S0 | SOC_S0 | 0      | 0    | 0    | 0    | 0    | 0    |
| Х         | 0        | Х        | SOC_S0 | SOC_SX | 0      | 0    | 0    | 1    | 0    | 0    |
| 0         | Х        | Х        | SOC_S0 | SOC_SX | 0      | 0    | 0    | 1    | 0    | 0    |

Refer to the table below for U2 and D2 specific conditions.

Table 15:U2 & D2 Event Generation Table

A soft reset can be generated in application and via configuration in SOC\_SX and SOC\_S0 states. In other modes it can be generated even in other states where the I2C slave is available.

#### 10.2.1 Sequencing

Each PMIC component (such as a DC/DC converter, LDO, internal or external power switch ... ) can be placed with high flexibility into the power sequence, whereas enabling and disabling such a component during power-up and power-down can be programmed independently.

The sequencing is defined by Intel processor specification, implemented and evaluated accordingly. Customers requesting power sequencing other than specified, please contact Dialog Semiconductor.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 10.3 DA6021 Power Sequences

There are 10 power state transitions to be performed in DA6021. These are:

- **Cold Boot**: A cold boot sequence begins at the "SOC G3" state, and terminates at the "SOC S0" state. Once all of the rails are on, the COREPWROK signal will assert and the PLTRST\_B will de-assert. This will effectively turn on the SOC in order for it to begin executing code and controlling the system.
- Warm Reset: A Warm Reset resets the SOC as well as the I2C and SVID interfaces (reset corresponding state machine, ignore any on-going transaction on the bus) in the PMIC. In addition the VCC, VNN will change the output voltage to the VBOOT settings. PMIC configuration registers are not reset to default. During a Warm Reset, only the PLTRST\_B pin to the SOC is toggled. All rails remain in regulation. Warm reset can only be issued while the SoC stays in SOC\_S0 state.
- Enter SOC S0iX: The S0IX state is entered when the SOC is in a shallow sleep state. This state is entered when the SOC asserts the SLP\_S0IX\_B (LOW) pin to the PMIC. VDDQ\_VTT and SX rails are turned off. The VCC rail is turned off by SVID commands (not by SLP\_S0IX\_B signal). The rest of the VRs remain on but enter into power save mode.
- Exit SOCS0iX: The S0IX state is exited when the SOC de-asserts the SLP\_S0IX\_B pin (HIGH). VDDQ\_VTT and SX rails are turned on. The VCC rail will be turned on by SVID commands (not by SLP\_S0IX). The rest of the rails will come out of power save mode. Exiting the SOC\_SX state will be performed within maximum 200µs.
- Enter SOC\_S3: The S3 state is entered when the SOC asserts the SLP\_S3\_B pin (LOW). VRs that remain on enter into power save mode.
- Exit SOC\_S3: The S3 state is exited when the SOC de-asserts the SLP\_S3\_B pin (HIGH). Voltage rails will be turned on and come out of power save mode. Exiting SOC\_S3 state will be performed within 2ms maximum.
- Enter SOC\_S4: The S4 state is entered when the SOC asserts the SLP\_S4\_B pin (LOW). VRs that remain on enter into power save mode.
- Exit SOC\_S4: The S4 state is exited when the SOC de-asserts the SLP\_S4\_B pin (HIGH). Voltage rails will be turned on and come out of power save mode.
- **Cold OFF**: PMIC will go into SOC\_G3 and stay until a wakeup event is not bringing it back to active state.
- **Modem Reset**: A Modem Reset task is initiated by setting the MODEMRSTSEQ bit in the MODEMCTRL register. (The MODEMOFF bit in the same register directly controls the status of the MODEM\_OFF\_B output pin, but does not launch this task). The Modem Reset task toggles the SDWN and MODEM\_OFF\_B pins, implementing appropriate (modem-specific) delay timings.

Several of these state transitions are triggered by hardware events, such as a power button event, or power source insertion. The transitions are gated by SOC signals such as, SLP\_S0IX, SLP\_S3\_B, SLP\_S4\_B and SUSPWRDNACK.

The behaviours associated with each of these state transitions are stored in the PMIC's power sequencing state machine.

The sections below describe the trigger sources of each transition and the default sequencing behaviour.

The voltage rails are classified in the following categories which will be referred to in such a way to simplify the power state transition (power sequencing) diagrams:

- **SUS rails** (A rails): V1P0A, V1P8A, V1P2A and V3P3A. They together with VUSBPHY remain on in "SOC S4" state. They are turned off in "SOC G3" state.
- **U** rails: V1P8U, together with VDDQ, VREFDQ0/1 remains on in "SOC S3" state. They are turned off in "SOC S4" state.



- **S** rails: V5P0S, VNN, V1P05S, V1P0S, V1P8S, V1P2S, V3P3S and V2P85S. They remain on in "SOC S0IX" state. They are turned off in "SOC S3" state.
- SX rails: VDDQ\_VTT, V1P0SX and V1P2SX. They are on in "SOC S0" state. They are turned off in "SOC S0IX" state.
- **Default On rails**: VRs that are powered on during COLD BOOT by the power sequencing state machine.
- **Defaults Off rails**: VRs that are not powered on during COLD BOOT by the power sequencing state machine. They are managed by the SOC. Their on/off status depends on a platform device or other conditions.

#### 10.3.1 Cold Boot

A cold boot sequence is followed whenever DA6021 is fully turning on the system from a powered-down state. As such, a cold boot sequence begins at the "SOC G3" state, and terminates at the "SOC S0" state. Once all of the rails are on, the COREPWROK signal will assert and the PLTRST\_B will de-assert. This will effectively turn on the SOC in order for it to begin executing code and controlling the system.

During this state transition, one or more of the sleep signals (SLP\_S\*\_B) could be asserted at some point of time. The VRs, LDOs, internal and external switches are turned on in the requested power sequence order into normal operational.

Furthermore, the rails are turned on one at a time in a ramp-rate controlled manner (voltage slew rate limited) in order to avoid battery inrush current situations that could cause shut down events.

All the triggers listed in the table below will cause DA6021 bringing up the SUS rails. After that, signals from the SOC (SLP\_S4\_B, SLP\_S3\_B) are needed for DA6021 completing the cold boot sequence. Battery insertion is used as an illustration of Cold Boot power sequence due to one of triggers.

| Event                                     | Conditions (all mandatory)                                                                                                                                                                                                                               |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USB VBUS Inserted<br>(SVBUSDET)           | <ul> <li>USBWAKEEN is set</li> <li>VSYS valid (after VBUS debounce satisfied)</li> <li>VBUS valid (after VBUS debounce satisfied)</li> <li>VBAT valid (SBATDET=1 and BATLOW_B=1)</li> </ul>                                                              |
| AC/DC Adapter<br>Inserted<br>(SVDCINDET)  | <ul> <li>ADPWAKEEN is set</li> <li>VSYS valid (after adapter debounce satisfied)</li> <li>VDCIN valid (after adapter debounce satisfied)</li> <li>VBAT valid (SBATDET=1 and BATLOW_B=1 if BATRMPDEN set, or BATLOW_B=1 if BATRMPDEN cleared).</li> </ul> |
| Main Battery<br>Inserted<br>(SBATDET:0→1) | <ul> <li>BATWAKEEN is set</li> <li>VSYS valid (after battery detection debounce)</li> <li>VBAT valid (after battery detection debounce, BATLOW_B=1)</li> </ul>                                                                                           |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Event                                                                                       | Conditions (all mandatory)                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Battery<br>becomes Valid with<br>Input Power Source<br>(VBAT rising,<br>VBAT > LOWBAT) | <ul> <li>ADPWAKEEN or USBWAKEEN is set</li> <li>VSYS valid.</li> <li>Battery already present (SBATDET=1, not an insertion event)</li> <li>AC/DC Adapter (SVDCINDET=1 when DCBOOT=0) or USB already inserted (SVBUSDET =1) - BATLOW_B was initially "0" when external power was plugged then becomes "1" after battery has been charged up, prevents case where battery voltage may float up due to cell "relaxing" during SOC G3.</li> </ul> |
| Power Button<br>Pressed                                                                     | <ul> <li>VSYS valid</li> <li>VBAT valid (SBATDET=1 and BATLOW_B=1 if BATRMPDEN set, or BATLOW_B=1 if BATRMPDEN cleared)</li> </ul>                                                                                                                                                                                                                                                                                                           |

Table 16: Cold Boot Triggers

#### Following table provides further clarification for a cold boot trigger

| Event                                                  | Cold Boot Conditions (all conditions mandatory) |                          |                       |           |                                                                                                     |  |  |  |
|--------------------------------------------------------|-------------------------------------------------|--------------------------|-----------------------|-----------|-----------------------------------------------------------------------------------------------------|--|--|--|
|                                                        | Power<br>Source<br>Insertion                    | Power<br>Button<br>Press | Wake-up<br>Enable Bit | VSYS      | VBAT                                                                                                |  |  |  |
| USB VBUS<br>Inserted                                   | SVBUSDET<br>∶0 <del>→</del> 1                   | Not<br>applicable        | USBWAKE<br>EN=1       | ≥ VSYSREF | SBATDET = 1 and<br>BATLOW_B = 1                                                                     |  |  |  |
| AC/DC Adapter<br>Inserted                              | SVDCINDE<br>T: 0 <b>→</b> 1                     | Not<br>applicable        | ADPWAKE<br>EN=1       | ≥ VSYSREF | SBATDET = 1 and<br>BATLOW_B = 1 if<br>BATRMPDEN = 1<br>BATLOW_B=1 if                                |  |  |  |
| Main Battery<br>Inserted                               | SBATDET:<br>0→1                                 | Not<br>applicable        | BATWAKE<br>EN= 1      | ≥ VSYSREF | BATLOW_B = 1                                                                                        |  |  |  |
| Main Battery                                           | SVBUSDET<br>=1                                  | Not<br>applicable        | USBWAKE<br>E=1        | ≥ VSYSREF | BATLOW_B: 0→1                                                                                       |  |  |  |
| Input Power Source<br>( VBAT rising,<br>VBAT > LOWBAT) | SVDCINDE<br>T=1<br>and<br>DCBOOT=<br>0          | Not<br>applicable        | ADPWAKE<br>EN=1       | ≥ VSYSREF | BATLOW_B: 0→1                                                                                       |  |  |  |
| Power Button<br>Pressed                                | Not<br>applicable                               | PBLVL = 0                | Not<br>applicable     | ≥ VSYSREF | SBATDET = 1 and<br>BATLOW_B = 1 if<br>BATRMPDEN = 1                                                 |  |  |  |
|                                                        |                                                 |                          |                       |           | BATLOW_B = 1 if<br>BATRMPDEN = 0<br>(when battery is<br>removed but<br>AC/DC adapter is<br>present) |  |  |  |

Table 17: Truth Table of Cold Boot Triggers

All the conditions in the table above shall be met for Cold Boot (wakeup) to occur. For example, wakeup with AC/DC adapter insertion but without a battery can only occur when all these conditions are met: SVDCINDET=1 (AC/DC adapter insertion), ADPWAKEEN=1, BATLOW\_B=1 (which means DCBOOT=1), BATRMPDEN=0. Without a battery, USB power source insertion cannot cause the system to boot.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| LOWBAT<br>LOWBATSDP<br>LOWBATDCP | ŧ                   |
|----------------------------------|---------------------|
|                                  | 100ms<br>Debourding |
| VSYS                             |                     |
| VBUS/<br>VDCIN                   |                     |
| BATTID                           |                     |
| VUSBPHY                          | To                  |
| CHRDET#                          |                     |
| VLP                              |                     |
| V1P0A                            |                     |
| V1P8A                            |                     |
| V1P2A                            | /                   |
| V3P3A                            |                     |
| RSMRST_B                         |                     |
| SLP_S4_B                         |                     |
| SUSPWRDNACK                      |                     |
| V1P8U                            |                     |
| VDDQ                             | /                   |
| VREFDQ1/2                        | → Ta ←              |
| DRAMPWROK                        |                     |
| SLP_S3_B                         |                     |
| V3P05                            |                     |
| VCC                              |                     |
| V1P0S                            |                     |
| V1P05S                           |                     |
| V1P8S                            |                     |
| V1P2S                            |                     |
| V3P3S                            |                     |
| V2P85S                           |                     |
| SLP_S0iX_B                       |                     |
| VDDQ_VTT                         |                     |
| V1P2SX                           |                     |
| V1P0SX                           |                     |
| VCCAPWROK                        | '/                  |
| COREPWROK                        |                     |
| PLTRST_B                         |                     |
| MODEM_OFF_B                      |                     |
| SDWN_B                           |                     |

## Figure 9: Cold Boot Power Sequencing Diagram, Valid Battery Insertion



**Company Confidential** 

| Parameter           | Description                                   | Min<br>[ms] | Typ<br>[ms] | Max<br>[ms] | Measured       |
|---------------------|-----------------------------------------------|-------------|-------------|-------------|----------------|
| ТО                  | VUSBPHY Turn on Delay + Ramp-Up Time          | 0,08        | [III3]      | 2,00        | [III3]         |
| T1                  | not measureable                               |             |             |             |                |
| T2_VUSBPHY          | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,112          |
| T2_V1P0A            | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,357          |
| T3_V1P0A-           | Rail to Subsequent Rail Turn-On Delay         | 0,50        | 1,00        | 2,05        | 0,767          |
| T2 V1P8A            | Ramp-Up time from 10% to 90% voltage          | 0.08        | 1.00        | 2.00        | 0.672          |
| T3 V1P8A-           | Rail to Subsequent Rail Turn-On Delay         | 0.50        | 1,00        | 2,00        | 0.869          |
| V1P2A               |                                               | 0,00        | 1,00        | 2,00        | 0,000          |
| T2_V1P2A            | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,051          |
| T3_V1P2A-<br>V3P3A  | Rail to Subsequent Rail Turn-On Delay         | 0,50        | 1,00        | 2,05        | 0,687          |
| T2_V3P3A            | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,295          |
| T4                  | V3P3A valid to RSMRST_B deassertion           | 0,000       | 0,024       | 0,032       | 0,009          |
| T5                  | RSMRST_B deassertion to SLP_S4_B deassertion  | 0,02        |             |             | SOC<br>related |
| Т6                  | SLP_S4_B deassertion to SUSPWRDNACK           | 0,00        |             |             | SOC<br>related |
| T3_V3P3A-           | Rail to Subsequent Rail Turn-On Delay         | 0,50        | 1,00        | 2,05        | 0,703          |
| T7                  | SLP S4 B deassertion to V1P8U turn-on delay   | 0,000       | 0,024       | 0,032       | 0,049          |
| T2 V1P8U            | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,102          |
| T3_V1P8U-VDDQ       | Rail to Subsequent Rail Turn-On Delay         | 0,10        | 1,00        | 2,05        | 0,474          |
| T2_VDDQ             | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,473          |
| T3_VDDQ-            | Rail to Subsequent Rail Turn-On Delay         | 0,50        | 1,00        | 2,05        | 0,707          |
| T2_VREFDQ0          | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,014          |
| T3_VREFDQ0-         | Rail to Subsequent Rail Turn-On Delay         | 0,00        |             |             | 0,013          |
| T2_VREFDQ1          | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,015          |
| T8                  | VREFDQ1 to DRAMPWROK assertion                | 0,000       | 0,024       | 0,032       | 0,018          |
| Т9                  | SLP_S4_B deassertion to SLP_S3_B              | 0,02        |             |             | SOC<br>related |
| T3_VREFDQ1-         | Rail to Subsequent Rail Turn-On Delay         | 0,50        | 1,00        | 2,05        | 0,566          |
| T10                 | SLP_S3_B de-assertion to first S rail turn-on | 0,000       | 3,000       | 6,166       | 0,015          |
| T2_V5P0S            | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,010          |
| T3_V5P0S-VNN        | Rail to Subsequent Rail Turn-On Delay         | 0,20        | 1,00        | 2,05        | 0,259          |
| T2_VNN              | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,084          |
| T3_VNN-VCC          | Rail to Subsequent Rail Turn-On Delay         | 0,20        | 1,00        | 2,05        | 0,257          |
| T2_VCC              | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,082          |
| T3_VCC-V1P0S        | Rail to Subsequent Rail Turn-On Delay         | 0,20        | 1,00        | 2,05        | 0,238          |
| T2_V1P0S            | Ramp-Up time from 10% to 90% voltage          | 0,08        | 1,00        | 2,00        | 0,062          |
| T3_V1P0S-<br>V1P05S | Rail to Subsequent Rail Turn-On Delay         | 0,10        | 1,00        | 2,05        | 0,109          |

# DA6021

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| T2_V1P05S              | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,051          |
|------------------------|------------------------------------------------------------|-------|-------|--------|----------------|
| T3_V1P05S-<br>V1P8S    | Rail to Subsequent Rail Turn-On Delay                      | 0,10  | 1,00  | 2,05   | 0,237          |
| T2_V1P8S               | Ramp-Up time from 10% to 90% voltage                       |       | 1,00  | 2,00   | 0,092          |
| T3_V1P8S-<br>V1P2S     | Rail to Subsequent Rail Turn-On Delay                      | 0,10  | 1,00  | 2,05   | 0,155          |
| T2_V1P2S               | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,006          |
| T3_V1P2S-<br>V3P3S     | Rail to Subsequent Rail Turn-On Delay                      | 0,10  | 1,00  | 2,05   | 0,173          |
| T2_V3P3S               | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,290          |
| T3_V3P3S-<br>V2P285S   | Rail to Subsequent Rail Turn-On Delay                      | 0,10  | 1,00  | 2,05   | 0,108          |
| T2_V2P85S              | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,260          |
| T11                    | SLP_S3_B deassertion to SLP_S0IX_B deassertion             | 0,03  |       |        | SOC<br>related |
| T3_V2P85S-<br>VDDQ_VTT | Rail to Subsequent Rail Turn-On Delay                      | 0,10  | 1,00  | 2,05   | 0,260          |
| T12                    | SLP_S0IX_B deassertion to first SX rail turn-on delay      | 0,000 | 8,000 | 16,434 | 0,048          |
| T2_VDDQ_VTT            | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,006          |
| T3_VDDQ_VTT-<br>V1P2SX | Rail to Subsequent Rail Turn-On Delay                      | 0,50  | 1,00  | 2,05   | 0,053          |
| T2_V1P2SX              | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,0001         |
| T3_V1P2SX-<br>V1P0SX   | Rail to Subsequent Rail Turn-On Delay                      | 0,10  | 1,00  | 2,05   | 0,017          |
| T2_V1P0SX              | Ramp-Up time from 10% to 90% voltage                       | 0,08  | 1,00  | 2,00   | 0,061          |
| T13                    | Core rails valid to VCCAPWEROK and<br>COREPWROK assertion  |       | 100   |        | 100,1          |
| T14                    | COREPWROK assertion to PLTRST_B deassertion                | 0,06  |       |        | SOC<br>related |
| T15                    | MODEM_OFF_B deassertion Delay from<br>PLTRST_B deassertion | 0,01  | 0,02  | 0,04   | 0,035          |
| T16                    | SDWN B deassertion Delay from PLTRST B                     | 0.04  | 0.06  | 0.075  | 0.068          |

Table 18: Cold Boot Timings

As the regulators power-up times are load dependent, worst case times of 2ms are programmed. This will guarantee that the rails have reached the target voltage. Optimization reducing the start-up time can be done when power rail load conditions are clear or on the final product.

The delay time for "Core rails valid to VCCAPWEROK and COREPWROK assertion" is programmable by the following register. The configuration bit for VCCAPWROK and SUSPWRDNOK are also included in the PWRSEQCFG register (page 0), as defined below.

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Register Name                                                                                                                                                                    |       | PWRS                        | Image: Name and the second system     Address     0xDC     Read       Page 0     Page 0     Page 0                                                                                                                |                           |                |         |     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|---------|-----|--|
|                                                                                                                                                                                  |       |                             |                                                                                                                                                                                                                   | Reset Value               | 0x0E           |         |     |  |
| MSB                                                                                                                                                                              |       |                             |                                                                                                                                                                                                                   |                           |                |         |     |  |
| R                                                                                                                                                                                | R     | R                           | R/W                                                                                                                                                                                                               | R/W                       | R/W            | R/W     | R/W |  |
| Res                                                                                                                                                                              | erved |                             | USBS<br>DPCFG                                                                                                                                                                                                     | VCCA<br>PWROKCFG          | DTPV           | VROK    |     |  |
| DTPWROK                                                                                                                                                                          |       | 00<br>01<br><b>10</b><br>11 | Delay time f<br>assertion<br>1ms<br>10ms<br>100ms<br>120ms                                                                                                                                                        | for Core rails valid to V | CCAPWROK and C | OREPWRO | К   |  |
| SUSPWRDNAC                                                                                                                                                                       | KCFG  | 0<br>1                      | When SLP_S4_B = 0, this bit decides if the power sequencer should go to<br>SOC_G3 state if the SUSPWRDNACK is asserted.<br>go to SOC G3 if SUSPWRDNACK = 1.<br>not go to SOC G3 regardless of SUSPWRDNACK status. |                           |                |         |     |  |
| VCCAPWROKC                                                                                                                                                                       | FG    | 0<br>1                      | Option to de-assert VCCAPWROK when PMIC enters SOC S0IX state.<br>VCCAPWROK gets de-asserted (=0) when entering SOC S0IX.<br>VCCAPWROK remains asserted (=1) when entering SOC S0IX.                              |                           |                |         |     |  |
| USBDPCFG<br>Option to set ILIM[1:0] for USB SDP current limit.<br>USB SDP, set ILIM[1:0] to 01 for 100mA current limit.<br>USB SDP, set ILIM[1:0] to 11 for 500mA current limit. |       |                             |                                                                                                                                                                                                                   |                           |                |         |     |  |

## 10.3.2 Warm Reset Sequence

During a warm reset the SoC will toggle the PLTRST\_B pin for a certain amount of time. This sequence can only happen while in SOC\_S0 state. DA6021 captures this event in order to disable/idle the I2C interface and SVID interface. All voltage rails remain in regulation, except VCC and VNN, as those will be re-programmed to VBOOT voltage.

#### 10.3.3 Enter SOC S0iX Mode

The S0iX state is entered when the SOC is in a shallow sleep state. This state is entered when the SOC asserts the SLP\_S0IX\_B (LOW) pin to the PMIC. VDDQ\_VTT and SX rails are turned off. The VCC rail is either turned off by SVID commands (not by SLP\_S0IX\_B signal) or set to a voltage set in SVID address 0x39. The VNN rail is set to a voltage set in SVID address 0x39. The rest of the VRs remain on but enters into power save mode.

VCCAPWROKCFG bit in register PWRSEQCFG provides the option to de-assert VCCAPWROK in S0IX state.

VCCAPWROKCFG =1, PMIC does not deassert VCCAPWROK when entering S0IX state,

VCCAPWROKCFG =0, PMIC deasserts VCCAPWROK after SLP\_S0IX\_B is asserted and before VRs start to turn off when entering S0IX state.

The rail sequencing is shown in the figure below.

46 of 224



#### **Company Confidential**

| -                         |                   |            |             |         |              |  |
|---------------------------|-------------------|------------|-------------|---------|--------------|--|
| -                         |                   |            |             |         |              |  |
| VLP<br>_                  |                   |            |             |         |              |  |
| PLTRST_B                  |                   |            |             |         |              |  |
| SLP_S0iX_B                |                   |            |             |         |              |  |
| COREPWROK                 |                   |            |             |         |              |  |
| -<br>VCCAPWROK            |                   | то         |             |         |              |  |
| V1P0SX                    |                   |            | 2           |         |              |  |
| <br>V1P2SX                |                   |            | - T1<br>T2  |         |              |  |
| -<br>VDDQ_VTT             |                   |            | <b>←</b> T1 |         |              |  |
| SLP_S3_B                  |                   |            |             |         |              |  |
| _<br>VSDIO, VSYS_S        |                   |            |             |         |              |  |
|                           |                   |            |             |         |              |  |
| –<br>V3P3S                |                   |            |             |         |              |  |
| -<br>V1P2S                |                   |            |             |         |              |  |
| V1P8S                     |                   | V1P05SVSEL | <b>←</b> T2 | <b></b> |              |  |
| V1P05S                    |                   |            |             | V1P     | 05SVSEL_SOIX |  |
| <br>V1P0S                 |                   |            |             |         |              |  |
| VCC                       |                   |            |             |         |              |  |
| –<br>VNN                  |                   |            |             |         |              |  |
| -<br>V5P0S                |                   |            |             |         |              |  |
| -<br>SUSPWRDNACK          |                   |            |             |         |              |  |
|                           |                   |            |             |         |              |  |
| DRAMPWROK                 |                   |            |             |         |              |  |
| -<br>VREFDQ1/2            |                   |            |             |         |              |  |
| -<br>VDDQ, VSYS_U, V3P3_U |                   |            |             |         |              |  |
| –<br>V1P8U                |                   |            |             |         |              |  |
| –<br>SUS Rails            |                   |            |             |         |              |  |
| <br>RSMRST_B              |                   |            |             |         |              |  |
| SDWN_B                    |                   |            |             |         |              |  |
|                           |                   |            |             |         |              |  |
|                           | O. Enter COIV Com | ionoina Di |             |         |              |  |

**Data Sheet** 

Version 3.A - Final



#### **Company Confidential**

| -                         |                    |            |              |                 |            |
|---------------------------|--------------------|------------|--------------|-----------------|------------|
| VSYS _                    |                    |            |              |                 |            |
| VLP                       |                    |            |              |                 |            |
| PLTRST_B                  |                    |            |              |                 |            |
| -<br>SLP_S0iX_B           |                    |            |              |                 |            |
| COREPWROK                 |                    | тз 🖛       |              |                 |            |
| -<br>VCCAPWROK            |                    | → ← то     |              |                 |            |
| V1P0SX                    |                    |            | 72           |                 |            |
| -<br>V1P2SX               |                    |            | - T1<br>T2   |                 |            |
| -<br>VDDQ_VTT             |                    |            | <b>←</b> T1  |                 |            |
| -<br>SLP_S3_B             |                    |            |              |                 |            |
| -<br>VSDIO, VSYS_S        |                    |            |              |                 |            |
| V2P85S                    |                    |            |              |                 |            |
| V3P3S                     |                    |            |              |                 |            |
| -<br>V1P2S                |                    |            |              |                 |            |
| V1P8S                     |                    | V1P05SVSFI | <b>←</b> T2  | *               |            |
| V1P05S                    |                    |            |              | V1P05SVSEL_S0iX |            |
| V1P0S                     |                    |            |              |                 |            |
| VCC                       |                    |            |              |                 |            |
| VNN                       |                    |            |              |                 |            |
| V5P0S                     |                    |            |              |                 |            |
| SUSPWRDNACK               |                    |            |              |                 |            |
| -<br>SLP_S4_B             |                    |            |              |                 |            |
| DRAMPWROK                 |                    |            |              |                 |            |
| -<br>VREFDQ1/2            |                    |            |              |                 |            |
| -<br>VDDQ, VSYS_U, V3P3_U |                    |            |              |                 |            |
| V1P8U                     |                    |            |              |                 |            |
| -<br>SUS Rails            |                    |            |              |                 |            |
| -<br>RSMRST_B             |                    |            |              |                 |            |
| SDWN_B                    |                    |            |              |                 |            |
| -<br>MODEM_OFF_B          |                    |            |              |                 |            |
| Figuro                    | 11: Enter S0iX Sea | uencina D  | iagram (VCCA | WROKCFG=        | <b>)</b> ) |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Parameter              | Description                                                 |       | Typ<br>[ms] | Max<br>[ms] | Measured<br>[ms] |
|------------------------|-------------------------------------------------------------|-------|-------------|-------------|------------------|
| Т3                     | SLP_S0IX_B assertion to VCCAPWROK<br>deassertion            | 0,000 | 0,008       | 0,016       | 0,001            |
| T0_V1P2SX              | SLP_S0IX_B assertion to first SX rail starts to<br>turn off | 0,000 | 0,008       | 0,016       | 0,048            |
| T1_V1P2SX              | Ramp-down time from 90% to 10%                              | 0,1   | 1,00        | 2,00        | 0,608            |
| T2_V1P0SX-<br>V1P2SX   | Rail to Subsequent Rail Turn-Off Delay                      | 0,5   | 1,00        | 3,00        | 0,975            |
| T1_V1P0SX              | Ramp-down time from 90% to 10%                              | 0,1   | 1,00        | 2,00        | 0,01             |
| T2_V1P2SX-<br>VDDQ_VTT | Rail to Subsequent Rail Turn-Off Delay                      | 0,5   | 1,00        | 3,00        | 1,053            |
| T1_VDDQ_VTT            | Ramp-down time from 90% to 10%                              | 0,1   | 1,00        | 2,00        | 0,619            |
| T2_VDDQ_VTT-<br>V1P05S | Rail to Subsequent Rail Turn-Off Delay                      | 0,5   | 1,00        | 3,00        | 0,615            |
| T1_V1P05S              | V1P05S S0 to S0IX Level transition                          | 0,5   | 1,00        | 2,00        | 0,032            |

Table 19: Enter S0iX timing

## 10.3.4 Exit SOC S0iX Mode

The SOIX state is exited when the SOC de-asserts the SLP\_SOIX\_B pin (HIGH). VDDQ\_VTT and SX rails are turned on. The VCC rail will be turned on by SVID commands (not by SLP\_SOIX). The rest of the rails will come out of power save mode.

The rail sequencing is shown in the figure below:



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| VSYS                                                                                                                                                                                     |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| VLP                                                                                                                                                                                      |                            |
| V1P0A                                                                                                                                                                                    |                            |
| V1P8A                                                                                                                                                                                    |                            |
| V1P2A                                                                                                                                                                                    |                            |
| V3P3A                                                                                                                                                                                    |                            |
| RSMRST_B                                                                                                                                                                                 |                            |
| SLP_S4_B                                                                                                                                                                                 |                            |
| -<br>SUSPWRDNACK                                                                                                                                                                         |                            |
| V1P8U                                                                                                                                                                                    |                            |
| -<br>VDDQ                                                                                                                                                                                |                            |
| VREFDQ1/2                                                                                                                                                                                |                            |
| DRAMPWROK                                                                                                                                                                                |                            |
| -<br>SLP_S3_B                                                                                                                                                                            |                            |
| V5P0S                                                                                                                                                                                    |                            |
| VNN                                                                                                                                                                                      |                            |
| VCC                                                                                                                                                                                      |                            |
|                                                                                                                                                                                          |                            |
| V1P0S                                                                                                                                                                                    | V1P05SVSEL S0IX V1P05SVSEL |
| V1P05<br>-<br>V1P05S                                                                                                                                                                     |                            |
| V1P05<br>V1P05S<br>V1P8S                                                                                                                                                                 |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S                                                                                                                                               |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V1P2S<br>V3P3S                                                                                                                             |                            |
| V1P05<br>V1P055<br>V1P85<br>V1P25<br>V1P25<br>V3P35<br>V2P855                                                                                                                            |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B                                                                                                              |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT                                                                                                  |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT                                                                                                  |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V2P85S<br>SLP_S0IX_B<br>VDDQ_VTT<br>V1P2SX                                                                                                 |                            |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P2SX                                                                                       |                            |
| V1P0S<br>V1P0SS<br>V1P8S<br>V1P2S<br>V1P2S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P2SX<br>V1P0SX                                                                             |                            |
| V1P0S<br>V1P0SS<br>V1P8S<br>V1P8S<br>V1P2S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P2SX<br>V1P0SX<br>V1P0SX<br>VCCAPWROK<br>COREPWROK                                         |                            |
| V1P0S<br>V1P0SS<br>V1P8S<br>V1P8S<br>V1P2S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX<br>V1P0SX<br>VCCAPWROK<br>COREPWROK<br>PLTRST_B<br>MODEM_OFF_B                        |                            |
| V1P0S<br>V1P0SS<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX<br>V1P0SX<br>VCCAPWROK<br>COREPWROK<br>COREPWROK<br>PLTRST_B<br>MODEM_OFF_B<br>SDWN_B |                            |

Figure 12: Exit S0iX Sequencing Diagram (VCCAPWROKCFG=1)

**Data Sheet** 

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| VSYS                                                                                                                                                               |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| VLP                                                                                                                                                                |                 |
| V1P0A                                                                                                                                                              |                 |
| V1P8A                                                                                                                                                              |                 |
| V1P2A                                                                                                                                                              |                 |
| V3P3A                                                                                                                                                              |                 |
| RSMRST_B                                                                                                                                                           |                 |
| SLP_S4_B                                                                                                                                                           |                 |
| SUSPWRDNACK                                                                                                                                                        |                 |
| V1P8U                                                                                                                                                              |                 |
| VDDQ                                                                                                                                                               |                 |
| VREFDQ1/2                                                                                                                                                          |                 |
| DRAMPWROK                                                                                                                                                          |                 |
| SLP_S3_B                                                                                                                                                           |                 |
| V5P0S                                                                                                                                                              |                 |
| VNN                                                                                                                                                                |                 |
| VCC                                                                                                                                                                |                 |
|                                                                                                                                                                    | V1P05SVSEL S0IX |
| V1P0S                                                                                                                                                              | <b>→   ←</b> T1 |
| V1P0S<br>V1P05S                                                                                                                                                    |                 |
| V1P0S<br>V1P05S<br>V1P8S                                                                                                                                           |                 |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S                                                                                                                         |                 |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V1P2S<br>V3P3S                                                                                                       |                 |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S                                                                                                      |                 |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B                                                                                        |                 |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT                                                                            |                 |
| V1P0S<br>V1P05S<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT.<br>V1P2SX                                                                          |                 |
| V1P0S<br>V1P0SS<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P2SX                                                                 |                 |
| V1P0S<br>V1P0SS<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX                                                                 |                 |
| V1P0S<br>V1P0SS<br>V1P0SS<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX<br>V1P0SX                                             |                 |
| V1P0S<br>V1P0SS<br>V1P0SS<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX<br>VCCAPWROK<br>COREPWROK                                      |                 |
| V1P0S<br>V1P0SS<br>V1P0SS<br>V1P8S<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX<br>VCCAPWROK<br>COREPWROK<br>PLTRST_B<br>MODEM_OFF_B  |                 |
| V1P0S<br>V1P0SS<br>V1P0SS<br>V1P2S<br>V3P3S<br>V2P85S<br>SLP_S0iX_B<br>VDDQ_VTT<br>V1P2SX<br>V1P0SX<br>VCCAPWROK<br>COREPWROK<br>PLTRST_B<br>MODEM_OFF_B<br>SDWN_B |                 |

## Figure 13: Exit S0iX Sequencing Diagram (VCCAPWROKCFG=0)

**Data Sheet** 

Version 3.A - Final

**Company Confidential** 

| Parameter              | Description                                                             | Min<br>[ms] | Typ<br>[ms] | Max<br>[ms] | Measured<br>[ms] |
|------------------------|-------------------------------------------------------------------------|-------------|-------------|-------------|------------------|
| ТО                     | SLP_S0IX_B deassertion to first SX rail turn-on<br>delay                | 0,000       | 0,008       | 0,016       | 0,006            |
| T1_V1P05S              | Ramp-Up time from 10% to 90%                                            | 0,04        | 0,08        | 0,16        | 0,033            |
| T2_V1P05S-<br>VDDQ_VTT | Rail to Subsequent Rail Turn-On Delay                                   | 0,00        | 0,05        | 0,10        | 0,028            |
| T1_VDDQ_VTT            | Ramp-Up time from 10% to 90%                                            | 0,04        | 0,08        | 0,16        | 0,007            |
| T2_VDDQ_VTT-<br>V1P2SX | Rail to Subsequent Rail Turn-On Delay                                   | 0,00        | 0,05        | 0,10        | 0,053            |
| T1_V1P2SX              | Ramp-Up time from 10% to 90%                                            | 0,04        | 0,08        | 0,16        | 0,0001           |
| T2_V1P2SX-<br>V1P0SX   | Rail to Subsequent Rail Turn-On Delay                                   | 0,00        | 0,05        | 0,10        | 0,017            |
| T1_V1P0SX              | Ramp-Up time from 10% to 90%                                            | 0,04        | 0,08        | 0,16        | 0,062            |
| Т3                     | Total SOIX exit latency: from SLP_SOIX_B de-<br>assertion to all VRs up |             |             | 0,200       | 0,169            |
| T4                     | Time from All VRs are valid to VCCAPWEROK<br>assertion                  | 0,000       | 0,008       | 0,016       | 0,013            |

Table 20: Exit S0iX timing

## 10.3.5 Enter SOC S3 Mode

The S3 state is entered when the SOC asserts the SLP\_S3\_B pin (LOW). VRs that remain on enter into power saving mode.

The rail sequencing is shown in the figure below.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| -                         |   |
|---------------------------|---|
| VSYS                      |   |
| VLP                       | I |
| _<br>PLTRST_B             |   |
| -<br>SLP_S0iX_B           |   |
| COREPWROK                 |   |
| -<br>VCCAPWROK            |   |
| -<br>V1P8SX, V2P85SX, \   |   |
| -                         |   |
| v1P05X<br>-               |   |
| V1P2SX                    |   |
| VDDQ_VTT                  |   |
| SLP_S3_B                  |   |
| VSDIO, VSYS_S             |   |
| -<br>V2P85S               |   |
| -<br>V3P3S                |   |
| V1P2S                     |   |
| V1P8S                     |   |
| -<br>V1P05S               |   |
| -<br>V1P0S                |   |
| -<br>VCC                  |   |
| -<br>VNN                  |   |
| -<br>V5P0S                |   |
| -<br>SUSPWRDNACK          |   |
| SLP S4 B                  |   |
| DRAMPWROK                 |   |
|                           |   |
| -                         |   |
| VDDQ, VSYS_0, V3P3_0<br>- |   |
| V1P8U<br>-                |   |
| SUS Rails                 |   |
| RSMRST_B                  |   |
| SDWN_B                    |   |
| <br>MODEM_OFF_B           |   |

## Figure 14: Enter S3 Sequencing Diagram



#### 10.3.6 Exit SOC S3 Mode

The S3 state is exited when the SOC de-asserts the SLP\_S3\_B pin (HIGH). Voltage rails will be turned on and come out of power saving mode.

The rail sequencing is shown in the figure below.

| VSYS             |         |
|------------------|---------|
|                  |         |
| VLP<br>-         |         |
| V1P0A            |         |
| V1P8A            |         |
| V1P2A            |         |
| V3P3A            |         |
| RSMRST_B         |         |
| -<br>SLP_S4_B    |         |
| SUSPWRDNACK      |         |
| V1P8U            |         |
| VDDQ             |         |
| VREFDQ1/2        |         |
| DRAMPWROK        |         |
| SLP_S3_B_        | — то    |
| V5P0S-           |         |
| VNN-             |         |
| VCC_             |         |
| V1P0S_           |         |
| V1P05S-          |         |
| V1P8S-           |         |
| V1P2S_           |         |
| V3P3S_           |         |
| V2P85S-          |         |
| SLP_S0iX_B-      |         |
| VDDQ_VTT_        |         |
| V1P2SX_          | ← T6 →1 |
| V1P0SX_          |         |
| VCCAPWROK-       |         |
| COREPWROK        |         |
| PLTRST_B.        |         |
| -<br>MODEM_OFF_B |         |
| SDWN_B           |         |

## Figure 15: Exit S3 Sequencing Diagram



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 10.3.7 Enter SOC S4 Mode

The S4 state is entered when the SOC asserts the SLP\_S4\_B pin (LOW). VRs that remain on enter into power saving mode.

The rail sequencing is shown in the figure below.



#### Figure 16: Enter S4 Sequencing Diagram



#### 10.3.8 Exit SOC S4 Mode

The S4 state is exited when the SOC de-asserts the SLP\_S4\_B pin (HIGH). Voltage rails will be turned on and come out of power saving mode.

The rail sequencing is shown in the figure below.

| VSYS        |                                     |
|-------------|-------------------------------------|
| VLP         |                                     |
| V1P0A       |                                     |
| V1P8A       |                                     |
| V1P2A       |                                     |
| V3P3A       |                                     |
| RSMRST_B    |                                     |
| SLP_S4_B    |                                     |
| SUSPWRDNACK |                                     |
| V1P8U       | то                                  |
| VDDQ        | / тв                                |
| VREFDQ1/2   |                                     |
| DRAMPWROK   | · / · · · · · · · · · · · · · · · · |
| SLP_S3_B    | T3                                  |
| V5P0S       | · //                                |
| VNN         | /                                   |
| VCC         | //                                  |
| V1P0S       |                                     |
| V1P05S      |                                     |
| V1P8S       |                                     |
| V1P2S       |                                     |
| V3P3S       |                                     |
| V2P85S      |                                     |
| SLP_S0iX_B  |                                     |
| VDDQ_VTT    | /                                   |
| V1P2SX      |                                     |
| VIPOSX      |                                     |
| COREDWOOK   |                                     |
| UUKEPWKOK   |                                     |
| PLIKST_B    |                                     |
|             | ·                                   |
| SDWN_B      |                                     |

#### Figure 17: Exit S4 Sequencing Diagram



#### 10.3.9 Cold Off

A Cold Off, either through a SOC request or a system event, requests DA6021 in the 'Mechanical Off' (SOC G3, G3 for battery removal with no external power source) state. The system remains in this state until it receives a wake-up event, or until platform power sources are removed.

| Event                                            | Conditions (all mandatory)                                                                                                 | Notes                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOC Initiated Shut<br>Down                       | <ul> <li>SUSPWRDNACKCFG = 1</li> <li>SUSPWRDNACK = 1</li> <li>SLP_S4_B = 0</li> <li>RSMRST_B = 1</li> </ul>                | <ul> <li>DA6021 powers down in sequenced<br/>order controlled by SLP_S*_B and<br/>SUSPWRDNACK = 1 from SOC</li> </ul>                                                                                                                                                               |
| Power Button<br>Held                             | <ul> <li>Power button pressed for a defined<br/>length in FCOT[3:0] or longer (i.e. PBHT<br/>Timer ≥ FCOT[3:0])</li> </ul> | <ul> <li>After debounce time, power button are<br/>held for at least the length defined in<br/>FCOT[3:0] (the default is 4 seconds),<br/>assert SDWN_B immediately. After<br/>90us, DA6021 powers down in<br/>sequenced order, without waiting for<br/>SLP_S*_B from SOC</li> </ul> |
| PMIC Critical<br>Events                          | <ul> <li>See events defined in "PMIC<br/>Catastrophic and Critical Events"</li> </ul>                                      | <ul> <li>Assert SDWN_B immediately. After<br/>90us, DA6021 powers down in<br/>sequenced order, without waiting for<br/>SLP_S*_B from SOC</li> </ul>                                                                                                                                 |
| PMIC<br>Catastrophic<br>Events Except<br>VSYSOVP | <ul> <li>See events defined in "PMIC<br/>Catastrophic and Critical Events"</li> </ul>                                      | <ul> <li>Assert SDWN_B immediately. After<br/>90us, DA6021 powers down, without<br/>waiting for SLP_S*_B from SOC</li> </ul>                                                                                                                                                        |
| VSYSOVP                                          | <ul> <li>See events defined in "PMIC<br/>Catastrophic and Critical Events"</li> </ul>                                      | <ul> <li>Assert SDWN_B together with powering<br/>down immediately without waiting for<br/>SLP_S*_B from SOC</li> </ul>                                                                                                                                                             |

Table 21: Cold Off Triggers

Cold Off sequencing and timings are detailed in the figures and tables below.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| -                       |     |          |          |
|-------------------------|-----|----------|----------|
| VLP -                   |     |          |          |
| PLTRST_B                |     |          |          |
| SLP_S0iX_B              | · \ |          |          |
| COREPWROK               |     |          |          |
| VCCAPWROK               | T2  |          |          |
| V1P8SX, V2P85SX, VHDMI, |     |          |          |
| V1P0SX                  | тз  |          |          |
| -<br>V1P2SX             |     |          |          |
| VDDQ_VTT                |     | <b>←</b> |          |
| -<br>SLP_S3_B           |     |          |          |
| VSDIO, VSYS_S           | → × | T2       |          |
| -<br>V2P85S             |     |          |          |
| V3P3S                   |     |          |          |
| V1P2S                   |     |          |          |
| -<br>V1P8S              |     |          |          |
| V1P05S                  |     |          |          |
| -<br>V1P0S              |     |          |          |
| VCC                     |     |          |          |
| VNN                     |     |          |          |
| -<br>V5P0S              |     |          |          |
| -<br>SUSPWRDNACK        | •   | тб       |          |
| -<br>SLP_S4_B           |     | 1        |          |
| DRAMPWROK               |     |          |          |
| -<br>VREFDQ1/2          |     |          |          |
| VDDQ. VSYS U. V3P3 U    |     |          |          |
| - V1P8U                 |     |          |          |
| RSMRST B                |     |          |          |
|                         |     |          |          |
| -<br>\/1D2A             |     |          |          |
| \/1D0A                  |     |          |          |
| V I POA                 |     |          |          |
| V1PUA                   |     |          |          |
| SDWN_B                  |     |          |          |
| MODEM_OFF_B             |     |          | <u>}</u> |

## Figure 18: Cold Off Power Sequencing Diagram (SUSPWRDNACKCFG=1)



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

For SOC initiated Cold Off, there is a configuration bit in the RTC domain supplied registers called SUSPWRDNACKCFG. This bit decides whether DA6021 enters SOC G3 state or stops at SOC S4 state:

- When RSMRST\_B=1, SLP\_S4\_B=0 and SUSPWRDNACKCFG=1, DA6021 enters SOC G3 state if SUSPWRDNACK=1
- When RSMRST\_B=1, SLP\_S4\_B=0 and SUSPWRDNACKCFG=0, DA6021 stops at SOC S4 state, no matter SUSPWRDNACK=1 or 0. The Power Sequence diagram will be the same as that of "Enter SOC S4 Sequence Default Behavior Diagram" except that SUSPWRDNACK could be set (=1) or cleared (=0) when SLP\_S4\_B is asserted (=0).

| Parameter              | Description                                             |       | Typ<br>[ms] | Max<br>[ms] | Measured<br>[ms] |
|------------------------|---------------------------------------------------------|-------|-------------|-------------|------------------|
| ТО                     | PLTRST_B assertion to SLP_S0IX_B assertion              | 0,031 |             |             | SOC<br>related   |
| T1                     | SLP_S0IX_B assertion to VCCAPWROKCFG deassertion        | 0,000 | 0,008       | 0,016       | 0,002            |
| T2_V1P2SX              | VCCAPWROK deassertion to first VR starts to<br>turn off | 0,000 | 0,008       | 0,016       | 0,051            |
| T3_V1P0SX              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,624            |
| T4_V1P0SX-<br>V1P2SX   | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00        | 3,00        | 0,995            |
| T3_V1P2SX              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,010            |
| T4_V1P2SX-<br>VDDQ_VTT | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00        | 3,00        | 1,037            |
| T3_VDDQ_VTT            | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,617            |
| T2_VBUS                | VCCAPWROK deassertion to OnDemand VR starts to turn off | 0,5   | 1,00        | 3,00        | 1,794            |
| T3_VBUS                | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 2,660            |
| T2_V1P8SX              | VCCAPWROK deassertion to OnDemand VR starts to turn off | 0,5   | 1,00        | 3,00        | 2,378            |
| T3_V1P8SX              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,059            |
| T2_V2P85SX             | VCCAPWROK deassertion to OnDemand VR starts to turn off | 0,5   | 1,00        | 3,00        | 2,120            |
| T3_V2P85SX             | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,028            |
| T2_VHDMI               | VCCAPWROK deassertion to OnDemand VR starts to turn off | 0,5   | 1,00        | 3,00        | 2,366            |
| T3_VHDMI               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 1,563            |
| T2_VHOST               | VCCAPWROK deassertion to OnDemand VR starts to turn off | 0,5   | 1,00        | 3,00        | 2,719            |
| T3_VHOST               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,402            |
| Τ5                     | SLP_S0IX_B assertion to SLP_S3_B assertion              | 0     |             |             | SOC<br>related   |
| T4_VDDQ_VTT-<br>V2P85S | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00        | 3,00        | 0,661            |
| T2_V2P85S              | SLP_S3_B assertion to VR starts to turn off             | 0,000 | 0,008       | 0,016       | 0,037            |
| T3_V2P85S              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 0,687            |
| T4_V2P85S-<br>V3P3S    | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00        | 3,00        | 0,621            |
| T3_V3P3S               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00        | 2,00        | 3,363            |
| T4_V3P3S-<br>V1P2S     | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00        | 3,00        | 0,891            |

## **DA6021**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| T3_V1P2S               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,074          |
|------------------------|---------------------------------------------------------|-------|-------|-------|----------------|
| T4_V1P2S-<br>V1P8S     | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,660          |
| T3_V1P8S               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,037          |
| T4_V1P8S-<br>V1P05S    | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,878          |
| T3_V1P05S              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,426          |
| T4_V1P05S-<br>V1P0S    | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,533          |
| T3_V1P0S               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,574          |
| T4_V1P0S-VCC           | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,997          |
| T3_VCC                 | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,196          |
| T4_VCC-VNN             | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,512          |
| T3_VNN                 | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,203          |
| T4_VNN-V5P0S           | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,548          |
| T3_V5P0S               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 4,557          |
| T2_VSYS_S              | VCCAPWROK deassertion to OnDemand VR starts to turn off | 0,5   | 1,00  | 3,00  | 2,327          |
| T3_VSYS_S              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,003          |
| T2_VSDIO               | SLP_S3_B deassertion to OnDemand VR starts to turn off  | 0,5   | 1,00  | 3,00  | 1,284          |
| T3_VSDIO               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,025          |
| Т6                     | SLP_S3_B assertion to SLP_S4_B assertion                | 0     |       |       | SOC<br>related |
| Т7                     | SLP_S4_B assertion to DRAMPWROK deassertion             | 0,000 | 0,024 | 26,02 | 0,015          |
| T4_V5P0S-<br>VREFDQ0   | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,601          |
| Т8                     | DRAMPWROK deassertion to VREFDQ0 starts to turn off     | 0,000 | 0,024 | 0,032 | 0,005          |
| T3_VREFDQ0             | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,063          |
| T4_VREFDQ0-<br>VREFDQ1 | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,513          |
| T3_VREFDQ1             | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,062          |
| T4_VREFDQ1-<br>VDDQ    | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,535          |
| T3_VDDQ                | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,999          |
| T4_VDDQ-<br>VSYS_U     | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 1,027          |
| T3_VSYS_U              | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,085          |
| T4_VSYS_U-<br>V3P3U    | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 1,079          |
| T3_V3P3U               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 1,024          |
| T4_V3P3_U-<br>V1P8U    | Rail to Subsequent Rail Turn-Off Delay                  | 0,5   | 1,00  | 3,00  | 0,970          |
| T3_V1P8U               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,329          |
| Т9                     | V1P8U voltage < 10% to RSMRST_B assertion               | 0,000 | 0,024 | 0,032 | 0,098          |
| T10                    | RSMRST_B assertion to V3P3A starts to turn off          | 0,000 | 0,024 | 0,032 | 0,036          |
| T3_V3P3A               | Ramp-down Time from 90% to 10%                          | 0,5   | 1,00  | 2,00  | 0,951          |

**Data Sheet** 

60 of 224



**Company Confidential** 



**Company Confidential** 

| T4_V3P3A-<br>V1P2A | Rail to Subsequent Rail Turn-Off Delay    | 0,5   | 1,00  | 3,00  | 0,992 |
|--------------------|-------------------------------------------|-------|-------|-------|-------|
| T3_V1P2A           | Ramp-down Time from 90% to 10%            | 0,5   | 1,00  | 2,00  | 0,075 |
| T4_V1P2A-<br>V1P8A | Rail to Subsequent Rail Turn-Off Delay    | 0,5   | 1,00  | 3,00  | 1,086 |
| T3_V1P8A           | Ramp-down Time from 90% to 10%            | 0,5   | 1,00  | 2,00  | 0,730 |
| T4_V1P8A-<br>V1P0A | Rail to Subsequent Rail Turn-Off Delay    | 0,5   | 1,00  | 3,00  | 0,979 |
| T3_V1P0A           | Rail to Subsequent Rail Turn-On Delay     | 0,50  | 1,00  | 2,05  | 0,538 |
| T11                | SLP_S4_B assertion to SDWN_B assertion    | 0,000 | 0,024 | 0,032 | 0,003 |
| T12                | SDWN_B assertion to MODEM_OFF_B assertion | 0,40  |       | 0,80  | 0,608 |

Table 22: Cold Off Sequencing Timing



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



#### Figure 19: Power Button forced Cold Off



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



Figure 20: Catastrophic Event (except VSYSOVP) Shutdown Sequence

| Parameter | Description                                                       | Min  | Typ<br>[µs] | Мах  | VAL |
|-----------|-------------------------------------------------------------------|------|-------------|------|-----|
| T2        | SDWN_B assertion to shutdown all VRs and<br>DA6021 output signals | -10% | 90          | +10% | D,E |

Table 23: Catastrophic Event (except VSYSOVP) Shutdown Sequence



## Figure 21: VSYSOVP Shutdown Sequence

| Parameter | Description           | Min<br>[µs] | Typ<br>[µs] | Max<br>[µs] | VAL |
|-----------|-----------------------|-------------|-------------|-------------|-----|
| ТО        | VSYSOVP debounce time | 90          | 100         | 110         | D,E |

Table 24: VSYSOVP Shutdown Timing



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 10.3.10 Modem Reset Sequence

The sequence is initiated by the SoC while setting the MODEMRSTSEQ bit. During a modem reset sequence DA6021 will toggle the SDWN\_B and MODEM\_OFF\_B pins. For detail refer to the following diagram.



Figure 22: Modem Reset Sequencing Diagram

| Intervals | T1          | T2         | T3        |
|-----------|-------------|------------|-----------|
| Time      | 400us-800us | 14ms (min) | 5ms (min) |

Table 25: Modem Reset Timing Intervals

| Register Name |      | MODEMCTRL     |                                      | Address | 0x29<br>Page 1 | Read/Write       |                  |
|---------------|------|---------------|--------------------------------------|---------|----------------|------------------|------------------|
|               |      |               |                                      | 0x01    |                |                  |                  |
| MSB           |      |               |                                      |         |                |                  | LSB              |
| R             | R    | R             | R                                    | R       | R              | R/W              | R/W              |
| reserved      |      |               |                                      |         |                | MODEM_<br>RSTSEQ | MODEM_<br>OFF_ST |
| MODEM_OF      | F_ST | 0<br>1        | Actual status of the MODEM_OFF_B bit |         |                |                  |                  |
| MODEM_RS      | TSEQ | <b>0</b><br>1 |                                      |         |                |                  |                  |



## 10.4 PMIC Resets

The following table summarizes the reset sources for DA6021

| Reset Source     | Reset trigger             | Reset Type/Sequence                                     |  |  |  |
|------------------|---------------------------|---------------------------------------------------------|--|--|--|
| SoC Request      | PLTRST_B                  | Warm Reset                                              |  |  |  |
| External Button  | PWRBTN_B held longer than | Forced Cold Off, shutdown all voltage regulators and    |  |  |  |
|                  | time defined in FCOT[3:9] | return to SOC_G3 state (not waiting for any SLP_S*_B    |  |  |  |
|                  |                           | signals from SOC                                        |  |  |  |
| Catastrophic and | THERMTRIP_B               | Shutdown all voltage regulators, return to SOC_G3 state |  |  |  |
| Critical Event   | PMICTEMP                  | (not waiting for any SLP_S*_B signals from SOC)         |  |  |  |
|                  | System Temperature        |                                                         |  |  |  |
|                  | Battery Temperature       |                                                         |  |  |  |
|                  | VSYSUVP                   |                                                         |  |  |  |
|                  | VSYSOVP                   |                                                         |  |  |  |
|                  | Main Battery Removal      |                                                         |  |  |  |
|                  | (BATRM, if BATRMDEN set)  |                                                         |  |  |  |
|                  | BCU VCRIT ( if enabled)   |                                                         |  |  |  |
| Wake Event from  | Battery Insertion         | Cold boot                                               |  |  |  |
| Cold off         | USB Charger insertion     |                                                         |  |  |  |
|                  | AC/DC Adapter insertion   |                                                         |  |  |  |
|                  | PWRBTN_B pressed          |                                                         |  |  |  |

#### Table 26 : PMIC Reset Sources

#### 10.5 Wake Events

There are several events that can wake the system from SOC\_G3 or G3 state. These are:

- Battery Insertion
- USB Charger Insertion
- AC/DC Adapter Insertion
- Power Button

All of these events can cause a System Boot if it is in SOC\_G3, but booting is depending on the battery voltage. The first 3 wake events, battery insertion, USB or AC/DC adapter insertion can cause a boot depending on the SRCWAKECFG register as defined below:

| Register Name SRC |   | SRCWAKE | SRCWAKECFG                                                           |                                                                        | 0xDB              | Read/Write         |           |  |
|-------------------|---|---------|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|--------------------|-----------|--|
|                   |   |         |                                                                      |                                                                        | Page 1            |                    |           |  |
|                   |   |         |                                                                      |                                                                        | 0x00              |                    |           |  |
| MSB               |   |         |                                                                      |                                                                        |                   |                    | LSB       |  |
| R                 | R | R       | R                                                                    | R                                                                      | R/W               | R/W                | R/W       |  |
| reserved          |   |         |                                                                      |                                                                        | ADWAKEEN          | USBWAKEEN          | BATWAKEEN |  |
| BATWAKEE          | N | 0       | No wake up if battery insertion is detected                          |                                                                        |                   |                    |           |  |
|                   |   | 1       | Wake up if b                                                         | pattery insertion                                                      | on detected and   | d further boot cri | teria met |  |
| USBWAKEE          | N | 0       | No wake up if USB charger insertion is detected                      |                                                                        |                   |                    |           |  |
|                   |   | 1       | Wake up if l                                                         | Wake up if USB charger insertion detected and further boot criteria me |                   |                    |           |  |
| ADWAKEEN          | l | 0       | No wake up                                                           | if ACDC ada                                                            | oter insertion is | detected           |           |  |
|                   |   | 1       | Wake up if ACDC adapter insertion detected and further boot criteria |                                                                        |                   | boot criteria      |           |  |
|                   |   |         | met                                                                  |                                                                        |                   |                    |           |  |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## **11. Platform Power Domains**

## **11.1 Power Domains Summary**

The power supply part of DA6021 consists of various power supplies modules:

| Power Supply<br>Module | DA6021<br>Supplied<br>Pins | Supplied<br>Voltage                                                   | Supplied<br>Current | Notes                                                                                                                                       |
|------------------------|----------------------------|-----------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| BUCK_CORE              | VCC                        | 0.5 – 1.2V<br>±2% accuracy (DC & ripple)<br>Default:<br>1.0V ±1.5%    | 8000mA              | Quad phase buck converter,<br>including IMVP-7 SVID<br>interface with a voltage<br>granularity of 10mV                                      |
| BUCK_GRAPHIC           | VNN                        | 0.5 - 1.2V<br>±2% accuracy<br>(DC & ripple)<br>Default:<br>1.0V ±1.5% | 8000mA              | Quad phase buck converter,<br>optional triple phase buck<br>(OTP), including IMVP-7 SVID<br>interface with a voltage<br>granularity of 10mV |
| BUCK_V1P0              | V1P0A                      | 1.00V<br>±2% accuracy<br>(DC & ripple)                                | 1900mA              | Single phase buck converter<br>Nominal voltage 1.01V                                                                                        |
| BUCK_V1P05S            | V1P05S                     | 1.05V<br>±2% accuracy<br>(DC & ripple)                                | 475mA               | Single phase buck converter<br>Nominal output voltage 1.05V                                                                                 |
| BUCK_1P8               | V1P8A                      | 1.8V<br>±2% accuracy<br>(DC & ripple)                                 | 1627mA              | Single phase buck converter<br>Nominal voltage 1.817V                                                                                       |
| BUCK_VDDQ              | VDDQ                       | 1.5/1.35/1.25V<br>±2% accuracy<br>(DC & ripple)                       | 2800mA              | Dual phase buck converter<br>Nominal voltage 1.24V                                                                                          |
| BUBO_V3P3              | V3P3A                      | 3.3V<br>±2% accuracy<br>(DC & ripple)                                 | 1569mA              | Buck boost converter<br>Nominal voltage 3.332V                                                                                              |
| BUBO_V2P85             | V2P85S                     | 2.9V<br>±4% accuracy<br>(DC & ripple & transient<br>over/under)       | 550mA               | Buck boost converter<br>Nominal voltage 2.9V                                                                                                |
| BOOST_V5P0             | V5P0S                      | 5.0V<br>±4% accuracy<br>(DC & ripple & transient<br>over/under))      | 1000mA              | Boost converter<br>Nominal voltage 5.048V                                                                                                   |
| LDO_VDDQ_VTT           | VDDQ_VTT                   | ½ VDDQ<br>±2% accuracy<br>(DC)                                        | 325mA               | Push-pull LDO for DDR3 address line termination.                                                                                            |
| LDO_V1P2A              | V1P2A                      | 1.2V<br>±2% accuracy<br>(DC)                                          | 30mA                | LDO supplied by<br>BUCK_V1P8A, low quiescent<br>current                                                                                     |
| LDO_VREFDQ0            | VREFDQ0                    | ±3% accuracy<br>(DC & ripple)                                         | 10mA                | LDO supplied by<br>BUCK_V1P8A                                                                                                               |
| LDO_VREFDQ1            | VREFDQ1                    | ±3% accuracy<br>(DC & ripple)                                         | 10mA                | LDO supplied by<br>BUCK_V1P8A                                                                                                               |
| LDO_VLP                | VLP                        | 2.5V<br>±1.5% accuracy<br>(DC)                                        | 10mA                | LDO supplying the internal DA6021 electronic                                                                                                |



**Company Confidential** 

| SD/LDO_V1P2S | V1P2S   | VDDQ/V1P8   | 34mA            | Function between switching<br>device (SD) and LDO can be<br>selected via device order<br>code. SD can be used with<br>DDR3 LP memory for all other<br>types of memories the LDO<br>solution is proposed |
|--------------|---------|-------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SD_V1P2SX    | V1P2SX  | VDDQ/V1P8   | 155mA           | Switching device to generate<br>V1P2SX. In case of DDR3 L<br>memory this voltage will be<br>1.35V                                                                                                       |
| SD_VUSBPHY   | VUSBPHY | VSYS/V3P3_A | 40mA            | Switching device supplying<br>the USBPHY with 3.3V. If<br>V3P3A is switched off<br>VUSBPHY is supplied by<br>VSYS                                                                                       |
| SD_VSDIO     | VSDIO   | V1P8A/V3P3A | 400mA/20<br>0mA | Switching device supplying<br>the SDIO interface. Output<br>voltage is controlled by digital<br>input signals from SoC                                                                                  |
| SD_V1P8S     | V1P8S   | V1P8A       | 144mA           | DA6021 internal switching device supplied by V1P8A                                                                                                                                                      |
| SD_V1P8SX    | V1P8SX  | V1P8A       | 240mA           | DA6021 internal switching<br>device supplied by V1P8A                                                                                                                                                   |
| SD_V2P85SX   | V2P85SX | V2P85S      | 250mA           | DA6021 internal switching device supplied by V2P85S                                                                                                                                                     |
| SD_VHDMI     | VHDMI   | V5P0S       | 55mA            | DA6021 internal switching device supplied by V5P0S                                                                                                                                                      |
| SD_VSYS_S    | VSYS_S  | VSYS        | 10mA            | DA6021 internal switching device supplied by VSYS                                                                                                                                                       |
| EFS_VSYSU    | VSYSU   | VSYS        | 2750mA          | External p-channel FET<br>switched power domain<br>supplied by VSYS                                                                                                                                     |
| EFS_VSYS_SX  | VSYS_SX | VSYS        | 2500mA          | External p-channel FET<br>switched power domain<br>supplied by VSYS                                                                                                                                     |
| EFS_V3P3U    | V3P3U   | V3P3A       | 700mA           | External p-channel FET<br>switched power domain<br>supplied by V3P3A                                                                                                                                    |
| EFS_V3P3S    | V3P3S   | V3P3A       | 584mA           | External p-channel FET<br>switched power domain<br>supplied by V3P3A                                                                                                                                    |
| EFS_V1P8U    | V1P8U   | V1P8A       | 355mA           | External p-channel FET<br>switched power domain<br>supplied by V1P8A                                                                                                                                    |
| EFS_V1P0S    | V1P0S   | V1P0A       | 410mA           | External n-channel FET<br>switched power domain<br>supplied by V1P0A                                                                                                                                    |
| EFS_V1P0SX   | V1P0SX  | V1P0A       | 916mA           | External n-channel FET<br>switched power domain<br>supplied by V1P0A                                                                                                                                    |
| EFS_VHOST    | VHOST   | V5P0S       | 900mA           | External switched power domain supplied by V5P0S                                                                                                                                                        |
| EFS_VBUS     | VBUS    | V5P0S       | 900mA           | External switched power<br>domain supplied by V5P0S                                                                                                                                                     |

Table 27: Power Domains

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 11.2 Voltage Rail ON/OFF On Various Power States

| Supply Module | Voltage domain | <b>S</b> 0 | S0ix       | <b>S</b> 3 | S4/5 | <b>G</b> 3 |
|---------------|----------------|------------|------------|------------|------|------------|
| VLV2          | VCC            | On         | Off        | Off        | Off  | Off        |
| VLV2          | VNN            | On         | On         | Off        | Off  | Off        |
| VLV2          | V1P0A          | On         | On         | On         | On   | Off        |
| VLV2          | V1P05S         | On         | On         | Off        | Off  | Off        |
| VLV2          | V1P8A          | On         | On         | On         | On   | Off        |
| VLV2/DDR3     | VDDQ           | On         | On         | On         | Off  | Off        |
| VLV2,         | V3P3A          | On         | On         | On         | On   | Off        |
| Peripherals   |                |            |            |            |      |            |
| Peripherals   | V2P85S         | On         | On         | Off        | Off  | Off        |
| Peripherals   | V5P0S          | On         | On         | Off        | Off  | Off        |
| DDR3          | VDDQ_VTT       | On         | On         | Off        | Off  | Off        |
| VLV2          | V1P2A          | On         | On         | On         | On   | Off        |
|               | VREFDQ0        | On         | On         | On         | Off  | Off        |
|               | VREFDQ1        | On         | On         | On         | Off  | Off        |
| DA6021        | VLP            | On         | On         | On         | On   | Off        |
|               | V1P2S          | On         | On         | Off        | Off  | Off        |
|               | V1P2SX         | On         | Off        | Off        | Off  | Off        |
| Peripherals   | VUSBPHY        | On         | On         | On         | On   | Off        |
| Peripherals   | VSDIO          | On/Off *)  | On/Off *)  | Off        | Off  | Off        |
| VLV2          | V1P8S          | On         | On         | Off        | Off  | Off        |
|               | V1P8SX         | On/Off *)  | Off/Off *) | Off        | Off  | Off        |
| Peripherals   | VHDMI          | On/Off *)  | On/Off *)  | Off        | Off  | Off        |
|               | VSYS_S         | On/Off *)  | On/Off *)  | Off        | Off  | Off        |
| Peripherals   | VSYSU          | On/Off *)  | On/Off *)  | On/Off *)  | Off  | Off        |
| Peripherals   | VSYS_SX        | On/Off *)  | On/Off *)  | Off        | Off  | Off        |
| Peripherals   | V2P85SX        | On/Off *)  | On/Off *)  | Off        | Off  | Off        |
| Peripherals   | V3P3U          | On/Off *)  | On/Off *)  | On/Off *)  | Off  | Off        |
| VLV2          | V3P3S          | On         | On         | Off        | Off  | Off        |
| Peripherals   | V1P8U          | On         | On         | On         | Off  | Off        |
| VLV2          | V1P0S          | On         | On         | Off        | Off  | Off        |
| VLV2          | V1P0SX         | On         | Off        | Off        | Off  | Off        |
| Peripherals   | VHOST          | On/Off *)  | On/Off *)  | Off        | Off  | Off        |
| Peripherals   | VBUS           | On/Off *)  | On/Off *)  | Off        | Off  | Off        |

Table 28: Status Power Domains

\*) on-demand register controlled

# 11.3 PMIC Current Consumption in Various States

Ta = 25°C, VSYS = 3.7V, no load

| Power State | min | Typ.<br>[mA] | Max |
|-------------|-----|--------------|-----|
| SOC_S0      |     | 2.089        |     |
| SOC_S0iX    |     | 1.793        |     |
| SOC_S3      |     | 1.022        |     |
| SOC_S4      |     | 0.789        |     |
| SOC_G3      |     | 0.069        |     |
| G3          |     | 0.056        |     |

Table 29: PMIC Current Consumption



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 11.4 Voltage Rail Control Mechanism

Proper power-up/down sequencing is mandatory preventing damages. Optimizing the platform power consumption, unneccessary components as well as its related power rails shall be switched off. There are several methods controlling the power rails.

- VCC & VNN are controlled via the SVID interface
- State transitions, SOC provides SLP\_S0iX\_B, SLP\_S3\_B and SLP\_S4\_B signals to DA6021 controlling the related power rails
- Sequencer controlling
- Dedicated register control

#### 11.5 SVID Interface

SOC communicates with the DA6021 via the SVID interface. SVID's commands composed of 9 bits – 4 MSBs determine the address and 5 LSBs are the command bits. DA6021 supports 2 SVID voltage regulators – VCC & VNN. The address for each of the voltage regulator is indicated in the table below:

| Address | Target | Description                                                                                                   |
|---------|--------|---------------------------------------------------------------------------------------------------------------|
| 0x00    | VCC    | All commands will be routed to the VCC SVID registers and DA6021 will respond with the VCC status information |
| 0x01    | VNN    | All commands will be routed to the VNN SVID registers and DA6021 will respond with the VNN status information |

Table 30: VCC & VNN Addresses

#### 11.5.1 SVID DC Electrical Parameters

The following table outlines the SVID DC electrical parameters. Note that low voltage operation is essential to avoid level converters to/from the processor. DA6021 SVID buffer should take V1P0S\_FB as a reference voltage for improved signal integrity at the receiver.

| Symbol | Parameter                                         | Min            | Тур   | Max            | Units | Notes | Val |
|--------|---------------------------------------------------|----------------|-------|----------------|-------|-------|-----|
| V1P0S  | SVID IO voltage                                   | 0.95           | 1.00  | 1.05           | V     |       | -   |
| VIL    | Input low voltage                                 |                |       | 0.45*<br>V1P0S | V     | 1     | A   |
| VIH    | Input high voltage                                | 0.65*<br>V1P0S |       |                | V     | 1     | A   |
| VHYS   | Hysteresis voltage                                | 0.05           |       |                | V     |       | E,D |
| VOH    | Output high voltage                               |                | V1P0S |                | V     | 1     | -   |
| RON    | Buffer on resistance<br>(data line & alert# line) | 10             |       | 20             | Ω     | 2     | D   |
| IL     | Leakage current                                   | -100           |       | 100            | uA    | 3     | А   |
| CPAD   | Pad capacitance                                   |                |       | 4.0            | pF    | 4     | D   |
| VPIN   | Pin capacitance                                   |                |       | 5.0            | pF    |       | D   |

Table 31: SVID DC Electrical Characteristics

**Company Confidential** 

#### NOTES:

- 1. V1P0S refers to instantaneous voltage at V1P0S\_FB location.
- 2. Measured at 0.31 \* V1P0S.
- 3. VIN between 0V and V1P0S.
- 4. CPAD includes die capacitance only. No package parasitic included.



Figure 23: Definition of VHYS

| Symbol                | Parameter                                                  | Min   | Тур | Мах  | Units | Notes              | Val |
|-----------------------|------------------------------------------------------------|-------|-----|------|-------|--------------------|-----|
| Vmax                  | VDS max open drain<br>buffer to accommodate<br>bus ringing | -1.00 |     | 3.30 | V     |                    | -   |
| SR Fall<br>Data/Alert |                                                            | 1.20  |     | 3.50 | V/ns  | Load:<br>Rpu=64.9Ω | A   |
| SR Rise<br>Data/Alert |                                                            | 1.20  |     | 3.50 | V/ns  | Load:<br>Rpu=64.9Ω | A   |

Table 32: SVID buffer AC Electrical Parameters

Slew Rate (SR) is measured between 0.7\*V1P0S and 0.3\*V1P0S. SR is measured at the output of the buffer; Rpu is connected to V1P0S as a load with no additional capacitance on the board. The slew rate is defined with VR buffer capacitance only.

#### 11.5.2 VCLK Timing Parameters

| Symbol | Parameter                 | Min  | Тур | Max   | Units               | Notes | Val |
|--------|---------------------------|------|-----|-------|---------------------|-------|-----|
|        | VCLK frequency            | 13.3 | 25  | 26.25 | MHz                 | 1,4   | А   |
| Thigh  | VCLK high time            | -10% |     | +10%  | % of 0.5<br>Tperiod | 2,4   | D   |
| Tlow   | VCLK low time             | -10% |     | +10%  | % of 0.5<br>Tperiod | 2,4   | D   |
| Trise  | VCLK rise time @VR<br>Pad | 0.25 |     | 3.0   | ns                  | 3     | A   |
| Tfall  | VCLK fall time @VR<br>Pad | 0.25 |     | 3.0   | ns                  | 3     | A   |
|        | Duty cycle                | 45   |     | 55    | %                   | 1,4   | E,D |

Table 33: VCLK AC Timing Parameters

## NOTES:



- 1. Period and duty cycle are measured with respect to 0.5 \* V1P0S.
- 2. High time is measured with respect to 0.7 \* V1P0S. Low time is measured with respect to 0.3 \* V1P0S.
- 3. Rise time is measured from 0.3\*V1P0S 0.7\*V1P0S. Fall time is measured 0.7\*V1P0S 0.3\*V1P0S.
- 4. Tperiod, Thigh, Tlow and Duty Cycle variation as a result of internal CPU Clock logic only. Additional variation may be introduced as a result of the Clock MB topology (like different Rpu values or MB impedance).



Figure 24: Measurement Points for VCLK

The SVID interface will have access only to the SVID registers. In case of dynamical content like the status registers the latching mechanism ensures not falling in meta-stability.

## 11.5.3 Data Sampling and Timing

Following SVID Bus platform timings have to be fulfilled

- Tco\_max\_VR clock to data delay = 12ns
- Tco\_min\_VR clock to data delay = 4ns
- Tsu\_VR VDIO setup time at DA6021 = 7ns
- Thld\_VR VDIO hold time at DA6021 = 14ns
- Tfly\_min 0.3ns
- Tfly\_max 1.5ns



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



## Figure 25: SoC Driving Timing Definition



Figure 26: DA6021 Driving Timing Definition


## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 11.5.4 SVID Command Set

| VCC & VINN Implement a subset of the full VR 12/INVP7 SVID protoco | VCC & V | VNN implement | a subset of the fu | III VR12/IMVP7 | SVID protocol |
|--------------------------------------------------------------------|---------|---------------|--------------------|----------------|---------------|
|--------------------------------------------------------------------|---------|---------------|--------------------|----------------|---------------|

| #    | Command                                                               | Master<br>payload                                           | Slave<br>payload                  | e Description                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|------|-----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      |                                                                       | content                                                     | content                           |                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 01h  | SetVID-fast<br>(Individual<br>address & all<br>call address)          | VID code                                                    | NA                                | Applicable for VCC & VNN. Set the new VID target, VR<br>Jumps to new VID target with controlled (up or down)<br>slew rate programmed by the VR. When VR receives<br>VID moving up command it will exit all low power states<br>to the normal state to ensure the fastest slew to the<br>new voltage. VR sets VR_settled bit and issues alert<br>when VR has reached new VID target. |  |  |  |
| 02h  | SetVID-slow<br>(Individual<br>address & all<br>call address)          | VID code                                                    | NA                                | Applicable for VCC & VNN. Set the VID target, VR<br>Jumps to new VID target with controlled slew rate (up<br>or down) programmed by the VR. When VR receives<br>VID moving up command it will exit all low power states<br>to the normal state. VR sets VR_settled and issues<br>alert when VR has reached new VID target.                                                          |  |  |  |
| 03h  | SetVID-decay<br>(Individual<br>address & all<br>call address)         | VID code                                                    | NA                                | Applicable for VCC & VNN. Sets the VID target, VR<br>jumps to new VID target, but does not control<br>the slew rate, the output voltage decays at a rate<br>proportional to the load current. SetVID_decay is<br>only used in VID down direction and implies VR<br>goes to PS2 state. VR sets VR_settled but Alert line is<br>not asserted for SetVID-decay                         |  |  |  |
| 04h  | SetPS                                                                 | Byte<br>indicating<br>power<br>status of<br>voltage<br>rail | NA                                | Only applicable for VCC. SoC sets the power state of<br>the VR according to core P-state and C-state so<br>that VCC VR controller can be configured to improve<br>efficiency, especially at light load                                                                                                                                                                              |  |  |  |
| 05h  | SetRegADR<br>(Individual<br>address only.<br>NAK all call<br>address) | Address of<br>the index<br>in the data<br>table             | NA                                | Sets the address pointer in the data register table.<br>Typically the next command SetRegDAT is the payload<br>that gets loaded into this address. However for multiple<br>writes to the same address, only one SetRegADR is<br>needed.                                                                                                                                             |  |  |  |
| 06h. | SetRegDAT<br>(Individual<br>address only.<br>NAK all call<br>address) | New data<br>register<br>contents                            | NA                                | Writes the contents to the data register that was<br>previously identified by the address pointer with<br>SetRegADR                                                                                                                                                                                                                                                                 |  |  |  |
| 07h  | GetReg<br>(Individual<br>address only.<br>NAK all call<br>address)    | Define<br>which<br>register                                 | Specified<br>register<br>contents | Slave returns the contents of the specified register as<br>the payload;<br>The majority of the VR monitoring data is accessed<br>through the GetReg command.                                                                                                                                                                                                                        |  |  |  |

Table 34: SVID Supported Commands

**Data Sheet** 



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 11.5.5 SVID Register Set

| #    | Register          | Description                                             | Access     | Note        |
|------|-------------------|---------------------------------------------------------|------------|-------------|
| 0x00 | Vendor ID         | The vendor ID is defined by Intel . DA6021              | Read only  |             |
|      |                   | returns the assigned vendor ID                          | _          |             |
| 0x01 | Product ID        | Identifies the DA6021 with its specific number          | Read only  |             |
| 0x02 | Product revision  | This byte is slpit into the new release code            | Read only  |             |
|      |                   | (NRC[3:0]) in the high nibble and the minor             | _          |             |
|      |                   | revision code (MRC[3:0]) in the low nibble of           |            |             |
|      |                   | this byte.                                              |            |             |
| 0x06 | Capability        | current monitoring is supported                         | Read only  |             |
| 0x10 | Status_1          | Data register read after the alert_B signal is          | Read only  |             |
|      |                   | asserted. Conveying the status of the VR.               |            |             |
| 0x14 | VCC/VNN Output    | Running 1 ms averaging (analog or digital),             | Read only  | VCC in VCC  |
|      | Current, Imon (H) | approximately 1 ms register update. 10 bits             |            | registers   |
|      |                   | ADC, store MSB & 2 <sup>nd</sup> MSB of the ADC         |            | VNN in VNN  |
|      |                   | output onto D[10] on this register                      |            | registers   |
| 0x15 | VCC/VNN Output    | Running 1 ms averaging (analog or digital),             | Read only  | VCC in VCC  |
|      | Current, Imon (L) | approximately 1 ms register update.                     |            | registers   |
|      |                   | 10 bits ADC, store the 1 <sup>st</sup> 8 LSB of the ADC |            | VNN in VNN  |
|      |                   | output onto this register.                              |            | registers   |
| 0x1D | V1P0A/VDDQ        | Running 1 ms averaging (analog or digital),             | Read only  | V1P0A in    |
|      | Output Current,   | approximately 1ms register update, 10 bits              |            | VCC regs    |
|      | Imon (H)          | ADC, store MSB & 2 <sup>rd</sup> MSB of the ADC         |            | VDDQ in     |
|      |                   | output onto D[10] on this register.                     |            | VNN regs    |
| 0x1E | V1P0A/VDDQ        | Running 1 ms averaging (analog or digital),             | Read only  | V1P0A in    |
|      | Output Current,   | approximately 1ms register update, 10 bits              |            | VCC regs    |
|      | Imon (L)          | ADC, store the 1 <sup>st</sup> 8 LSB of the ADC output  |            | VDDQ in     |
|      |                   | onto this register.                                     |            | VNN regs    |
| 0x1F | V1P05S Output     | Running 1 ms averaging (analog or digital),             | Read only  | V1P05S in   |
|      | Current, Imon (H) | approximately 1ms register update, 10 bits              |            | VCC regs    |
|      |                   | ADC, store MSB & 2 <sup>rd</sup> MSB of the ADC         |            |             |
|      |                   | output onto D[10] on this register.                     |            |             |
| 0x20 | V1P05S Output     | Running 1 ms averaging (analog or digital),             | Read only  | V1P05S in   |
|      | Current, Imon (L) | approximately 1ms register update, 10 bits              |            | VCC regs    |
|      |                   | ADC, store the 1 <sup>st</sup> 8 LSB of the ADC output  |            |             |
|      |                   | onto this register.                                     |            |             |
| 0x26 | Vboot             | Data register containing Vboot voltage. VR12            | Read only  | 0x97 equals |
|      |                   | VID format, $0x97 = 1.0V$                               |            | to 1.0V     |
| 0x2A | Slew              | Slew rate control register                              | <u> </u>   |             |
| 0x2D | VCC/VNN Imon      | Data register containing the Imon error in              | Read only  |             |
|      | accuracy          | percentage. Binary Coded Decimal format in              |            |             |
|      |                   | %, IE 10% = 0x0A. This data is used with the            |            |             |
| 0.05 |                   | Imon register (0x14 & 0x15).                            | <u> </u>   |             |
| 0x2E | V1P0A/VDDQ Imon   | Data register containing the Imon error in              | Read only  |             |
|      | accuracy          | percentage. Binary Coded Decimal format in              |            |             |
|      |                   | %, IE 10% = 0x0A. This data is used with the            |            |             |
| 0.05 |                   | Imon register (0x1D & 0x1E)                             | Destad     |             |
| UX2F | VTP05S Imon       | Data register containing the Imon error in              | Read only  |             |
|      | accuracy          | percentage. Binary Coded Decimal format in              |            |             |
|      |                   | %, IE 10% = 0x0A. This data is used with the            |            |             |
| 0.00 |                   | Imon register (UX1F & UX20)                             |            |             |
| 0x30 | vout max          | I his register is programmable by the master            | Read/write | UXD3        |
|      |                   | and sets the maximum VID the VR will                    |            |             |
|      |                   | support. If a higher VID code is received, the          |            |             |
| 1    |                   | v k shoula respond with "Reject, not                    | 1          |             |

#### **Data Sheet**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| #    | Register          | Description                                      | Access       | Note |
|------|-------------------|--------------------------------------------------|--------------|------|
|      |                   | supported" acknowledge. VR12 VID data<br>format. |              |      |
|      |                   | Must be programmed by MASTER during              |              |      |
|      |                   | boot up sequence if a value other than default   |              |      |
|      |                   | is desired. Offset (33h) does not effect         |              |      |
| 0.21 | VID cotting       | Vout_max. IE VID+offset can be > Vout_max.       | Deed/write   |      |
| 0X31 | VID setting       | Data register containing currently               | Read/write   |      |
|      |                   | Default is 00h, zero volts out, VR off.          |              |      |
| 0x32 | PWR state         | Register containing the current programmed       | Read/write   |      |
|      |                   | power state. Default is 00h, normal power        |              |      |
| 0.00 | 0//               |                                                  | Dec. 1/ - 21 |      |
| 0x33 | Offset            | Sets offset in VID steps added to the VID        | Read/write   |      |
|      |                   | 0-positive margin $1$ - pegative margin          |              |      |
|      |                   | Remaining 7 BITS are B VID steps for the         |              |      |
|      |                   | margin 2s complement.                            |              |      |
|      |                   | 00h= no margin.                                  |              |      |
|      |                   | 01h=+1 VID step,                                 |              |      |
|      |                   | 02h=+2 VID steps                                 |              |      |
| 0.20 |                   | FFn=-1 VID step                                  | Deed/write   |      |
| 0839 | SUIN_SVID setting | is used to DECAY to when the SLP SOLX B          | reau/write   |      |
|      |                   | is asserted and PLTRST_B de-asserted: The        |              |      |
|      |                   | voltage ramps back to 31h using fast ramp        |              |      |
|      |                   | set in VSLEW(2Ah) at de-assertion of             |              |      |
|      |                   | SLP_S0IX_B                                       |              |      |
|      |                   |                                                  |              |      |

## Table 35: SVID Supported Registers

| Register Name                            |   | VENDOR_ID |   | Address    | 0x00<br>Page 2/3 | Read |     |  |
|------------------------------------------|---|-----------|---|------------|------------------|------|-----|--|
| 0x00                                     |   |           |   |            |                  |      |     |  |
| MSB                                      |   |           |   |            |                  |      | LSB |  |
| R                                        | R | R         | R | R          | R                | R    | R   |  |
| VendorID[7:0]                            |   |           |   |            |                  |      |     |  |
| VendorID[7:0] <b>0x2B</b> identifies Dia |   |           |   | og Semicon | ductor           |      |     |  |

| Register Name  |    | PRODUCT_ID |                | Address | 0x01<br>Page 2/3 | Read |     |  |
|----------------|----|------------|----------------|---------|------------------|------|-----|--|
|                |    |            |                |         | 0x00             |      |     |  |
| MSB            |    |            |                |         |                  |      | LSB |  |
| R              | R  | R          | R              | R       | R                | R    | R   |  |
| ProductID[7:0] |    |            |                |         |                  |      |     |  |
| ProductID[7:0  | )] | 0          | Identifies the | product |                  |      |     |  |



**Company Confidential** 

| Register Name                |   | PRODUCT_REV |   | Address     | 0x02<br>Page 2/3 | Read |     |  |
|------------------------------|---|-------------|---|-------------|------------------|------|-----|--|
| 0x00                         |   |             |   |             |                  |      |     |  |
| MSB                          |   |             |   |             |                  |      | LSB |  |
| R                            | R | R           | R | R           | R                | R    | R   |  |
| ProductRev[7:0]              |   |             |   |             |                  |      |     |  |
| ProductRev[7:0] 0 Identifies |   |             |   | VR stepping |                  |      |     |  |

| Register Name     |   | CAPABILITY |                                  | Address     | 0x06<br>Page 2/3 | Read |     |  |
|-------------------|---|------------|----------------------------------|-------------|------------------|------|-----|--|
|                   |   |            |                                  | Reset Value | 0x01             |      |     |  |
| MSB               |   |            |                                  |             |                  |      | LSB |  |
| R                 | R | R          | R                                | R           | R                | R    | R   |  |
|                   |   |            | Capab                            | ility[7:0]  |                  |      |     |  |
| Capability[7:0] 0 |   |            | Current monitoring not supported |             |                  |      |     |  |
| 1 Current monit   |   |            | toring supporte                  | ed          |                  |      |     |  |

ICCmax alert is issued from DA6021 to the SOC via the ALERT\_B line of the SVID interface if the output current of VCC or VNN is considered to exceed the Imax threshold. When VCC and VNN are active, DA6021 measures and averages the output current and compares it with the alert threshold which is programmed to approximately 10% above Imax. This ensures proper operating and avoids invalid alerts due to process tolerances.

| Register Name STATUS1 |                |          | Address                                                      | 0x10<br>Page 2/3                                 | Read   |         |            |  |
|-----------------------|----------------|----------|--------------------------------------------------------------|--------------------------------------------------|--------|---------|------------|--|
|                       |                |          |                                                              | Reset<br>Value                                   | 0x00   |         |            |  |
| MSB                   |                |          |                                                              |                                                  |        |         | LSB        |  |
| R                     | R              | R        | R                                                            | R                                                | R      | R       | R          |  |
|                       |                | Reserved |                                                              |                                                  | ICCmax | Thermal | VR settled |  |
|                       |                |          |                                                              |                                                  | Alert  | Alert   |            |  |
| VR settled            |                | 0        | VR is ramping                                                | /R is ramping                                    |        |         |            |  |
|                       |                | 1        | VR is at targe                                               | R is at target voltage                           |        |         |            |  |
| Thermal Alert         | t              | 0        | Temperature                                                  | ok                                               |        |         |            |  |
| 1 Ove                 |                |          | Over-temperature detected                                    |                                                  |        |         |            |  |
| ICCmax Alert          | ICCmax Alert 0 |          |                                                              | Normal current range, ICC < Imax (1ms averaging) |        |         |            |  |
|                       |                | 1        | Over-current detected, Imax ≤ ICC ≤ 1.3*Imax (1ms averaging) |                                                  |        |         |            |  |

| Register Name |   | VBOOT |               | Address         | 0x26<br>Page 2/3 | Read   |     |  |  |
|---------------|---|-------|---------------|-----------------|------------------|--------|-----|--|--|
|               |   |       |               | Reset Value     | 0x00             |        |     |  |  |
| MSB           |   |       |               |                 |                  |        | LSB |  |  |
| R             | R | R     | R             | R               | R                | R      | R   |  |  |
| VBOOT[7:0]    |   |       |               |                 |                  |        |     |  |  |
| VBOOT[7:0]    |   | 0255  | Defines the b | oot voltage VII | D, initial 0x97  | = 1.0V |     |  |  |



#### **Company Confidential**

| Register Name              |   | SLEW                        |                                           | Address     | 0x2A<br>Page 2/3 | Read/Write |                 |
|----------------------------|---|-----------------------------|-------------------------------------------|-------------|------------------|------------|-----------------|
|                            |   |                             |                                           | Reset Value | 0x10             |            |                 |
| MSB                        |   |                             |                                           |             | LSB              |            |                 |
| R                          | R | R/W                         | R/W                                       | R           | R                | R          | R/W             |
| Reserved                   |   | SetVI                       | D_Fast                                    |             | Reserved         |            | SetVID_<br>Slow |
| SetVID_Slow                | 1 | <b>0</b><br>1               | 2.5mV/µs<br>5mV/µs                        | μs<br>s     |                  |            |                 |
| SetVID_Fast 00<br>01<br>10 |   | 00<br><b>01</b><br>10<br>11 | 10mV/µs<br>20mV/µs<br>40mV/µs<br>reserved |             |                  |            |                 |

| Register Name |     | Vout_Max     |                                                                                                                                                     | Address     | 0x30<br>Page 2/3 | Read/Write |     |
|---------------|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------|-----|
|               |     |              |                                                                                                                                                     | Reset Value | 0xD3             |            |     |
| MSB           |     |              |                                                                                                                                                     |             |                  |            | LSB |
| R/W           | R/W | R/W          | R/W                                                                                                                                                 | R/W         | R/W              | R/W        | R/W |
|               |     |              | SVID                                                                                                                                                | Max[7:0]    |                  |            |     |
| SVID Max[7:0  | )]  | <b>0</b> 255 | Defines the maximum allowed VID voltage. VID values above this threshold won't be accepted and a message "rejected, not supported" will be sent out |             |                  |            |     |

| Register Nam     | ıe  | VID_Setting  |               | Address         | 0x31<br>Page 2/3 | Read/Write |     |
|------------------|-----|--------------|---------------|-----------------|------------------|------------|-----|
|                  |     |              |               | Reset Value     | 0x00             |            |     |
| MSB              |     |              |               |                 |                  |            | LSB |
| R/W              | R/W | R/W          | R/W           | R/W             | R/W              | R/W        | R/W |
| VID setting[7:0] |     |              |               |                 |                  |            |     |
| VID setting[7:   | :0] | <b>0</b> 255 | Defines the o | utput voltage a | ccording to the  | VID coding |     |

| Register Nam                                                                                                          | e   | PWR_State |        | Address     | 0x32<br>Page 2/3 | Read/Write |     |
|-----------------------------------------------------------------------------------------------------------------------|-----|-----------|--------|-------------|------------------|------------|-----|
|                                                                                                                       |     |           |        | Reset Value | 0x00             |            |     |
| MSB                                                                                                                   |     |           |        |             |                  |            | LSB |
| R/W                                                                                                                   | R/W | R/W       | R/W    | R/W         | R/W              | R/W        | R/W |
|                                                                                                                       |     |           | VID se | tting[7:0]  |                  |            |     |
| PWR state[7:0]     03     0x00 normal mode       0x01 light load     0x02 very light load       0x03 ultra light mode |     |           |        |             |                  |            |     |

#### **Company Confidential**

| Register Nam | ne  | Offset        |                                                                                                          | Address                                                                     | 0x33<br>Page 2/3 | Read/Write       |     |
|--------------|-----|---------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------|------------------|-----|
|              |     |               |                                                                                                          | Reset Value                                                                 | 0x00             |                  |     |
| MSB          |     |               |                                                                                                          |                                                                             |                  |                  | LSB |
| R/W          | R/W | R/W           | R/W                                                                                                      | R/W                                                                         | R/W              | R/W              | R/W |
| Offset[7:0]  |     |               |                                                                                                          |                                                                             |                  |                  |     |
| Offset[7:0]  |     | <b>0</b> 0xFF | 0xFE -2 VI<br>0xFF -1 VI<br>0x00 no m<br>0x01 +1 st<br>0x02 +2 st<br><br>Sets offset in<br>margining. Va | D steps<br>D step<br>argin<br>ep<br>eps<br>VID steps add<br>alues in 2s con | led to the VID s | setting for volt | age |

#### 11.5.6 VID DAC Table

| VID 7 | VID 6 | VID 5 | VID 4 | VID 3 | VID 2 | VID 1 | VID 0 | Voltage | Accuracy     |
|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------------|
| 0     | 0     | 0     | 0     | 0     | 0     | 0     | х     | OFF     |              |
| 0     | 0     | 0     | 0     | 0     | 0     | 1     | х     | 0.26V   | NA           |
| 0     | 0     | 0     | 0     | 0     | 1     | 0     | х     | 0.27V   |              |
|       |       |       |       |       |       |       |       |         |              |
| 0     | 0     | 1     | 0     | 1     | 1     | 1     | х     | 0.48V   | N/A          |
| 0     | 0     | 1     | 1     | 0     | 0     | 0     | Х     | 0.49V   | N/A          |
| 0     | 0     | 1     | 1     | 0     | 0     | 1     | Х     | 0.50V   | +/- 8mV      |
| 0     | 0     | 1     | 1     | 0     | 1     | 0     | Х     | 0.51V   | +/- 8mV      |
|       |       |       |       |       |       |       |       |         |              |
| 0     | 1     | 0     | 0     | 1     | 1     | 0     | х     | 0.63V   | +/- 8mV      |
| 0     | 1     | 0     | 0     | 1     | 1     | 1     | Х     | 0.64V   | +/- 8mV      |
| 0     | 1     | 0     | 1     | 0     | 0     | 0     | Х     | 0.65V   | +/- 5mV      |
| 0     | 1     | 0     | 1     | 0     | 0     | 1     | Х     | 0.66V   | +/- 5mV      |
|       |       |       |       |       |       |       |       |         |              |
| 1     | 0     | 0     | 1     | 0     | 0     | 1     |       | 0.98V   | +/- 5mV      |
| 1     | 0     | 0     | 1     | 0     | 1     | 0     | Х     | 0.99V   | +/- 5mV      |
| 1     | 0     | 0     | 1     | 0     | 1     | 1     | Х     | 1.00V   | +/- 0.5% VID |
| 1     | 0     | 0     | 1     | 1     | 0     | 0     | Х     | 1.01V   | +/- 0.5% VID |
|       |       |       |       |       |       |       |       |         |              |
| 1     | 0     | 1     | 1     | 1     | 1     | 0     | Х     | 1.19V   | +/- 0.5% VID |
| 1     | 0     | 1     | 1     | 1     | 1     | 1     | Х     | 1.20V   | +/- 0.5% VID |
| 1     | 1     | 0     | 0     | 0     | 0     | 0     | Х     | 1.21V   | N/A          |
| 1     | 1     | Х     | Х     | Х     | Х     | Х     | Х     | >1.21V  | N/A          |

Table 36: VID Values

**Data Sheet** 

#### 11.5.7 Low Power State Control Signals

SLP\_S0iX\_B is asserted low when SoC goes into S0iX state. When S0iX\_B signal is held low, VNN, V1P0\_A, V1P8\_A and VDDQ are entering a low power state. V1P0SX,V1P05S, V1P2SX, V1P8SX, VHDMI, VBUS, VDDQ\_VTT and V2P85SX are switched off.

#### **11.6 Power Supplies**

#### 11.6.1 DC/DC Buck Regulator VCC

The BUCK\_CORE converter is a high efficiency synchronous quad phase step down regulator operating at a high frequency (3 MHz) supplying a voltage (VCC) of 0.5 ... 1.2V at maximum 8000mA. This buck regulator has the ability to dynamically change its output voltage setting to per SoCs frequency-power requirements. The output voltage is controlled using the SVID interface.

VCC\_FBN



Figure 27: VCC Block Diagram

#### 11.6.1.1 VCC Current

The SoC has the ability to increase the core frequency during burst mode (achieving exceptional performance) when the system environment is conducive. As long as the thermal and power budget allows, the current of the VCC voltage rail can be more than twice the normal mode value.

Imax = 8000 mA

#### 11.6.1.2 Power States

#### PS0 – active state:

DA6021 VCC voltage rail can handle up to 8A peak current for a duration of several seconds before it reaches the maximum operational temperature of DA6021. The regulator automatically switches between synchronous PWM and asynchronous PFM mode depending on the load.

At usage workloads, VCC current is typically in the range of 200mA to 1500mA

<u>PS1:</u>

N/A

#### PS2 – C6 at S0idle

When the SoC enters the C6 state it sends a SetVID\_decay to C6 VID voltage command. DA6021 sets the output voltage to the C6 level, without discharging the output capacitors. In PS2 mode VCC regulator turns off all unnecessary functional blocks for minimal power dissipation. Exiting PS2 mode can either be achieved after receiving a SetPS to PS0 or SetVID\_slow/fast to a value equal or higher VID voltage rail. The power state transition delay time is  $\leq 5\mu$ s

In this power saving mode the VCC buck supports up to 200mA without catastrophic failure.





**Company Confidential** 

#### PS3 - C6 at S0ix

The SoC sends a SVID command SetVID\_decay with 0V to enter the PS3 mode. DA6021 switches off all unnecessary functional blocks minimizing the quiescent current. When detecting an exit from S0ix state, the SoC sends SetVID\_fast/slow and DA6021 recovers VCC to the operating voltage level.



Figure 28: VCC Timings

#### 11.6.1.3 Electrical Characteristics VCC

| PARAMETER                    |                                               | TEST<br>CONDITIONS | MIN           | ΤΥΡ      | MAX  | UNIT | Val             |
|------------------------------|-----------------------------------------------|--------------------|---------------|----------|------|------|-----------------|
| VCC_IN                       | Input Voltage                                 |                    | 2.7           |          | 4.5  | V    | -               |
| Cin                          | at VCC_IN                                     |                    |               | 4 x 4.7  |      | μF   | -               |
| Cout                         |                                               |                    |               | 6 x 47   |      | μF   | -               |
| ESR of output cap            | pacitor                                       |                    | 6 @ 47μF mΩ   |          | mΩ   | -    |                 |
| ESL of output cap            | acitor                                        |                    | 1.            | 6 @ 3M⊦  | lz   | nH   | -               |
| L_BUCK                       | inductor value                                |                    | -20%          | 4x0.47   | +20% | μH   | -               |
| L_R                          | inductor DC resistance                        |                    |               |          | 48   | mΩ   | -               |
| VCC                          | Output Voltage                                | IOUT= Imax         | 0.50          |          | 1.2  | V    | Α               |
| VCC                          | Output Accuracy                               |                    | See chapter 0 |          |      |      | Α               |
| F_BUCK                       | Frequency of operation                        | Tablet             |               | 3        |      | MHz  | Α               |
| Transient load cur           | ransient load current profile 1000-8000mA 200 |                    |               |          | ns   | -    |                 |
|                              |                                               | 25-7000mA          |               | 200      |      | ns   |                 |
| Transient droop <sup>1</sup> |                                               | 1000-8000mA        |               |          | 40   | mV   | Е               |
|                              |                                               | 25-7000mA          |               |          |      |      |                 |
| Transient oversho            | ot <sup>2</sup>                               | 8000-1000mA        |               |          | 40   | mV   | Е               |
|                              |                                               | 7000-25mA          |               |          |      |      |                 |
| Ton                          | Turn on time                                  |                    |               |          | 2    | ms   | E               |
| Toff                         | Turn off time                                 | Vout down to 0.5V  |               |          | 20   | μs   | D               |
| Rpd                          | Discharge impedance                           | 0.5V down to 0V    |               |          | 20   | Ω    | Α               |
| IQ_ON                        | Quiescent Current in                          | No load            |               |          | 200  | μA   | Е               |
|                              | On Mode                                       |                    |               |          |      |      |                 |
| Normal Mode – S              | Synchronous rectification                     | n (PWM)            |               |          |      |      |                 |
| Maximum Output               | Current (Imax)                                |                    | 8000          |          |      | mA   | D               |
| ILIMIT                       | Current limitation                            | Cycle by cycle     | 1.3*lma       | х        |      | mA   | A*              |
| Boot up voltage fo           | or V <sub>CC</sub> V <sub>BOOT</sub>          |                    | 1.1 V         |          | D,E  |      |                 |
| Efficiency at VSYS           | S = 3.7V & Tamb=60°C                          | Typical BOM        |               |          |      |      | D,E,            |
| with proposed ext            | ernal components and                          | environment        | Se            | e Figure | 29   |      | A* <sup>3</sup> |
| PCB layout                   |                                               |                    |               |          |      |      |                 |

<sup>1</sup> Including DC accuracy, ripple and load regulation

<sup>2</sup> Including DC accuracy, ripple and load regulation

<sup>3</sup> RDSON measurement on ATE

Data Sheet

| Compa | nv C | onfid | ential |
|-------|------|-------|--------|
|       | , •  | ••••• | •••••• |

| PARAMETER                             | TEST<br>CONDITIONS | MIN | ΤΥΡ      | MAX | UNIT | Val  |
|---------------------------------------|--------------------|-----|----------|-----|------|------|
| Sleep Mode – Pulse skipping (PSK)     |                    |     |          |     |      |      |
| Efficiency at VSYS = 3.7V & Tamb=60°C |                    | Se  | e Figure | 29  |      | D,E, |
| with proposed external components and |                    |     |          |     |      | A*   |
| PCB lavout                            |                    |     |          |     |      |      |



Table 37: Electrical Parameters for BUCK\_VCC

Figure 29: VCC Efficiency



#### 11.6.2 DC/DC Buck Regulator VNN

The BUCK\_VNN converter is a high efficiency synchronous step down regulator operating at a high frequency (3 MHz) supplying a voltage (VNN) of 0.5 ... 1.2V at maximum 8000mA. This buck regulator has the ability to dynamically change its output voltage setting to per SoC's frequency-power requirements. The output voltage is controlled using the SVID interface.



Figure 30: Buck VNN Block Diagram

#### 11.6.2.1 VNN Current

The SoC has the ability to increase the core frequency during burst mode (achieving exceptional performance) when the system environment is conducive. As long as the thermal and power budget allows, the current of the VCC voltage rail can be more than twice the normal mode value.

IMAX = 8000mA

#### 11.6.2.2 Power States

#### Active state:

DA6021 VNN voltage rail can handle up to 8A peak current for duration of several seconds until it would reach the maximum operational temperature of DA6021. The regulator automatically switches between synchronous PWM and asynchronous PFM mode depending on the load.

At usage workloads, VNN current is typically in the range of 50mA to 500mA

#### <u>S0ix:</u>

When The SoC enters the S0ix state, SLP\_S0ix is held low. DA6021 turns the VNN buck regulator into low power mode and disables all un-necessary blocks, reducing the power requirements. PMIC exits this power saving mode within 5µs after SoC asserts the SLP\_S0ix signal to high.

Typical current requirements for S0ix mode are 7mA .. 20mA. However this power saving mode supports up to 200mA maximum current without catastrophic failures.

#### 11.6.2.3 Electrical Characteristics VNN

| PARAMETER               |                        | TEST<br>CONDITIONS | MIN    | ТҮР         | MAX  | UNIT | Val |
|-------------------------|------------------------|--------------------|--------|-------------|------|------|-----|
| VNN_IN                  | Input Voltage          |                    | 2.7    |             | 4.5  | V    | -   |
| Cin                     | at VNN_IN              |                    |        | 4 x 4.7     |      | μF   | -   |
| Cout                    |                        |                    | 6 x 22 |             |      | μF   | -   |
| ESR of output capacitor |                        |                    |        | 6 @ 22µF    |      | mΩ   | -   |
| ESL of output capacitor |                        |                    | 1      | I.6 @ 3MH:  | Z    | nH   | -   |
| L_BUCK                  | inductor value         |                    | -20%   | 4x0.47µ     | +20% | μH   | -   |
| L_DCR                   | inductor DC resistance |                    |        |             | 48   | mΩ   | -   |
| VNN                     | Output Voltage         | IOUT= Imax         | 0.50   |             | 1.2  | V    | А   |
| VNN                     | Output Accuracy        |                    | S      | See chapter | 0    |      | А   |
| F_BUCK                  | Frequency of operation |                    |        | 3           |      | MHz  | A   |
| Transient load cur      | rent profile           | 2900-5600mA        |        | 200         |      | ns   | -   |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| PARAMETER                    |                                      | TEST<br>CONDITIONS | MIN TY   | P MAX  | UNIT | Val             |
|------------------------------|--------------------------------------|--------------------|----------|--------|------|-----------------|
|                              |                                      | 50-2750mA          | 20       | 00     | ns   |                 |
| Transient droop <sup>4</sup> |                                      | 2900-5600mA        |          | 40     | mV   | Е               |
|                              |                                      | 50-2750mA          |          |        |      |                 |
| Transient oversho            | oot <sup>5</sup>                     | 5600-2900mA        |          | 40     | mV   | Е               |
|                              |                                      | 2750-50mA          |          |        |      |                 |
| Ton                          | Turn on time                         |                    |          | 2      | ms   | Е               |
| Toff                         | Turn off time                        | Vout 0.5V          |          | 20     | μs   | D               |
| Rpd                          | Discharge impedance                  | 0.5V0V             |          | 20     | Ω    | А               |
| IQ_ON                        | Quiescent Current in ON              |                    |          | 200    | μA   | А               |
|                              | Mode                                 |                    |          |        |      |                 |
| Normal Mode – S              | Synchronous rectification (P         | WM)                |          |        |      |                 |
| Maximum Output               | Current (Imax)                       |                    | 8000     |        | mA   | D               |
| ILIMIT                       | Current limitation                   | Cycle by cycle     | 1.3*lmax |        | mA   | A*              |
| Boot up voltage fo           | or V <sub>NN</sub> V <sub>BOOT</sub> |                    | 1.       | 1      | V    | D,E             |
| Efficiency at VSYS           | S = 3.7V & Tamb=60°C with            |                    |          |        |      | D,E,            |
| proposed external            | components and PCB                   |                    | See Fig  | ure 31 |      | A* <sup>6</sup> |
| layout                       |                                      |                    |          |        |      |                 |
| Sleep Mode – Pu              | lse skipping (PSK)                   |                    |          |        |      |                 |
| Efficiency at VSYS           | S = 3.7V & Tamb=60°C with            |                    |          |        |      | D,E,            |
| proposed external            | components and PCB                   |                    | See Fig  | ure 31 |      | A*              |
| layout                       |                                      |                    |          |        |      |                 |

Table 38: Electrical Parameters for BUCK\_VNN



Figure 31: VNN Efficiency

<sup>&</sup>lt;sup>4</sup> Including DC accuracy, ripple and load regulation <sup>5</sup> Including DC accuracy, ripple and load regulation <sup>6</sup> RDSON measurement on ATE

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 11.6.3 DC/DC Buck Regulator V1P0A

The high efficiency buck regulator supplies the USB sus, clock, CFIO and the V1P0S power rails of the SoC. This power rail is also capable of supplying the pass device of the push pull source for the DDR3 address line termination.



Figure 32: V1P0A Power Rail Block Diagram

To allow for voltage drops on the PCB it is possible to program the output voltage to either 1.01V or 1.05V, see register below.

The maximum output current of the 1P0A buck regulator is 1900mA

#### 11.6.3.1 Power States

#### Active State:

DA6021 V1P0A voltage rail can handle up to 1.9A. Even though the average current is in the range of 50mA to 350mA. Optimized efficiency is achieved from 50mA to 500mA. Automatically switching from PWM to PFM mode achieves the best power efficiency.

## S0ix State:

When the SoC enters the S0ix state, SLP\_S0ix is held low. DA6021 turns the V1P0A buck regulator into low power mode and disables all un-necessary blocks, reducing the power requirements. DA6021 exits this power saving mode within 5µs after SoC asserts the SLP\_S0ix signal to high.

Typical current requirements for S0ix mode are 5mA .. 30mA, this power saving mode supports up to 200mA maximum current without catastrophic failures.

#### S3 & S4 State:

In S3 or S4 state the average current of V1P0A is expected to be ~2.6mA and the buck converter is in low power mode.

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 11.6.3.2 Electrical Characteristics V1P0A

| PARAMETER                             |                           | TEST       | MIN      | ΤΥΡ        | MAX  | UNIT | Val             |
|---------------------------------------|---------------------------|------------|----------|------------|------|------|-----------------|
|                                       |                           | CONDITIONS |          |            |      |      |                 |
| V1P0A_VIN                             | Input Voltage             |            | 2.7      |            | 4.5  | V    | -               |
| Cin                                   | at V1P0A_IN               |            |          | 2 x 4.7    |      | μF   | -               |
| Cout                                  | ≥ 80µF                    |            | 4 x 2    | 2 or 2 x 4 | 17   | μF   | -               |
| ESR of output ca                      | pacitor                   |            | 6 @      | ) 22/47µF  | -    | mΩ   | -               |
| ESL of output cap                     | pacitor                   |            | 1.6      | @ 3MHz     | 2    | nH   | -               |
| L_BUCK                                | inductor value            |            | -20%     | 0.47       | +20% | μH   | -               |
| L_DCR                                 | inductor resistance       |            |          |            | 48   | mΩ   | -               |
| V1P0A                                 | Output Voltage            | IOUT= Imax | 1.01±2%  |            |      | V    | А               |
| F_BUCK                                | Frequency of operation    |            | 3        |            |      | MHz  | Α               |
| Transient load cu                     | rrent profile             | 5-250mA    | 200      |            |      | ns   | -               |
| Transient droop <sup>7</sup>          |                           | 75-1820mA  |          |            | 40   | mV   | Е               |
| 5-250mA                               |                           |            |          |            |      |      |                 |
| Transient overshoot <sup>8</sup>      |                           | 1820-75mA  |          |            | 40   | mV   | Е               |
|                                       |                           | 250-5mA    |          |            |      |      |                 |
| Ton                                   | Turn on time              |            |          |            | 2    | ms   | Е               |
| Rpd                                   | Discharge impedance       | Vout0V     |          |            | 20   | Ω    | А               |
| IQ_ON                                 | Quiescent Current in      |            |          |            | 50   | μA   | Е               |
|                                       | On Mode                   |            |          |            |      |      |                 |
| Normal Mode –                         | Synchronous rectification | n (PWM)    |          |            |      |      |                 |
| Maximum Output                        | Current (Imax)            |            | 1900     |            |      | mA   | D               |
| ILIMIT                                | Current limitation        |            | 1.3*lmax |            |      | mA   | A*              |
| Efficiency at VSY                     | S = 3.7V & Tamb=60°C      |            |          |            |      |      | D,E,            |
| with proposed external components and |                           |            | See      | Figure 3   | 3    |      | A* <sup>9</sup> |
| PCB layout                            |                           |            |          |            |      |      |                 |
| Sleep Mode – Pu                       | ulse skipping (PSK)       |            |          |            |      |      |                 |
| Efficiency at VSY                     | S = 3.7V & Tamb=60°C      |            |          |            |      |      | D,E,            |
| with proposed ex                      | ternal components and     |            | See      | Figure 3   | 3    |      | A*              |
| PCB layout                            |                           |            |          |            |      |      |                 |

Table 39: Electrical Parameter for BUCK\_V1P0A

 <sup>&</sup>lt;sup>7</sup> Including DC accuracy, ripple and load regulation
 <sup>8</sup> Including DC accuracy, ripple and load regulation
 <sup>9</sup> RDSON measurement on ATE



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



Figure 33: V1P0A Efficiency

#### 11.6.3.3 V1P0A Registers

| Register Nam | ne         | V1P0A_CTR | L                                                            | Address       | 0x55<br>Page 1 | Read/Write      |          |  |
|--------------|------------|-----------|--------------------------------------------------------------|---------------|----------------|-----------------|----------|--|
|              |            |           |                                                              | Reset Value   | 0x60           |                 |          |  |
| MSB          |            |           |                                                              |               | -              | -               | LSB      |  |
| R/W          | R/W        | R/W       | R                                                            | R             | R/W            | R/W             | R/W      |  |
|              | V1P0A_VSEL |           | rese                                                         | erved         | NoS0iX         | V1P0A_<br>SEL   | V1P0A_EN |  |
| V1P0A_EN     |            | 0         | V1P0A off                                                    |               |                |                 |          |  |
|              |            | 1         | V1P0A on                                                     |               |                |                 |          |  |
| V1P0A_SEL    |            | 0         | V1P0A contro                                                 | olled by SUSP | WRDNACK ad     | ccording to sec | quencing |  |
| 1            |            |           | V1P0A controlled by V1P0A_CTRL.V1P0A_EN                      |               |                |                 |          |  |
|              |            |           | Regardless o                                                 | of V1P0A_EN a | and V1P0A_SI   | EL, V1P0A is c  | lisabled |  |
|              |            |           | when SUSPV                                                   | VRDNNACK is   | de-asserted    | means high      |          |  |
| NoS0iX       |            | 0         | V1P0A active state or S0iX state is determined by SLP_S0iX_B |               |                |                 |          |  |
|              |            | 1         | V1P0A only operate at active state, no S0iX, regardless of   |               |                |                 |          |  |
|              |            |           | SLP_S0iX_B                                                   |               |                |                 |          |  |
| V1P0A_VSEL   | -          | 000       | 0.900V                                                       |               |                |                 |          |  |
|              |            | 001       | 0.950V                                                       |               |                |                 |          |  |
|              |            | 010       | 1.000V                                                       |               |                |                 |          |  |
|              |            | 011       | 1.010V                                                       |               |                |                 |          |  |
|              |            | 100       | 1.020V                                                       |               |                |                 |          |  |
|              |            | 101       | 1.030V                                                       |               |                |                 |          |  |
|              |            | 110       | 1.050V                                                       |               |                |                 |          |  |
|              |            | 111       | 1.100V                                                       |               |                |                 |          |  |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| V1P0A_    | CTRL.    |              |       |
|-----------|----------|--------------|-------|
| V1P0A_SEL | V1P0A_EN | SUSPWRDINACK | VIPUA |
| 1         | 0        | 0            | Off   |
| 1         | 1        | 0            | On    |
| х         | х        | 1            | Off   |

Table 40: V1P0A Truth Table

#### 11.6.3.4 V1P0A Subsystem

#### V1P0S:

This voltage rail powers the SoC graphic, display & DDR3 I/O, MIPI, clock and further functions. The current requirement of this voltage rail is 410mA and requests an external switch providing this power rail to the SoC. DA6021 provides a control signal named V1P0S\_EN supplied by V5P0S.When this signal is asserted (high), the slew rate is controlled in order to limit the inrush current drawn via the external N-channel FET. The V1P0S\_EN signal is derived from SLP\_S3\_B signal sent out by the SoC.

| Register Name V1P0S_CTRL |   | L                                                                                                                                                                                                                                        | Address               | 0x56<br>Page 1 | Read/Write |               |                     |
|--------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|------------|---------------|---------------------|
|                          |   |                                                                                                                                                                                                                                          |                       | Reset Value    | 0x00       |               |                     |
| MSB                      |   |                                                                                                                                                                                                                                          |                       |                |            |               | LSB                 |
| R                        | R | R                                                                                                                                                                                                                                        | R                     | R              | R          | R/W           | R/W                 |
| reserved                 |   |                                                                                                                                                                                                                                          |                       |                |            | V1P0S_<br>SEL | V1P0S_EN            |
| V1P0S_EN                 |   | <b>0</b><br>1                                                                                                                                                                                                                            | V1P0S off<br>V1P0S on |                |            |               |                     |
| V1P0S_SEL                |   | 0         V1P0S controlled by SLP_S3_B according to sequencing           1         V1P0S controlled by V1P0S_CTRL.V1P0S_EN bit           Regardless of V1P0S_EN and V1P0S_SEL, V1P0S_EN is low           SLP_S3_B is asserted, means low |                       |                |            |               | ng<br>N is low when |

| V1P0S_    | CTRL.    |          | V1P0S_EN |  |
|-----------|----------|----------|----------|--|
| V1P0S_SEL | V1P0S_EN | SLP_33_D |          |  |
| 1         | 0        | 1        | Low      |  |
| 1         | 1        | 1        | High     |  |
| х         | х        | 0        | Low      |  |

Table 41: V1P0S\_EN Truth Table

V1P0S external N-channel power switch parameters:

| Rdson (Vgs=4V)                     | 10-49mohm  |
|------------------------------------|------------|
| Input capacitance, Ciss            | 700-2640pF |
| Output capacitance, Coss           | 150-530pF  |
| Reverse transfer capacitance, Crss | 85-465pF   |

#### V1P0SX:

This voltage rail powers the SoC display & DDR3 I/O, PCIe and further functions. The current requirement of this voltage rail is 916mA and requests an external switch providing this power rail to the SoC. DA6021 provides a control signal named V1P0SX\_EN supplied by V5P0S.When this signal is asserted (high), the slew rate is controlled in order to limit the inrush current drawn via the external N-channel FET. This signal is derived from SLP\_S0iX\_B signal sent out by the SoC.

#### **Data Sheet**

**Company Confidential** 

| Register Name V1P0SX_CTF                                                                                                                                                                                                                                  |   | RL | Address                 | 0x57<br>Page 1        | Read/Write |                |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|-------------------------|-----------------------|------------|----------------|---------------|
|                                                                                                                                                                                                                                                           |   |    |                         | Reset Value           | 0x00       |                |               |
| MSB                                                                                                                                                                                                                                                       |   |    |                         |                       |            |                | LSB           |
| R                                                                                                                                                                                                                                                         | R | R  | R                       | R                     | R          | R/W            | R/W           |
| Reserved                                                                                                                                                                                                                                                  |   |    |                         |                       |            | V1P0SX<br>_SEL | V1P0SX<br>_EN |
| V1P0SX_EN 0 V1P0SX off<br>1 V1P0SX on                                                                                                                                                                                                                     |   |    | V1P0SX off<br>V1P0SX on |                       |            |                |               |
| V1P0SX_SEL       0       V1P0SX controlled by SLP_S0iX_B according to sequencing         1       V1P0SX controlled by V1P0SX_CTRL.V1P0SX_EN bit         Regardless of V1P0SX_EN and V1P0SX_SEL, V1P0SX_EN is         when SLP_S3_B is asserted, means low |   |    |                         | ncing<br>(_EN is high |            |                |               |

| V1P0SX     | _CTRL.                          |          | V1P0SX_EN |  |  |  |  |  |
|------------|---------------------------------|----------|-----------|--|--|--|--|--|
| V1P0SX_SEL | V1P0SX_EN                       | 3LF_33_D |           |  |  |  |  |  |
| 1          | 0                               | 1        | High      |  |  |  |  |  |
| 1          | 1                               | 1        | Low       |  |  |  |  |  |
| Х          | х                               | 0        | High      |  |  |  |  |  |
| Tob        | Table 42: VIDOSX EN Truth Table |          |           |  |  |  |  |  |

Table 42: V1P0SX\_EN Truth Table

V1P0SX external N-channel power switch parameters:

| Rdson (Vgs=4V)                     | 10-22mohm  |
|------------------------------------|------------|
| Input capacitance, Ciss            | 750-2640pF |
| Output capacitance, Coss           | 150-530pF  |
| Reverse transfer capacitance, Crss | 85-465pF   |

#### VDDQ\_VTT:

The VDDQ\_VTT power rail is a push-pull LDO capable to source and sink maximum 325mA. VDDQ\_VTT is ½ of VDDQ and its pass device is sourced by V1P0\_A in order to reduce the overall power dissipation in the system.

| Register Name VDDQ_VTT_CTRL                                                                                                                                                                                                                                   |   | CTRL | Address | 0x58<br>Page 1 | Read/Write                       |                  |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|---------|----------------|----------------------------------|------------------|-----------------|
|                                                                                                                                                                                                                                                               |   |      |         | Reset Value    | 0x00                             |                  |                 |
| MSB                                                                                                                                                                                                                                                           |   |      |         |                |                                  |                  | LSB             |
| R                                                                                                                                                                                                                                                             | R | R    | R       | R              | R                                | R/W              | R/W             |
|                                                                                                                                                                                                                                                               |   | Rese | erved   |                |                                  | VDDQ_<br>VTT_SEL | VDDQ_<br>VTT_EN |
| VDDQ_VTT_EN 0 VDDQ_VTT off 1 VDDQ_VTT on                                                                                                                                                                                                                      |   |      |         |                |                                  |                  |                 |
| VDDQ_VTT_SEL       0       VDDQ_VTT controlled by SLP_S0iX_B according to sequenci         1       VDDQ_VTT controlled by VDDQ_VTT_CTRL.VDDQ_VTT_EN         Regardless of VDDQ_VTT_EN and VDDQ_VTT_SEL, VDDQ_is disabled when SLP_S3_B is asserted, means low |   |      |         |                | uencing<br>IT_EN bit<br>/DDQ_VTT |                  |                 |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| VDDQ_VT<br>VDDQ_VTT_SEL | T_CTRL.<br>VDDQ_VTT_EN | SLP_S3_B | VDDQ_VTT |
|-------------------------|------------------------|----------|----------|
| 1                       | 0                      | 1        | Off      |
| 1                       | 1                      | 1        | On       |
| Х                       | х                      | 0        | Off      |

Table 43: VDDQ\_VTT Truth Table

## VDDQ\_VTT electrical specification:

| Symbol                    | Parameter                          | Min  | Тур         | Max  | Unit  | Notes/Condition                        | Val |
|---------------------------|------------------------------------|------|-------------|------|-------|----------------------------------------|-----|
|                           |                                    | Inp  | ut requiren | nent |       |                                        |     |
| Vin<br>(DDR3 LP)          | Main input voltage<br>VDDQ_VTT_VIN |      | 1.01        |      | V     | Supplied by V1P0A                      | -   |
| Vin<br>(DDR3 L)           | Main input voltage<br>VDDQ_VTT_VIN |      | 1.35        |      | V     | Supplied by VDDQ                       | -   |
| Cin                       | VDDQ_VTT_IN                        |      | 100         |      | nF    |                                        | -   |
|                           |                                    | Out  | out require | ment |       |                                        |     |
| Vnom                      | Nominal output voltage             |      | VDDQ/2      |      | V     | VDDQ used to generate<br>VDDQ_VTT_VREF | -   |
| Vtol                      | Output voltage tolerance           | -2   |             | +2   | %     | Of input supply voltage                | А   |
| Cout                      | Output capacity                    |      | 10          |      | μF    |                                        | -   |
| lout-DC                   | Output load<br>current             | ±325 |             |      | mA    |                                        | D,E |
| Transient<br>load current | 0-240mA                            | 200  | 200         |      | ns    |                                        | E   |
| IQSC                      | Quiescent current<br>VDDQ_VTT_VIN  |      |             | 200  | μA    | lout-DC = 0mA                          | А   |
| PSRR                      | Power supply rejection ratio       | 40   | 60          |      | dB    | Noise = 1 Vpp, 1-10kHz,<br>½ lout-DC   | D,E |
| Vnoise                    | Output Noise                       |      | 60          | 100  | μVRMS | BW = 10-100kHz, ½<br>lout              | D,E |

Table 44: Electrical Parameter for VDDQ\_VTT

## 11.6.4 DC/DC Buck Regulator V1P05S

The high efficiency buck regulator supplies the L2 SRAM of the SoC.

The maximum output current of the 1P05S buck regulator is 474mA



Figure 34: Buck V1P05S Block Diagram

**Data Sheet** 

## **C** SEMICONDUCTOR

#### **Company Confidential**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 11.6.4.1 Power States

#### Active state:

DA6021 V1P05S voltage rail can handle up to 474mA max current. Its usual average current workload is at 1mA to 50mA, but thermally able to handle 474mA in peaks. Optimized efficiency is achieved from 1mA to 50mA. Automatically switching from PWM to PFM mode achieves the best power efficiency.

#### S0ix State:

When the SoC enters the S0ix state, SLP\_S0ix is held low. DA6021 turns the V1P0S buck regulator off except V1P05S.V1P05S\_EN bit is set. DA6021 exits S0iX state while asserting SLP\_S0iX\_B to high and enabling V1P05S buck regulator and ramps the voltage to 1.05V±5% within 60µs.

#### 11.6.4.2 Electrical Characteristics

| PARAMETER                             | TEST MIN TYP MAX            |                |      | UNIT     | Val  |     |                  |
|---------------------------------------|-----------------------------|----------------|------|----------|------|-----|------------------|
|                                       |                             | CONDITIONS     |      |          |      |     |                  |
| V1P05S_VIN                            | Input Voltage               |                | 2.7  |          | 4.5  | V   | -                |
| Cin                                   | at V1P05S_IN                |                |      | 4.7      |      | μF  | -                |
| Cout                                  |                             |                |      | 2 x 22   |      | μF  | -                |
| ESR of output cap                     | pacitor                     |                | 6    | @ 22µF   |      | mΩ  | -                |
| ESL of output cap                     | acitor                      |                | 1.6  | @ 3MHz   | Z    | nH  | -                |
| L_BUCK                                | inductor value              |                | -20% | 0.47     | +20% | μH  | -                |
| L_DCR                                 | inductor resistance         |                |      |          | 48   | mΩ  | -                |
| V1P05S                                | Output Voltage              | IOUT= Imax     |      | 1.05±2%  | )    | V   | А                |
| F_BUCK                                | Frequency of operation      |                |      | 3        |      | MHz | А                |
| Transient load cui                    | rrent profile               | 0-740mA        |      | 200      |      | ns  | -                |
| Transient droop <sup>10</sup>         | op <sup>10</sup> 0-740mA 53 |                | mV   | Е        |      |     |                  |
| Transient oversho                     | pot <sup>11</sup>           | 740-0mA        |      |          | 53   | mV  | E                |
| Ton                                   | Turn on time                |                |      |          | 2    | ms  | Е                |
| Rpd                                   | Discharge impedance         | Vout 0V        |      |          | 20   | Ω   | А                |
| IQ_ON                                 | Quiescent Current in        |                |      |          | 50   | μA  | Ш                |
|                                       | On Mode                     |                |      |          |      |     |                  |
| Normal Mode – S                       | Synchronous rectification   | ו (PWM)        |      |          |      |     |                  |
| Maximum Output                        | Current (Imax)              | Cycle by cycle | 475  |          |      | mA  | D                |
| ILIMIT                                | Current limitation          |                | 900  |          |      | mA  | A*               |
| Efficiency at VSY                     | S = 3.7V & Tamb=60°C        |                |      |          |      |     | D,E,             |
| with proposed external components and |                             |                | Se   | e Figure | 35   |     | A* <sup>12</sup> |
| PCB layout                            |                             |                |      |          |      |     |                  |
| Sleep Mode – Pu                       | llse skipping (PSK)         |                |      |          |      |     |                  |
| Efficiency at VSY                     | S = 3.7V & Tamb=60°C        |                |      |          |      |     | D,E,             |
| with proposed ext                     | ernal components and        |                | See  | Figure 3 | 5    |     | A*               |
| PCB layout                            |                             |                |      |          |      |     |                  |

Table 45: Electrical Parameter for BUCK\_V1P05S

<sup>&</sup>lt;sup>10</sup> Including DC accuracy, ripple and load regulation

<sup>&</sup>lt;sup>11</sup> Including DC accuracy, ripple and load regulation

<sup>&</sup>lt;sup>12</sup> RDSON measurement on ATE

# **dialog**

## **Company Confidential**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



Figure 35: V1P05S Efficiency

#### 11.6.4.3 V1P05S registers

| Register Name                                                                                                                                                                     |            | V1P05S_CT                                                   | RL                                                                                                                                                                                                         | Address     | 0x59<br>Page 1 | Read/Write     |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------|---------------|--|
|                                                                                                                                                                                   |            |                                                             |                                                                                                                                                                                                            | Reset Value | 0xA8           |                |               |  |
| MSB                                                                                                                                                                               |            |                                                             |                                                                                                                                                                                                            |             |                | -              | LSB           |  |
| R/W                                                                                                                                                                               | R/W        | R/W                                                         | R                                                                                                                                                                                                          | R           | R              | R/W            | R/W           |  |
|                                                                                                                                                                                   | V1P05S_VSE | L                                                           | V1P05SV                                                                                                                                                                                                    | SEL_S0iX    | NoS0iX         | V1P05S<br>_SEL | V1P05S<br>_EN |  |
| V1P05S_EN                                                                                                                                                                         |            | <b>0</b><br>1                                               | V1P05S off<br>V1P05S on                                                                                                                                                                                    |             |                |                |               |  |
| V1P05S_SEL 0<br>1                                                                                                                                                                 |            |                                                             | V1P05S controlled by SLP_S0iX_B according to sequencing<br>V1P05S controlled by V1P05S_CTRL.V1P05S_EN<br>Regardless of V1P05S_EN and V1P05S_SEL, V1P05S is disabled<br>when SLP_S3_B is asserted_means low |             |                |                |               |  |
| NoS0iX                                                                                                                                                                            |            | <b>0</b><br>1                                               | V1P05S active determined by SLP_S0iX_B<br>V1P05S active, regardless of SLP_S0iX_B                                                                                                                          |             |                |                |               |  |
| V1P05SVSEL_S0iX         Output voltage in S0iX mode           00         0.60V           01         0.65V           10         0.70V           11         Nominal voltage (1.05V) |            |                                                             |                                                                                                                                                                                                            | e           |                |                |               |  |
| V1P05S_VS                                                                                                                                                                         | EL         | 000<br>001<br>010<br>011<br>100<br><b>101</b><br>110<br>111 | 0.945V<br>0.998V<br>1.020V<br>1.030V<br>1.040V<br>1.050V<br>1.103V<br>1.115V                                                                                                                               |             |                |                |               |  |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| V1P05S     | _CTRL.    |          | V1P05S |  |
|------------|-----------|----------|--------|--|
| V1P05S_SEL | V1P05S_EN | 3LF_33_B |        |  |
| 1          | 0         | 1        | Off    |  |
| 1          | 1         | 1        | On     |  |
| Х          | Х         | 0        | Off    |  |

Table 46: V1P05S Truth Table

#### 11.6.5 DC/DC Buck Regulator V1P8\_A

The high efficiency buck regulator supplies 1.8V I/Os, USB, V1P8U, V1P8S and V1P8SX.The maximum output current of the 1P8A buck regulator is 1627mA

#### 11.6.5.1 Power States

#### Active State:

DA6021 V1P8A voltage rail can handle up to 1627mA max current. The usual average current workload is at 8mA to 260mA, but thermally able to handle 1627mA in peaks. Optimized efficiency is achieved from 8mA to 260mA. Automatically switching from PWM to PFM mode achieves the best power efficiency.



Figure 36: Buck V1P8A Power Rail Block Diagram

#### S0ix State:

When the SoC enters the S0ix state, SLP\_S0ix is held low. DA6021 turns the V1P8A buck regulator into low power mode and disables all un-necessary blocks, reducing the power requirements. DA6021 exits this power saving mode within 5µs after SoC asserts the SLP\_S0ix signal to high.

#### S3 & S4 States:

In S3 & S4 mode the average current of V1P8A is expected to be 4mA & 25µA.

#### **Data Sheet**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 11.6.5.2 Electrical Characteristics V1P8A

| PARAMETER                             |                           | TEST<br>CONDITIONS | MIN     | ΤΥΡ        | MAX  | UNIT | ATE<br>test |
|---------------------------------------|---------------------------|--------------------|---------|------------|------|------|-------------|
| V1P8A_VIN                             | Input Voltage             |                    | 2.7     |            | 4.5  | V    | -           |
| Cin                                   | at V1P8A_IN               |                    |         | 4.7        |      | μF   | -           |
| Cout                                  |                           |                    |         | 2 x 22     |      | μF   | -           |
| ESR of output cap                     | pacitor                   |                    |         | 6 @ 22µF   |      | mΩ   | -           |
| ESL of output cap                     | acitor                    |                    | 1       | .6 @ 3MH:  | Z    | nH   | -           |
| L_BUCK                                | inductor value            |                    | -20%    | 0.47       | +20% | μH   | -           |
| L_DCR                                 | inductor resistance       |                    |         |            | 48   | mΩ   | -           |
| V1P0A                                 | Output Voltage            | IOUT= Imax         | 1       | .817±2%    |      | V    | Α           |
| F_BUCK                                | Frequency of operation    |                    |         | 3          |      | MHz  | А           |
| Transient load profile                |                           | 0-861mA            |         |            | 250  | ns   | -           |
| Transient droop <sup>13</sup>         |                           | 0-861mA            |         |            | 73   | mV   | Е           |
| Transient overshoot <sup>14</sup>     |                           | 861-0mA            |         |            | 73   | mV   | Е           |
| Ton                                   | Turn on time              |                    |         |            | 2    | ms   | Е           |
| Rpd                                   | Discharge impedance       | Vout 0V            |         |            | 20   | Ω    | Α           |
| IQ_ON                                 | Quiescent Current in      |                    |         |            | 50   | μA   | Е           |
|                                       | On Mode                   |                    |         |            |      |      |             |
| Normal Mode – S                       | synchronous rectification | n (PWM)            |         |            |      |      |             |
| Maximum Output                        | Current (Imax)            |                    | 1627    |            |      | mA   | D           |
| ILIMIT                                | Current limitation        | Cycle by cycle     | 1.3*lma | Х          |      | mA   | A*          |
| Efficiency at VSYS                    | S = 3.7V & Tamb=60°C      |                    |         |            |      |      | D,E,        |
| with proposed external components and |                           |                    | Se      | e Figure 3 | 57   |      | A*15        |
| PCB layout                            |                           |                    |         |            |      |      |             |
| Sleep Mode – Pulse skipping (PSK)     |                           |                    |         |            |      |      |             |
| Efficiency at VSYS                    | S = 3.7V & Tamb=60°C      |                    | _       |            |      |      | D,E,        |
| with proposed ext                     | ernal components and      |                    | Se      | e Figure 3 | 57   |      | A*          |
| PCB layout                            |                           |                    |         |            |      |      |             |

#### Table 47: Electrical Parameter for BUCK\_V1P8A



Figure 37: V1P8A Efficiency

<sup>13</sup> Including DC accuracy, ripple and load regulation
 <sup>14</sup> Including DC accuracy, ripple and load regulation
 <sup>15</sup> RDSON measurement on ATE

**Data Sheet** 

#### **Company Confidential**

#### 11.6.5.3 V1P8A Registers

| Register Nam | 1e         | V1P8A_CT                                                    | TRL Address 0x5A Read/Wri<br>Page 1                                                                                                                                                                             |                                  | Read/Write                 |               |                       |
|--------------|------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|---------------|-----------------------|
|              |            |                                                             |                                                                                                                                                                                                                 | Reset Value                      | 0x60                       |               |                       |
| MSB          |            |                                                             |                                                                                                                                                                                                                 |                                  |                            |               | LSB                   |
| R/W          | R/W        | R/W                                                         | R                                                                                                                                                                                                               | R                                | R/W                        | R/W           | R/W                   |
|              | V1P8A_VSEL |                                                             | rese                                                                                                                                                                                                            | rved                             | NoS0iX                     | V1P8A<br>_SEL | V1P8A<br>_EN          |
| V1P8A_EN     |            | <b>0</b><br>1                                               | V1P8A off<br>V1P8A on                                                                                                                                                                                           |                                  |                            |               |                       |
| V1P8A_SEL    |            | <b>0</b><br>1                                               | V1P8A controlled by SUSPWRDNACK according to sequencing<br>V1P8A controlled by V1P8A_CTRL.V1P8A_EN bit<br>Regardless of V1P8_EN and V1P8A_SEL, V1P8A is disabled when<br>SUSPWRDNACK is de-asserted, means high |                                  |                            |               | uencing<br>abled when |
| NoS0iX       |            | <b>0</b><br>1                                               | V1P8A active<br>V1P8A active                                                                                                                                                                                    | e determined by<br>regardless of | y SLP_S0iX_B<br>SLP_S0iX_B |               |                       |
| V1P8A_VSEI   | -          | 000<br>001<br>010<br><b>011</b><br>100<br>101<br>110<br>111 | 1.620V<br>1.710V<br>1.800V<br><b>1.817V nomi</b><br>1.836V<br>1.854V<br>1.890V<br>1.980V                                                                                                                        | nal voltage                      |                            |               |                       |

| V1P8A_    | CTRL.    |              |       |
|-----------|----------|--------------|-------|
| V1P8A_SEL | V1P8A_EN | SUSPWRDINACK | VIPOA |
| 1         | 0        | 0            | Off   |
| 1         | 1        | 0            | On    |
| Х         | х        | 1            | Off   |

Table 48: V1P8A Truth Table

#### 11.6.5.4 V1P8A Subsystems

#### <u>V1P8U:</u>

This power rail is primarily to supply LPDDR2 or LPDDR3 RAMs. DA6021 provides a control signal V1P8U\_EN\_B supplied by VSYS and derived from SLP\_S4\_B sent out by the SoC. When V1P8U\_EN\_B is asserted low, the signal slew rate is controlled to limit the inrush current when the external P-channel FET is turned on. The current of this power rail is maximum 355mA

| Register Nam | Register Name V1P8U_CTRI |               | L                                                                                                                                                                                                       | Address     | 0x5B<br>Page 1 | Read/Write        |          |
|--------------|--------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------------|----------|
|              |                          |               |                                                                                                                                                                                                         | Reset Value | 0x00           |                   |          |
| MSB          |                          |               |                                                                                                                                                                                                         |             |                |                   | LSB      |
| R            | R                        | R             | R                                                                                                                                                                                                       | R           | R              | R/W               | R/W      |
| Reserved     |                          |               |                                                                                                                                                                                                         |             |                | V1P8U_<br>SEL     | V1P8U_EN |
| V1P8U_EN     |                          | <b>0</b><br>1 | V1P8U off<br>V1P8U on                                                                                                                                                                                   |             |                |                   |          |
| V1P8U_SEL    |                          | <b>0</b><br>1 | V1P8U controlled by SLP_S4_B according to sequencing<br>V1P8U controlled by V1P8U_CTRL.V1P8U_EN bit<br>Regardless of V1P8U_EN and V1P8U_SEL, V1P8U_EN_B is high<br>when SLP_S4_B is asserted, means low |             |                | ng<br>N_B is high |          |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| V1P8U_    | CTRL.    |          |            |  |
|-----------|----------|----------|------------|--|
| V1P8U_SEL | V1P8U_EN | 3LF_34_D | VIFOU_EN_D |  |
| 1         | 0        | 1        | High       |  |
| 1         | 1        | 1        | Low        |  |
| х         | х        | 0        | High       |  |

Table 49: V1P8U\_EN\_B Truth Table

V1P8U external P-channel power switch parameters:

| Rdson (Vgs=1.8V)                   | 50-97mohm  |
|------------------------------------|------------|
| Input capacitance, Ciss            | 750-2315pF |
| Output capacitance, Coss           | 150-530pF  |
| Reverse transfer capacitance, Crss | 100-465pF  |

#### V1P8S:

The maximum current of this power rail is defined to 145mA, sourcing the SoC, USB PHY, UICC SIM ... DA6021 controls this power rail while deriving the information from SoC SLP\_S3\_B signal and switching the rail internally. The typical RDSon value of this internal switch is  $170m\Omega$ 

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input power path board resistance                  | 10              | -     |
| Output power path board resistance                 | 20              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 242             | A,D,E |

Table 50: V1P8S Power Switch Specification

| Register Name V1P8S_CTRL |   | L             | Address                                                                                                                                                                                                | 0x5C<br>Page 1 | Read/Write |               |          |
|--------------------------|---|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|---------------|----------|
|                          |   |               |                                                                                                                                                                                                        | Reset Value    | 0x00       |               |          |
| MSB                      |   |               |                                                                                                                                                                                                        |                |            |               | LSB      |
| R                        | R | R             | R                                                                                                                                                                                                      | R              | R          | R/W           | R/W      |
| Reserved                 |   |               |                                                                                                                                                                                                        |                |            | V1P8S_<br>SEL | V1P8S_EN |
| V1P8S_EN                 |   | <b>0</b><br>1 | V1P8S off<br>V1P8S on                                                                                                                                                                                  |                |            |               |          |
| V1P8S_SEL                |   | <b>0</b><br>1 | V1P8S controlled by SLP_S3_B according to sequencing<br>V1P8S controlled by V1P8S_CTRL.V1P8S_EN bit<br>Regardless of V1P8S_EN and V1P8S_SEL, V1P8S is disabled<br>when SLP_S3_B is asserted, means low |                |            |               |          |

| V1P8S_    | CTRL.    |          |       |  |
|-----------|----------|----------|-------|--|
| V1P8S_SEL | V1P8S_EN | 3LF_33_D | VIPOS |  |
| 1         | 0        | 1        | Off   |  |
| 1         | 1        | 1        | On    |  |
| Х         | х        | 0        | Off   |  |

Table 51: V1P8S Truth Table

**Data Sheet** 



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### V1P8SX:

This power rail is used to source platform devices such as eMMC, camera, audio codecs ... The maximum allowed output current is defined to 240mA. DA6021 controls this power rail while deriving the information from SoC SLP\_S0ix\_B signal and switching the rail internally. The typical  $R_{DSon}$  of this internal switch is 100m $\Omega$ .

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input power path board resistance                  | 10              | -     |
| Output power path board resistance                 | 20              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 147             | A,D,E |

Table 52: V1P8S Power Switch Specification

| Register Nam | ne | V1P8SX_C      | TRL                                                                                                                                                                                                             | Address     | 0x5D<br>Page 1 | Read/Write     |                        |
|--------------|----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|----------------|------------------------|
|              |    |               |                                                                                                                                                                                                                 | Reset Value | 0x02           |                |                        |
| MSB          |    |               |                                                                                                                                                                                                                 |             |                |                | LSB                    |
| R            | R  | R             | R                                                                                                                                                                                                               | R           | R              | R/W            | R/W                    |
| Reserved     |    |               |                                                                                                                                                                                                                 |             |                | V1P8SX<br>_SEL | V1P8SX<br>_EN          |
| V1P8SX_EN    |    | <b>0</b><br>1 | V1P8SX off<br>V1P8SX on                                                                                                                                                                                         |             |                |                |                        |
| V1P8SX_SEI   | _  | 0<br>1        | V1P8SX controlled by SLP_S0iX_B according to sequencing<br>V1P8SX controlled by V1P8SX_CTRL.V1P8SX_EN bit<br>Regardless of V1P8SX_EN and V1P8SX_SEL, V1P8SX is disabled<br>when SLP_S3_B is asserted, means low |             |                |                | ncing<br>X is disabled |

| V1PSX_     | CTRL.     |          | VADOEV |  |
|------------|-----------|----------|--------|--|
| V1P8SX_SEL | V1P8SX_EN | SLP_33_B | VIPOSA |  |
| 1          | 0         | 1        | Off    |  |
| 1          | 1         | 1        | On     |  |
| Х          | Х         | 0        | Off    |  |

Table 53: V1P8SX Truth Table

## <u>V1P2A:</u>

#### V1P2A is a LDO that is sourced by V1P8A and generates a voltage of 1.2V to supply USB HSIC

| Symbol             | Parameter                       | Min   | Тур                      | Max  | Unit              | Notes/Condition | Val |  |  |
|--------------------|---------------------------------|-------|--------------------------|------|-------------------|-----------------|-----|--|--|
|                    |                                 | Input | requiren                 | nent |                   |                 |     |  |  |
| Vin                | Main input voltage              |       | 1.80 V Supplied by V1P8A |      | Supplied by V1P8A | -               |     |  |  |
| Output requirement |                                 |       |                          |      |                   |                 |     |  |  |
| Vnom               | Nominal output voltage          |       | 1.2                      |      | V                 |                 | A   |  |  |
| Vtol               | Output voltage tolerance        | -2%   |                          | +2%  |                   |                 | A   |  |  |
| Cout               | Output capacity                 |       | 1                        |      | μF                |                 | -   |  |  |
| lout-DC            | Output load current             |       | 1                        | 30   | mA                |                 | Α   |  |  |
| IQSC               | Quiescent current (operational) |       | 10                       |      | μA                | lout-DC = 0mA   | D,E |  |  |
| IQSC               | Quiescent current (sleep)       |       | 2                        |      | μA                | lout-DC = 0mA   | D,E |  |  |



#### **Company Confidential**

| PSRR   | Power supply<br>rejection ratio | 50 |     | dB    | Noise = 0.1Vpp, 1-<br>10kHz, ½ Iout-DC | D,E |
|--------|---------------------------------|----|-----|-------|----------------------------------------|-----|
| Vnoise | Output noise                    | 50 | 100 | μVRMS | 10-100kHz, 1/2 lout-DC                 | D,E |

Table 54: Electrical Parameter for V1P2A

#### VREFDQ0:

| Register Name                                                                            |   | VREFDQ0_CTRL                                                                     |                                                                                                                                                                                                         | Address         | 0x5E<br>Page 1 | Read/Write     |               |  |  |
|------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|---------------|--|--|
|                                                                                          |   |                                                                                  |                                                                                                                                                                                                         | Reset Value     | 0x00           |                |               |  |  |
| MSB                                                                                      |   |                                                                                  |                                                                                                                                                                                                         |                 |                |                | LSB           |  |  |
| R                                                                                        | R | R                                                                                | R/W                                                                                                                                                                                                     | R/W             | R/W            | R/W            | R/W           |  |  |
|                                                                                          |   | VREFDQVSE                                                                        | L                                                                                                                                                                                                       |                 | reserved       | VREFDQ_<br>SEL | VREFDQ_E<br>N |  |  |
| VREFDQ_EN                                                                                | I | <b>0</b><br>1                                                                    | VREFDQ0 ei<br>VREFDQ0 di                                                                                                                                                                                | nable<br>isable |                |                |               |  |  |
| VREFDQ_SEL 0<br>1                                                                        |   |                                                                                  | VREFDQ0 controlled by SLP_S4_B according sequencing<br>VREFDQ0 controlled by VREFDQ.VREFDQ_EN bit<br>Regardless of VREFDQ_EN and VREFDQ_SEL, VREFDQ0 is<br>disable when SLP_S4_B is asserted, means low |                 |                |                |               |  |  |
| VREFDQVSEL[4:0] 00000<br>00001<br>00010<br>00011<br><br>11100<br>11101<br>11110<br>11110 |   | 0.600V<br>0.620V<br>0.640V<br>0.660V<br><br>1.160V<br>1.180V<br>1.200V<br>1.220V |                                                                                                                                                                                                         |                 |                |                |               |  |  |

#### VREFDQ1:

| Register Name VREFDQ1_V                                                                                                                                                              |   | SEL       | Address                                                                                                                                                                                                 | 0xC6<br>Page 1 | Read/Write |                |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|----------------|---------------|--|
|                                                                                                                                                                                      |   |           |                                                                                                                                                                                                         | Reset Value    | 0x00       |                |               |  |
| MSB                                                                                                                                                                                  |   |           |                                                                                                                                                                                                         |                |            |                | LSB           |  |
| R                                                                                                                                                                                    | R | R         | R/W                                                                                                                                                                                                     | R/W            | R/W        | R/W            | R/W           |  |
|                                                                                                                                                                                      |   | VREFDQVSE | L                                                                                                                                                                                                       |                | reserved   | VREFDQ<br>_SEL | VREFDQ<br>_EN |  |
| VREFDQ_EN 0 VREFDQ<br>1 VREFDQ                                                                                                                                                       |   |           |                                                                                                                                                                                                         | nable<br>sable |            |                |               |  |
| VREFDQ_SEL 0 VREF<br>1 VREF<br>Rega<br>disab                                                                                                                                         |   |           | VREFDQ1 controlled by SLP_S4_B according sequencing<br>VREFDQ1 controlled by VREFDQ.VREFDQ_EN bit<br>Regardless of VREFDQ_EN and VREFDQ_SEL, VREFDQ1 is<br>disable when SLP_S4_B is asserted, means low |                |            |                |               |  |
| VREFDQVSEL[4:0]<br>00000<br>00001<br>0.600V<br>00010<br>0.620V<br>00010<br>0.640V<br>00011<br>0.660V<br><br>11100<br>1.160V<br>11101<br>1.180V<br>11110<br>1.200V<br>11111<br>1.220V |   |           | 0.600V<br>0.620V<br>0.640V<br>0.660V<br><br>1.160V<br>1.180V<br>1.200V<br>1.220V                                                                                                                        |                |            |                |               |  |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Symbol                                                                                           | Parameter                       | Min  | Тур         | Max  | Unit                           | Notes/Condition                        | Val |
|--------------------------------------------------------------------------------------------------|---------------------------------|------|-------------|------|--------------------------------|----------------------------------------|-----|
|                                                                                                  |                                 | Inpu | it requirer | nent |                                |                                        |     |
| Vin                                                                                              | Main input voltage              |      | 1.80        |      | V                              | Supplied by V1P8A                      | -   |
|                                                                                                  |                                 | Outp | ut require  | ment |                                |                                        |     |
| Vnom         Nominal output<br>voltage         0.61.2         V         Via VREFDQ0/<br>register |                                 |      |             |      | Via VREFDQ0/1_VSEL<br>register | A                                      |     |
| Vtol                                                                                             | Output voltage tolerance        | -5%  |             | +5%  |                                |                                        | A   |
| Cout                                                                                             | Output capacity                 |      | 1           |      | μF                             |                                        | -   |
| lout-DC                                                                                          | Output load<br>current          |      | 1           | 10   | mA                             |                                        | A   |
| IQSC                                                                                             | Quiescent current (operational) |      | 10          |      | μA                             | lout-DC = 0mA                          | D,E |
| IQSC                                                                                             | Quiescent current (sleep)       |      | 2           |      | μA                             | lout-DC = 0mA                          | D,E |
| PSRR                                                                                             | Power supply rejection ratio    | 50   |             |      | dB                             | Noise = 0.1Vpp, 1-<br>10kHz, ½ lout-DC | D.E |
| Vnoise                                                                                           | Output noise                    | 50   |             | 100  | μVRMS                          | 10-100kHz, 1/2 lout-DC                 | D,E |

#### VREFDQ0/1 Electrical Specification:

Table 55: Electrical Parameter for VREFDQ1/2

## 11.6.6 DC/DC Buck Regulator VDDQ

The high efficiency buck regulator supplies any type (1.5V/1.35V/1.25V) of DDR3 memory. The maximum output current of VDDQ buck regulator is 2800mA



Figure 38: VDDQ Power Domain Block Diagram

#### 11.6.6.1 Power States

#### Active State:

DA6021 VDDQ voltage rail can handle up to 2800mA max current. The usual average current is at 50mA to 500mA, but thermally able to handle 2800mA in peaks.. Optimized efficiency is achieved from 50mA to 500mA. Automatically switching from PWM to PFM mode achieves the best power efficiency.



#### S0ix State:

When the SoC enters the S0ix state, SLP\_S0ix is held low. DA6021 turns the VDDQ buck regulator into low power mode and disables all un-necessary blocks, reducing the power requirements. DA6021 exits this power saving mode within 5µs after the SoC asserts the SLP\_S0ix signal to high.

DA6021 is capable to support up to 200mA in this state.

#### S3 State:

In S3 state the average current of VDDQ is expected to be ~30mA which the regulator provides in power saving mode.

#### 11.6.6.2 Electrical Characteristics VDDQ

| PARAMETER                         |                              | TEST           | MIN     | TYP           | MAX  | UNIT | Val |
|-----------------------------------|------------------------------|----------------|---------|---------------|------|------|-----|
|                                   |                              | CONDITIONS     |         |               |      |      |     |
| VDDQ_VIN                          | Input Voltage                |                | 2.7     |               | 4.5  | V    | -   |
| Cin                               | at VDDQ_IN                   |                |         | 2 x 4.7       |      | μF   | -   |
| Cout                              |                              |                | 3 >     | x 47 or 6 x 2 | 22   | μF   | -   |
| ESR of output cap                 | pacitor                      |                | 6       | @ 22/47µ      | F    | mΩ   | -   |
| ESL of output cap                 | acitor                       |                | 1       | .6 @ 3MH      | Z    | nH   | -   |
| L_BUCK                            | inductor value               |                | -20%    | 2 x 0.47      | +20% | μH   | -   |
| L_DCR                             | inductor resistance          |                |         |               | 48   | mΩ   | -   |
| V1P0A                             | Output Voltage               | IOUT= Imax     | 1       | .24/1.35±2    | %    | V    | Α   |
| F_BUCK                            | Frequency of operation       |                |         | 3             |      | MHz  | Α   |
| Transient load profile            |                              | 35-2085mA      |         |               | 200  | ns   | -   |
| Transient droop <sup>16</sup>     |                              | 35-2085mA      |         |               | 50   | mV   | Е   |
| Transient overshoot <sup>17</sup> |                              | 2085-35mA      |         |               | 50   | mV   | E   |
| Ton                               | Turn on time                 |                |         |               | 2    | ms   | E   |
| Rpd                               | Discharge impedance          | VDDQ 0V        |         |               | 20   | Ω    | Α   |
| IQ_ON                             | Quiescent Current in On      |                |         |               | 100  | μA   | Е   |
|                                   | Mode                         |                |         |               |      |      |     |
| Normal Mode – S                   | Synchronous rectification (P | WM)            |         |               |      |      |     |
| Maximum Output                    | Current (Imax)               |                | 2800    |               |      | mA   | D   |
| ILIMIT                            | Current limitation           | Cycle by cycle | 1.3*lma | ax            |      | mA   | A*  |
| Efficiency at VSY                 | S = 3.7V & Tamb=60°C with    |                |         |               |      |      | D,E |
| proposed externa                  | I components and PCB         |                | S       | ee Figure 3   | 89   |      | ,A* |
| layout                            | -                            |                |         | -             |      |      | 18  |
| Sleep Mode – Pu                   | llse skipping (PSK)          |                |         |               |      |      |     |
| Efficiency at VSY                 | S = 3.7V & Tamb=60°C with    |                |         |               |      |      | D,E |
| proposed externa                  | I components and PCB         |                | S       | ee Figure 3   | 9    |      | ,A* |
| layout                            |                              |                |         |               |      |      |     |

Table 56: Electrical Parameter for BUCK\_VDDQ

<sup>&</sup>lt;sup>16</sup> Including DC accuracy, ripple and load regulation <sup>17</sup> Including DC accuracy, ripple and load regulation

<sup>&</sup>lt;sup>18</sup> RDSON measurement on ATE



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



Figure 39: VDDQ Efficiency

#### 11.6.6.3 VDDQ Registers

| Register Nam                    | ame VDDQ_CTI |                                                             | RL                                                                                                                                                                                            | Address                          | 0x5F<br>Page 1             | Read/Write   |             |  |
|---------------------------------|--------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|--------------|-------------|--|
|                                 |              |                                                             |                                                                                                                                                                                               | Reset Value                      | 0x60                       |              |             |  |
| MSB                             |              |                                                             |                                                                                                                                                                                               |                                  |                            |              | LSB         |  |
| R/W                             | R/W          | R/W                                                         | R                                                                                                                                                                                             | R                                | RW                         | R/W          | R/W         |  |
| Y                               | VDDQ_VSEL    |                                                             | rese                                                                                                                                                                                          | rved                             | NoS0iX                     | VDDQ<br>_SEL | VDDQ<br>_EN |  |
| VDDQ_EN 0 VDDQ off<br>1 VDDQ on |              |                                                             | VDDQ off<br>VDDQ on                                                                                                                                                                           |                                  |                            |              |             |  |
| VDDQ_SEL                        |              | <b>0</b><br>1                                               | VDDQ controlled by SLP_S4_B according to sequencing<br>VDDQ controlled by VDDQ_CTRL.VDDQ_EN bit<br>Regardless of VDDQ_EN and VDDQ_SEL, VDDQ is disable when<br>SLP_S4_B is asserted means low |                                  |                            |              |             |  |
| NoS0iX                          |              | <b>0</b><br>1                                               | VDDQ active<br>VDDQ active                                                                                                                                                                    | determined by<br>, regardless of | / SLP_S0iX_B<br>SLP_S0iX_B |              |             |  |
| VDDQ_VSEL                       |              | 000<br>001<br>010<br><b>011</b><br>100<br>101<br>110<br>111 | 1.080V<br>1.140V<br>1.200V<br><b>1.240V nomi</b><br>1.350V DDR3<br>1.390V<br>1.418V<br>1.500V DDR3                                                                                            | nal voltage D<br>3L<br>3         | DR3LP                      |              |             |  |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| VDDQ_    | CTRL.   |          | VDDQ |  |
|----------|---------|----------|------|--|
| VDDQ_SEL | VDDQ_EN | SLF_34_D |      |  |
| 1        | 0       | 1        | Off  |  |
| 1        | 1       | 1        | On   |  |
| х        | х       | 0        | Off  |  |

Table 57: VDDQ Truth Table

#### 11.6.6.4 VDDQ Subsystems

#### V1P2S:

This voltage rail is used to supply mainly the MIP interface. In case of 1.24V DDR3 memory the input voltage of this power domain is VDDQ and it acts as a power switch. For all other types of DDR3 memories the input voltage is V1P8A and V1P2S is generated via a small LDO.

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input power path board resistance                  | 20              | -     |
| Output power path board resistance                 | 20              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 620             | A,D,E |

Table 58: V1P2S Power Switch Specification

Electrical Parameters in case of a LDO function

| Symbol         | Parameter                       | Min | Тур  | Max | Unit  | Notes/Condition                        | Val |
|----------------|---------------------------------|-----|------|-----|-------|----------------------------------------|-----|
| Input requirem | ent                             |     |      |     |       |                                        |     |
| Vin            | Main input voltage              |     | 1.80 |     | V     | Supplied by V1P8A                      | -   |
| Cin            | V1P2S_IN                        |     | 100  |     | nF    |                                        | -   |
| Output require | ment                            |     |      |     |       |                                        |     |
| Vnom           | Nominal output voltage          |     | 1.2  |     | V     |                                        | A   |
| Vtol           | Output voltage tolerance        | -2% |      | +2% |       |                                        | A   |
| Cout           | Output capacity                 |     | 2.2  |     | μF    |                                        | -   |
| lout-DC        | Output load current             |     | 1    | 50  | mA    |                                        | Α   |
| IQSC           | Quiescent current (operational) |     | 10   |     | μA    | lout-DC = 0mA                          | D,E |
| IQSC           | Quiescent current<br>(sleep)    |     | 2    |     | μA    | lout-DC = 0mA                          | D,E |
| PSRR           | Power supply<br>rejection ratio | 50  |      |     | dB    | Noise = 0.1Vpp, 1-<br>10kHz, ½ lout-DC | D,E |
| Vnoise         | Output noise                    | 50  |      | 100 | μVRMS | 10-100kHz, 1/2 lout-DC                 | D,E |

Table 59: Electrical Parameter for V1P2S LDO

**Data Sheet** 



**Company Confidential** 

| Register Nam | ne                                                                                                                                                                                                                                                    | V1P2S_CTRL    |                       | Address     | 0x60 Read/Write<br>Page 1 |               |                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|-------------|---------------------------|---------------|------------------|
|              |                                                                                                                                                                                                                                                       |               |                       | Reset Value | 0x00                      |               |                  |
| MS           | SB                                                                                                                                                                                                                                                    |               |                       |             |                           |               |                  |
| R            | R                                                                                                                                                                                                                                                     | R             | R                     | R           | R                         | R/W           | R/W              |
|              |                                                                                                                                                                                                                                                       | Res           | erved                 |             |                           | V1P2S<br>_SEL | V1P2S<br>_EN     |
| V1P2S_EN     |                                                                                                                                                                                                                                                       | <b>0</b><br>1 | V1P2S off<br>V1P2S on |             |                           |               |                  |
| V1P2S_SEL    | 1       V1P2S on         1       V1P2S controlled by SLP_S3_B according to sequencing         1       V1P2S controlled by V1P2S_CTRL.V1P2S_EN bit         Regardless of V1P2S_EN and V1P2S_SEL, V1P2S is disab         SLP_S3_B is asserted means low |               |                       |             |                           |               | g<br>isable when |

| V1P2S_    | CTRL.    |          | V1P2S |  |
|-----------|----------|----------|-------|--|
| V1P2S_SEL | V1P2S_EN | 3LF_33_D |       |  |
| 1         | 0        | 1        | Off   |  |
| 1         | 1        | 1        | On    |  |
| х         | х        | 0        | Off   |  |

Table 60: V1P2S Truth Table

#### V1P2SX:

This voltage rail is used to supply the SoC SFR via an internal switch from VDDQ.

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input power path board resistance                  | 20              | -     |
| Output power path board resistance                 | 20              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 160             | A,D,E |

Table 61: V1P2SX Power Switch Specification

| Register Nam                                                                                                                                                                                                                        | ie | V1P2SX_CT     | RL                      | Address        | 0x61<br>Page 1 | Read/Write |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|-------------------------|----------------|----------------|------------|-----|
|                                                                                                                                                                                                                                     |    |               |                         | Reset Value    | 0x00           |            |     |
| MSB                                                                                                                                                                                                                                 |    |               |                         |                |                |            | LSB |
| R                                                                                                                                                                                                                                   | R  | R             | R                       | R              | R              | R/W        | R/W |
| Reserved                                                                                                                                                                                                                            |    |               |                         | V1P2SX<br>_SEL | V1P2SX<br>_EN  |            |     |
| V1P2SX_EN                                                                                                                                                                                                                           |    | <b>0</b><br>1 | V1P2SX off<br>V1P2SX on |                |                |            |     |
| V1P2SX_SEL<br><b>0</b><br>1<br>V1P2SX controlled by SLP_S0iX_B according to sequence<br>1<br>V1P2SX controlled by V1P2SX_CTRL.V1P2SX_EN bi<br>Regardless of V1P2SX_EN and V1P2SX_SEL, V1P2S<br>when SLP_S3_B is asserted, means low |    |               | ncing<br>K is disable   |                |                |            |     |

The maximum current is defined to 155mA, switched internally and controlled via the SoC SLP\_S0iX\_B signal.

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| V1P2SX     | _CTRL.    |          | VADORY |
|------------|-----------|----------|--------|
| V1P2SX_SEL | V1P2SX_EN | 3LF_33_D | VIP23A |
| 1          | 0         | 1        | Off    |
| 1          | 1         | 1        | On     |
| Х          | х         | 0        | Off    |

Table 62: V1P2SX Truth Table

#### 11.6.7 Power Rail VSYSU

VSYSU is the voltage rail that sources power of VSYS through an external power switch. This power domain is used to source communication and the modem. The external power switch is generated via a P-channel FET.

DA6021 provides an enable signal VSYSU\_EN\_B supplied by VSYS, driving the gate of the external FET. DA6021 provides also a feedback input signal VSYSU\_FB to control the slew rate and limit the inrush current

| Register Nam                                                                                                                                                                                         | ter Name VSYSU_CTRL |               | Address                                      | 0x62<br>Page 1     | Read/Write |               |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|----------------------------------------------|--------------------|------------|---------------|--------------|
|                                                                                                                                                                                                      |                     |               |                                              | Reset Value        | 0x02       |               |              |
| MSB                                                                                                                                                                                                  |                     |               |                                              |                    |            |               | LSB          |
| R                                                                                                                                                                                                    | R                   | R             | R                                            | R                  | R          | R/W           | R/W          |
|                                                                                                                                                                                                      |                     | Rese          | erved                                        |                    |            | VSYSU<br>_SEL | VSYSU<br>_EN |
| VSYSU_EN                                                                                                                                                                                             |                     | <b>0</b><br>1 | VSYSU off<br>VSYSU on                        |                    |            |               |              |
| VSYSU_SEL 0 VSYSU controlled by SLP_S4_B according to sequen<br>1 VSYSU controlled by VSYSU_CTRL.VSYSU_EN bit<br>Regardless of VSYSU_EN and VSYSU_SEL, VSYSU<br>when SLP_S4_B is asserted, means low |                     |               | ng to sequenci<br>/SU_EN bit<br>SEL, VSYSU_I | ng<br>EN_B is high |            |               |              |

| VSYSU_    | CTRL.    |          | VEVELLEN D |
|-----------|----------|----------|------------|
| VSYSU_SEL | VSYSU_EN | 3LP_34_D | VSTSU_EN_D |
| 1         | 0        | 1        | High       |
| 1         | 1        | 1        | Low        |
| Х         | х        | 0        | High       |

Table 63: VSYSU\_EN\_B Truth Table

VSYSU external P-channel power switch parameters:

| Rdson (Vgs=3.7V)                   | 15-35mohm  |
|------------------------------------|------------|
| Input capacitance, Ciss            | 750-2315pF |
| Output capacitance, Coss           | 265-900pF  |
| Reverse transfer capacitance, Crss | 240-800pF  |



#### 11.6.8 Power Rail VSYS\_SX

VSYSU is the voltage rail that sources power of VSYS through an external power switch. This power domain is used to source the vibra. The external power switch is generated via a P-channel FET.

DA6021 provides an enable signal VSYSSX\_EN\_B, supplied by VSYS, driving the gate of the external FET. DA6021 provides also a feedback input signal VSYSSX\_FB to control the slew rate and limit the inrush current

| Register Nam | ie | VSYSSX_CT     | RL                                                     | Address                                                                | 0x63<br>Page 1                                              | Read/Write                                              |                                        |
|--------------|----|---------------|--------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|----------------------------------------|
|              |    |               |                                                        | Reset Value                                                            | 0x02                                                        |                                                         |                                        |
| MSB          |    |               |                                                        |                                                                        |                                                             |                                                         | LSB                                    |
| R            | R  | R             | R                                                      | R                                                                      | R                                                           | R/W                                                     | R/W                                    |
| Reserved     |    |               |                                                        | VSYSSX<br>_SEL                                                         | VSYSSX<br>_EN                                               |                                                         |                                        |
| VSYSSX_EN    |    | <b>0</b><br>1 | VSYSSX_EN<br>VSYSSX_EN                                 | I_B set to high<br>I_B set to low                                      |                                                             |                                                         |                                        |
| VSYSSX_SE    | L  | 0<br>1        | VSYSSX_EN<br>VSYSSX_EN<br>Regardless c<br>high when SI | I_B controlled I<br>I_B controlled I<br>of VSYSSX_EN<br>_P_S3_B is ass | by SLP_S0iX_<br>by VSYSSX_0<br>I and VSYSS<br>serted, means | _B according to<br>CTRL.VSYSSX<br>X_SEL, VSYSS<br>s low | o sequencing<br>(_EN bit<br>SX_EN_B is |

| VSYSSX     | _CTRL.    |          | VEVEEV EN D |
|------------|-----------|----------|-------------|
| VSYSSX_SEL | VSYSSX_EN | 3LF_33_B | VSTSSA_EN_D |
| 1          | 0         | 1        | High        |
| 1          | 1         | 1        | Low         |
| х          | х         | 0        | High        |

Table 64: VSYSSX\_EN\_B Truth Table

VSYS\_SX external P-channel power switch parameters:

| Rdson (Vgs=3.7V)                   | 15-35mohm  |
|------------------------------------|------------|
| Input capacitance, Ciss            | 750-2315pF |
| Output capacitance, Coss           | 265-900pF  |
| Reverse transfer capacitance, Crss | 240-800pF  |



#### 11.6.9 Power Rail VSYS\_S

VSYS\_S is a voltage rail that is supplied by VSYS through an internal DA6021 power switch with a  $R_{\text{DSon}}$  of 900m  $\!\Omega.$ 

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input, output rails wirebond & internal FET RDS-ON | 1000            | A,D,E |

Table 65: VSYS\_S Power Switch Specification

VSYS\_S power switch is enabled when SLP\_S3\_B is high, unless VSYS\_S\_CTRL.VSYS\_S\_SEL bit is set to high.

| Register Nam                                                                                                                                                                      | ie | VSYS_S_CTRL   |                                                | Address             | 0x64<br>Page 1 | Read/Write     |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|------------------------------------------------|---------------------|----------------|----------------|---------------|
|                                                                                                                                                                                   |    |               |                                                | Reset Value         | 0x02           |                |               |
| MSB                                                                                                                                                                               |    |               |                                                |                     |                |                | LSB           |
| R                                                                                                                                                                                 | R  | R             | R                                              | R                   | R              | R              | R             |
|                                                                                                                                                                                   |    | rese          | erved                                          |                     |                | VSYS_S<br>_SEL | VSYS_S<br>_EN |
| VSYS_S_EN                                                                                                                                                                         |    | <b>0</b><br>1 | VSYS_S off<br>VSYS_S on                        |                     |                |                |               |
| VSYS_S_SEL 0 VSYS_S_SEL 0 VSYS_S controlled by SLP_S3_B according VSYS_S controlled by VSYS_S_CTRL.VSYS Regardless of VSYS_S_EN and VSYS_S_S when SLP_S3_B is asserted, means low |    |               | ing to sequenc<br>SYS_S_EN bit<br>_SEL, VSYS_3 | ing<br>S is disable |                |                |               |

| VSYS_S     | _CTRL.    |          | Veve e |  |
|------------|-----------|----------|--------|--|
| VSYS_S_SEL | VSYS_S_EN | SLP_SS_D | vara_a |  |
| 1          | 0         | 1        | Off    |  |
| 1          | 1         | 1        | On     |  |
| х          | Х         | 0        | Off    |  |

Table 66: VSYS\_S Truth Table

#### 11.6.10 Buck Boost Regulator V2P85S

DA6021 integrates a buck/boost converter supplying 2.85V into the system for touch screen, eMMC, sensors and V2P85SX loads. The maximum output current of V2P85S buck/boost regulator is 550mA





**Data Sheet** 

#### **Company Confidential**

#### 11.6.10.1 Electrical Characteristics V2P85S

#### Buck/boost regulator

| PARAMETER                             |                           | TEST           | MIN  | ΤΥΡ         | MAX  | UNIT | Val              |
|---------------------------------------|---------------------------|----------------|------|-------------|------|------|------------------|
|                                       |                           | CONDITIONS     | 0.7  |             | 4 5  | N (  |                  |
| V2P85S_VIN                            | Input Voltage             |                | 2.7  | 47          | 4.5  | V    | -                |
| Cin                                   | at V2P85S_IN              |                |      | 4./         |      | µ⊦   | -                |
| Cout                                  |                           |                |      | 2 x 22      |      | μF   | -                |
| ESR of output cap                     | acitor                    |                |      | 6 @ 22µF    |      | mΩ   | -                |
| ESL of output cap                     | acitor                    |                | 1    | .6 @ 3MH    | z    | nH   | -                |
| L_BUCK                                | inductor value            |                | -20% | 0.47        | +20% | μH   |                  |
| L_DCR                                 | inductor resistance       |                |      |             | 48   | mΩ   | -                |
| V2P85S                                | Output Voltage            | IOUT= Imax     |      | 2.9±2%      |      | V    | А                |
| F_BUCK/BOOST                          | Frequency of              |                |      | 3           |      | MHz  | А                |
| operation                             |                           |                |      |             |      |      |                  |
| Transient load pro                    | file                      | 0-550mA        |      | 250         |      | ns   | -                |
| Transient droop <sup>19</sup>         |                           | 0-550mA        |      |             | 116  | mV   | Е                |
| Transient overshoot <sup>20</sup>     |                           | 550-0mA        |      |             | 116  | mV   | Е                |
| Ton                                   | Turn on time              |                |      |             | 2    | ms   | E                |
| Rpd                                   | discharge impedance       | V2P85S 0V      |      |             | 20   | Ω    | Α                |
| IQ_OFF                                | Quiescent Current in      |                |      |             | 50   | μA   | Е                |
| Off Mode                              |                           |                |      |             |      |      |                  |
| Normal Mode – S                       | synchronous rectification | on (PWM)       |      |             |      |      |                  |
| Maximum Output                        | Current (Imax)            |                | 550  |             |      | mA   | D                |
| ILIMIT                                | Current limitation        | Cycle by cycle | 850  |             |      | mA   | A*               |
| Efficiency at VSYS = 3.7V & Tamb=60°C |                           |                |      |             |      |      | D,E,             |
| with proposed external components and |                           |                | S    | ee Figure 4 | 41   |      | A* <sup>21</sup> |
| PCB layout                            |                           |                |      |             |      |      |                  |
| Sleep Mode – Pu                       | lse skipping (PSK)        |                |      |             |      |      |                  |
| Efficiency at VSYS                    | S = 3.7V & Tamb=60°C      |                |      |             |      |      | D,E,             |
| with proposed external components and |                           |                | S    | ee Figure   | 41   |      | A*               |
| PCB layout                            |                           |                |      |             |      |      |                  |

Table 67: Electrical Parameter for BUCKBOOST\_V2P85S

**Data Sheet** 

 <sup>&</sup>lt;sup>19</sup> Including DC accuracy, ripple and load regulation
 <sup>20</sup> Including DC accuracy, ripple and load regulation
 <sup>21</sup> RDSON meansurement on ATE



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



Figure 41: V2P85S Efficiency

#### 11.6.10.2 V2P85 Registers

| Register Nam | le  | V2P85S_CTF                                                  | RL                                                                                                                                                                                                           | Address       | 0x65<br>Page 1 | Read/Write        |     |
|--------------|-----|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------------|-----|
|              |     |                                                             |                                                                                                                                                                                                              | Reset Value   | 0x60           |                   |     |
| MSB          |     |                                                             |                                                                                                                                                                                                              |               |                |                   | LSB |
| R/W          | R/W | R/W                                                         | R                                                                                                                                                                                                            | R             | R              | R/W               | R/W |
| V2P85S_VSEL  |     | reserved V2P85S<br>_SEL                                     |                                                                                                                                                                                                              | V2P85S<br>_EN |                |                   |     |
| V2P85S_EN    |     | <b>0</b><br>1                                               | V2P85S off<br>V2P85S on                                                                                                                                                                                      |               |                |                   |     |
| V2P85S_SEL   |     | <b>0</b><br>1                                               | V2P85S controlled by SLP_S3_B according to sequencing<br>V2P85S controlled by V2P85S_CTRL.V2P85S_EN bit<br>Regardless of V2P85S_EN and V2P85S_SEL, V2P85S is disable<br>when SLP_S3_B is asserted, means low |               |                | ing<br>is disable |     |
| V2P85S_VSE   | EL  | 000<br>001<br>010<br><b>011</b><br>100<br>101<br>110<br>111 | 2.565V<br>2.700V<br>2.850V<br><b>2.900V nomi</b><br>2.950V<br>3.000V<br>3.135V<br>3.300V                                                                                                                     | nal voltage   |                |                   |     |

Note: If V2P85S is disabled when system in S0-mode, after exiting S0iX-mode, the regulator will be enabled automatically

| V2P85S     | _CTRL.    |          | VODOEC |  |
|------------|-----------|----------|--------|--|
| V2P85S_SEL | V2P85S_EN | 3LF_33_D | V2F055 |  |
| 1          | 0         | 1        | Off    |  |
| 1          | 1         | 1        | On     |  |
| х          | х         | 0        | Off    |  |

Table 68: V2P85S Truth Table

**Data Sheet** 



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 11.6.10.3 V2P85S Subsystems

#### V2P85SX:

This voltage rail supplies mainly cameras. The control of this power rail is derived from the SoC SLP\_S0ix\_B signal. The maximum current is 250mA. The internal switch has a  $R_{DSon}$  of 460m $\Omega$ .

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input power path board resistance                  | 0               | -     |
| Output power path board resistance                 | 40              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 180             | A,D,E |

Table 69: V2P85SX Power Switch Specification

| Register Nam                                                                                                                                                                                                                                | ne | V2P85SX_C     | TRL                       | Address                                 | 0x66<br>Page 1 | Read/Write      |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|---------------------------|-----------------------------------------|----------------|-----------------|----------------|
|                                                                                                                                                                                                                                             |    |               |                           | Reset Value                             | 0x02           |                 |                |
| MSB                                                                                                                                                                                                                                         |    |               |                           |                                         |                |                 | LSB            |
| R                                                                                                                                                                                                                                           | R  | R             | R                         | R                                       | R              | R/W             | R/W            |
|                                                                                                                                                                                                                                             |    | Rese          | erved                     |                                         |                | V2P85SX<br>_SEL | V2P85SX<br>_EN |
| V2P85SX_EI                                                                                                                                                                                                                                  | Ν  | <b>0</b><br>1 | V2P85SX off<br>V2P85SX on |                                         |                |                 |                |
| V2P85SX_SEL       0       V2P85SX controlled by SLP_S0iX_B according to sequencing         V2P85SX controlled by 2P85SX_CTRL.V2P85SX_EN bit       Regardless of V2P85SX_EN and V2P85SX_SEL, V2P85SX is when SLP_S3_B is asserted, means low |    |               |                           | encing<br><sub>iit</sub><br>5SX is high |                |                 |                |

| V2P85SX     |            | SLP_S3_B | V2P85SX |  |
|-------------|------------|----------|---------|--|
| V2P855X_5EL | V2P855X_EN |          |         |  |
| 1           | 0          | 1        | Off     |  |
| 1           | 1          | 1        | Ön      |  |
| Х           | Х          | 0        | Off     |  |

Table 70: V2P85SX Truth Table


## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 11.6.11 Buck Boost Regulator V3P3A

DA6021 integrates a buck/boost converter supplying 3.3V into the system towards the SoC, V3P3U, V3P3S, VUSBPHY and VSDIO. The output voltage is set to 3.333V. The maximum output current of V3P3A buck regulator is 1600mA



Figure 42:V3P3A Power Domain Block Diagram

## 11.6.11.1 Electrical Characteristics V3P3A

#### Buck/boost regulator

| PARAMETER                                  |                         | TEST<br>CONDITIONS | MIN     | ТҮР        | MAX  | UNIT | Val |
|--------------------------------------------|-------------------------|--------------------|---------|------------|------|------|-----|
| V3P3A_VIN                                  | Input Voltage           |                    | 2.7     |            | 4.5  | V    | -   |
| Cin                                        | at V3P3A_IN             |                    |         | 4.7        |      | μF   | -   |
| Cout                                       |                         |                    | 3>      | x47 or 6x2 | 2    | μF   | -   |
| ESR of output cap                          | acitor                  |                    |         | 6 @ 22µF   |      | mΩ   | -   |
| ESL of output capa                         | acitor                  |                    | 1.      | .6 @ 3MH:  | Z    | nH   | -   |
| L_BUCK                                     | inductor value          |                    | -20%    | 0.47       | +20% | μH   | -   |
|                                            |                         |                    | or      | 2x1        |      |      |     |
| L_DCR                                      | inductor resistance     |                    |         |            | 48   | mΩ   | -   |
| V3P3A                                      | Output Voltage          | IOUT= Imax         |         | 3.333±2%   |      | V    | А   |
| F_BUCK/BOOST                               | Frequency of operation  |                    |         | 3          |      | MHz  | А   |
| Transient load pro                         | file                    | 150-1519mA         |         | 250        |      | ns   |     |
| Transient droop <sup>22</sup>              |                         | 150-1519mA         |         |            | 133  | mV   |     |
| Transient oversho                          | ot <sup>23</sup>        | 1519-150mA         |         |            | 133  | mV   |     |
| Ton                                        | Turn on time            |                    |         |            | 2    | ms   |     |
| IQ_OON                                     | Quiescent Current in On |                    |         |            | 50   | μA   |     |
| Mode                                       |                         |                    |         |            |      | -    |     |
| Rpd                                        | Discharge impedance     |                    |         |            | 20   | Ω    | А   |
| Normal Mode – Synchronous rectification (P |                         | PWM)               |         |            |      |      |     |
| Maximum Output                             | Current (Imax)          |                    | 1570    |            |      | mA   | D,E |
| ILIMIT                                     | Current limitation      | Cycle by cycle     | 1.3*lma | Х          |      | mA   | A*  |

<sup>22</sup> Including DC accuracy, ripple and load regulation
 <sup>23</sup> Including DC accuracy, ripple and load regulation

**Company Confidential** 

| PARAMETER                                                                                    | TEST<br>CONDITIONS | MIN | ΤΥΡ       | MAX | UNIT | Val        |
|----------------------------------------------------------------------------------------------|--------------------|-----|-----------|-----|------|------------|
| Efficiency at VSYS = 3.7V & Tamb=60°C<br>with proposed external components and PCB<br>layout |                    | S   | ee Figure | 43  |      | D,E,<br>A* |
| Sleep Mode – Pulse skipping (PSK)                                                            |                    |     |           |     |      |            |
| Efficiency at VSYS = 3.7V & Tamb=60°C with<br>proposed external components and PCB<br>layout |                    | S   | ee Figure | 43  |      | D,E,<br>A* |

Table 71: Electrical Parameter for BUCKBOOST\_V3P3A



Figure 43:V3P3A Efficiency

## 11.6.11.2 V3P3A Registers

| Register Nan | ne  | V3P3A_CTRL    |                                                                                                                                                                                                                 | Address     | 0x67<br>Page 1 | Read/Write               |              |
|--------------|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------------------|--------------|
|              |     |               |                                                                                                                                                                                                                 | Reset Value | 0x60           |                          |              |
| MSB          |     |               |                                                                                                                                                                                                                 |             |                |                          | LSB          |
| R/W          | R/W | R/W           | R                                                                                                                                                                                                               | R           | R              | R/W                      | R/W          |
| V3P3A_VSEL   |     |               |                                                                                                                                                                                                                 | reserved    |                | V3P3A<br>_SEL            | V3P3A<br>_EN |
| V3P3A_EN     |     | <b>0</b><br>1 | V3P3A off<br>V3P3A on                                                                                                                                                                                           |             |                |                          |              |
| V3P3A_SEL    |     | <b>0</b><br>1 | V3P3A controlled by SUSPWRDNACK according to sequencing<br>V3P3A controlled by V3P3A_CTRL.V3P3A_EN bit<br>Regardless of V3P3A_EN and V3P3A_SEL, V3P3A is disable wher<br>SUSPWRDNACK is de-asserted, means high |             |                | quencing<br>disable when |              |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| V3P3A_VSEL | 000 | 2.970V                 |
|------------|-----|------------------------|
|            | 001 | 3.135V                 |
|            | 010 | 3.300V                 |
|            | 011 | 3.333V nominal voltage |
|            | 100 | 3.340V                 |
|            | 101 | reserved               |
|            | 110 | 3.465V                 |
|            | 111 | 3.630V                 |

| V3P3A_    | CTRL.    |              | V/2D2A |  |
|-----------|----------|--------------|--------|--|
| V3P3A_SEL | V3P3A_EN | SUSPWRDINACK | VJFJA  |  |
| 1         | 0        | 0            | Off    |  |
| 1         | 1        | 0            | On     |  |
| х         | х        | 1            | Off    |  |

Table 72: V3P3A Truth Table

#### 11.6.11.3 V3P3A Subsystems

#### <u>V3P3U:</u>

V3P3U is the voltage rail which is sourced by V3P3A and switched by an external P-channel FET. This voltage rail is foreseen to supply mainly WIFI and BT. DA6021 provides a control signal V3P3\_U\_EN supplied by V3P3A and derived from SoC's SLP\_S4\_B signal. The maximum current for this power rail is 700mA

| Register Nam                       | าย | V3P3U_CTRL Address |                                                                                                                                                                                                         | Address     | 0x68<br>Page 1 | Read/Write        |              |
|------------------------------------|----|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------------|--------------|
|                                    |    |                    |                                                                                                                                                                                                         | Reset Value | 0x02           |                   |              |
| MSB                                |    |                    |                                                                                                                                                                                                         |             |                |                   | LSB          |
| R                                  | R  | R                  | R                                                                                                                                                                                                       | R           | R              | R/W               | R/W          |
| Reserved                           |    |                    | erved                                                                                                                                                                                                   |             |                | V3P3U<br>_SEL     | V3P3U<br>_EN |
| V3P3U_EN 0 V3P3U off<br>1 V3P3U on |    |                    |                                                                                                                                                                                                         | -           |                |                   |              |
| V3P3U_SEL                          |    | 0<br>1             | V3P3U controlled by SLP_S4_B according to sequencing<br>V3P3U controlled by V3P3U_CTRL.V3P3U_EN bit<br>Regardless of V3P3U_EN and V3P3U_SEL, V3P3U_EN_B is high<br>when SLP_S4_B is asserted, means low |             |                | ng<br>N_B is high |              |

| V3P3U_    | CTRL.    |          | V2D2LL EN D |
|-----------|----------|----------|-------------|
| V3P3U_SEL | V3P3U_EN | 3LF_34_D | VSFSU_EN_B  |
| 1         | 0        | 1        | High        |
| 1         | 1        | 1        | Low         |
| х         | х        | 0        | High        |

Table 73: V3P3U\_EN\_B Truth Table

V3P3U external P-channel power switch parameters:

| Rdson (Vgs=3.3V)                   | 35-62.5mohm |
|------------------------------------|-------------|
| Input capacitance, Ciss            | 750-2000pF  |
| Output capacitance, Coss           | 150-530pF   |
| Reverse transfer capacitance, Crss | 100-360pF   |

**Data Sheet** 

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

### <u>V3P3S:</u>

V3P3S is the voltage rail which is sourced by V3P3A and switched by an external P-channel FET. The power domain is used to power the display, MIPI LVDS bridge, SSD drive and audio codecs. The control signal V3P3S\_EN\_B is supplied by V3P3A and when asserted low, the signal slew rate is controlled to limit the in-rush current when the external P-channel FET turns on.

| Register Nan | าย | V3P3S_CTR     | L                                                        | Address                                                               | 0x69<br>Page 1                                        | Read/Write                                      |                                |
|--------------|----|---------------|----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|--------------------------------|
|              |    |               |                                                          | Reset Value                                                           | 0x00                                                  |                                                 |                                |
| MSB          |    |               |                                                          |                                                                       |                                                       |                                                 | LSB                            |
| R            | R  | R             | R                                                        | R                                                                     | R                                                     | R/W                                             | R/W                            |
|              |    | Rese          | erved                                                    |                                                                       |                                                       | V3P3S<br>_SEL                                   | V3P3S<br>_EN                   |
| V3P3S_EN     |    | <b>0</b><br>1 | V3P3S_EN_E<br>V3P3S_EN_E                                 | 3 set to high<br>3 set to low                                         |                                                       |                                                 |                                |
| V3P3S_SEL    |    | <b>0</b><br>1 | V3P3S_EN_E<br>V3P3S_EN_E<br>Regardless of<br>when SLP_S3 | 3 controlled by<br>3 controlled by<br>f V3P3S_EN a<br>3_B is asserted | SLP_S3_B a<br>V3P3S_CTR<br>nd V3P3S_S<br>d, means low | ccording to see<br>L.V3P3S_EN t<br>EL, V3P3S_EN | quencing<br>bit<br>I_B is high |

| V3P3S_    | CTRL.    |          |            |
|-----------|----------|----------|------------|
| V3P3S_SEL | V3P3S_EN | 3LF_33_D | VSF35_EN_D |
| 1         | 0        | 1        | High       |
| 1         | 1        | 1        | Low        |
| х         | Х        | 0        | High       |

Table 74: V3P3S\_EN\_B Truth Table

V3P3S external P-channel power switch parameters:

| Rdson (Vgs=3.3V)                   | 35-62.5mohm |
|------------------------------------|-------------|
| Input capacitance, Ciss            | 750-2000pF  |
| Output capacitance, Coss           | 150-530pF   |
| Reverse transfer capacitance, Crss | 100-360pF   |

#### VUSBPHY:

VUSBPHY is composed of V3P3A or VSYS via an internal power rail switch. It sources power from V3P3A whenever the V3P3A buck boost converter is enabled. When V3P3A is switched off VUSBPHY is sourced by VSYS.

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| V3P3A input power path board resistance            | 10              | -     |
| VSYS input power path board resistance             | 10              | -     |
| Output power path board resistance                 | 20              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 305             | A,D,E |

Table 75: VUSBPHY Power Switch Specification

#### VSDIO:

This power rail supplies energy towards the SDIO/MMC subsystem. The power rail is either supplied by 1.8V via V1P8\_A buck converter or by V3P3\_A. In case of a 3.3V supply, the internal switch has a  $R_{DSon}$  of 200m $\Omega$ , in case of 1.8V the  $R_{DSon}$  is 80m $\Omega$ . The maximum current is defined to 200mA.

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| V3P3A input power path board resistance            | 10              | -     |
| V1P8A input power path board resistance            | 10              | -     |
| Output power path board resistance                 | 20              | -     |
| Input, output rails wirebond & internal FET RDS-ON | 108             | A,D,E |

Table 76: VSDIO Power Switch Specification

The table below shows how the VSDIO voltage is selected:

| SDMMC3_PWR_EN_B | SDMMC3_1P8_EN | VSDIO |
|-----------------|---------------|-------|
| 0               | 0             | 3.3V  |
| 0               | 1             | 1.8V  |
| 1               | 0             | 0V    |
| 1               | 1             | 0V    |

Table 77: VSDIO Output Voltage Selection

## 11.6.12 Boost Regulator V5P0S

DA6021 integrates a boost converter supplying 5V into the platform towards HDMI, USB3, VBUS & USB2/3 OTG. The maximum output current of V5P0\_S boost converter is 955mA



Figure 44:V5P0S Power Domain Block Diagram

## 11.6.12.1 Electrical Characteristics V5P0S

Boost regulator

| PARAMETER         |               | TEST<br>CONDITIONS | MIN | ТҮР    | MAX | UNIT | Val |
|-------------------|---------------|--------------------|-----|--------|-----|------|-----|
| V5P0S_VIN         | Input Voltage |                    | 2.7 |        | 4.5 | V    | -   |
| Cin               | at V5P0S_IN   |                    |     | 2 x 10 |     | μF   | -   |
| Cout              |               |                    |     | 4 x 22 |     | μF   | -   |
| ESR of output cap | acitor        |                    | 6   | @ 22µF |     | mΩ   | -   |

**Data Sheet** 

**Company Confidential** 

| PARAMETER                             |                                               | TEST<br>CONDITIONS | MIN     | ΤΥΡ      | MAX  | UNIT | Val              |
|---------------------------------------|-----------------------------------------------|--------------------|---------|----------|------|------|------------------|
| ESL of output ca                      | apacitor                                      |                    | 1       | .6 @ 3MF | łz   | nH   | -                |
| L_BOOST                               | inductor value                                |                    | -20%    | 0.47     | +20% | μH   | -                |
| L_DCR                                 | inductor resistance                           |                    |         |          | 48   | mΩ   | -                |
| V5P0S                                 | Output Voltage                                | IOUT= Imax         |         | 5.0±2%   |      | V    | Α                |
| F_BOOST                               | Frequency of operation                        |                    |         | 3        |      | MHz  | А                |
| Transient load p                      | orofile                                       | 0-955mA            |         |          | 250  | ns   | -                |
| Transient droop                       | 24                                            | 0-955mA            |         |          | 202  | mV   | Е                |
| Transient overs                       | noot <sup>25</sup>                            | 955-0mA            |         |          | 202  | mV   | Е                |
| Ton                                   | Turn on time                                  |                    |         |          | 2    | ms   | Е                |
| IQ_OFF                                | Quiescent Current in                          |                    |         |          | 50   | μA   | Е                |
| Off                                   | Mode                                          |                    |         |          |      |      |                  |
| Normal Mode -                         | <ul> <li>Synchronous rectification</li> </ul> | <u>ו (PWM)</u>     | _       |          |      |      |                  |
| Maximum Outpu                         | ut Current (Imax)                             |                    | 1000    |          |      | mA   | D                |
| ILIMIT                                | Current limitation                            | Cycle by cycle     | 1.3*lma | IX       |      | mA   | A*               |
| Efficiency at VS                      | YS = 3.7V & Tamb=60°C                         |                    |         |          |      |      | D,E,             |
| with proposed e                       | xternal components and                        |                    | Se      | e Figure | 45   |      | A* <sup>26</sup> |
| PCB layout                            |                                               |                    |         |          |      |      |                  |
| Sleep Mode – F                        | Pulse skipping (PSK)                          | •                  |         |          |      |      |                  |
| Efficiency at VSYS = 3.7V & Tamb=60°C |                                               |                    |         |          |      |      | D,E,             |
| with proposed external components and |                                               |                    | Se      | e Figure | 45   |      | A*               |
| PCB layout                            |                                               |                    |         |          |      |      |                  |

Table 78: Electrical Parameter for BOOST\_V5P0S



Figure 45:V5P0S Efficiency

**Data Sheet** 

Version 3.A - Final

 <sup>&</sup>lt;sup>24</sup> Including DC accuracy, ripple and load regulation
 <sup>25</sup> Including DC accuracy, ripple and load regulation
 <sup>26</sup> RDSON measurement on ATE



#### **Company Confidential**

### 11.6.12.2 V5P0S Registers

| Register Name | 9          | V5P0S_CTR                                                   | _                                                                                                                                                                                                       | Address                                                                                    | 0x6A<br>Page 1 | Read/Write                                   |              |
|---------------|------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|----------------------------------------------|--------------|
|               |            |                                                             |                                                                                                                                                                                                         | Reset Value                                                                                | 0x60           |                                              |              |
| MSB           |            |                                                             |                                                                                                                                                                                                         |                                                                                            |                |                                              | LSB          |
| R/W           | R/W        | R/W                                                         | R                                                                                                                                                                                                       | R                                                                                          | R              | R/W                                          | R/W          |
|               | √5P0S_VSEL |                                                             |                                                                                                                                                                                                         | reserved                                                                                   |                | V5P0S<br>_SEL                                | V5P0S<br>_EN |
| V5P0S_EN      |            | <b>0</b><br>1                                               |                                                                                                                                                                                                         | V5P0S off<br>V5P0S on                                                                      |                |                                              |              |
| V5P0S_SEL     |            | <b>0</b><br>1                                               | V5P0S controlled by SLP_S3_B according to<br>sequencing<br>V5P0S controlled by V5P0S_CTRL.V5P0S_EN bit<br>Regardless of V5P0S_EN and V5P0S_SEL, V5P0 is<br>disable when SLP_S3_B is asserted, means low |                                                                                            |                | ng to<br>DS_EN bit<br>EL, V5P0 is<br>ans low |              |
| V5P0S_VSEL    |            | 000<br>001<br>010<br><b>011</b><br>100<br>101<br>110<br>111 |                                                                                                                                                                                                         | 4.500V<br>4.750V<br>5.000V<br><b>5.050V nomi</b><br>5.100V<br>reserved<br>5.250V<br>5.500V | nal voltage    |                                              |              |

| V5P0S_    | CTRL.    |          |       |
|-----------|----------|----------|-------|
| V5P0S_SEL | V5P0S_EN | SLP_SS_D | V0P03 |
| 1         | 0        | 1        | Off   |
| 1         | 1        | 1        | On    |
| х         | х        | 0        | Off   |

Table 79: V5P0S Truth Table

### 11.6.12.3 V5P0S Subsystems

#### VHOST:

This voltage rail is used for the 5V VBUS providing energy to the USB2/3 host, switched by an external power switch.

| Register Nan | ne | VHOST_CTR     | ۲L.                                                                                                                                                                                                                                 | Address       | 0x6B<br>Page 1 | Read/Write                   |     |
|--------------|----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|------------------------------|-----|
|              |    |               |                                                                                                                                                                                                                                     | Reset Value   | 0x02           |                              |     |
| MSB          |    |               |                                                                                                                                                                                                                                     |               |                |                              | LSB |
| R            | R  | R             | R                                                                                                                                                                                                                                   | R             | R              | R/W                          | R/W |
| Reserved     |    |               |                                                                                                                                                                                                                                     | VHOST<br>_SEL | VHOST<br>_EN   |                              |     |
| VHOST_EN     |    | <b>0</b><br>1 | VHOST_EN set to high<br>VHOST_EN set to low                                                                                                                                                                                         |               |                |                              |     |
| VHOST_SEL    |    | 0<br>1        | VHOST_EN set to low<br>VHOST_EN controlled by SLP_S0iX_B according to sequencing<br>VHOST_EN controlled by VHOST_CTRL.VHOST_EN bit<br>Regardless of VHOST_EN and VHOST_SEL, VHOST_EN is low<br>when SLP_S3_B is asserted, means low |               |                | quencing<br>bit<br>EN is low |     |

The maximum current of this power domain is defined to 900mA

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| VHOST_    | CTRL.    |          | VHOST EN |
|-----------|----------|----------|----------|
| VHOST_SEL | VHOST_EN | 3LF_33_D |          |
| 1         | 0        | 1        | Low      |
| 1         | 1        | 1        | High     |
| х         | х        | 0        | Low      |

Table 80: VHOST\_EN Truth Table

| Parameter | Value  | Val |
|-----------|--------|-----|
| V_IL      | >0.66V |     |
| V_IH      | <1.1V  |     |
| I_EN      | >0.5µA |     |

Table 81: VHOST External Power Switch Driver Capability

## VBUS:

VBUS is the power rail supplying the VBUS of USB2/3 OTG through an external power switch.

| Register Nan | ne | VBUS_CTRL     |                                                                                                                                                                                                     | Address                 | 0x6C<br>Page 1 | Read/Write |     |
|--------------|----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|------------|-----|
|              |    |               |                                                                                                                                                                                                     | Reset Value             | 0x02           |            |     |
| MSB          |    |               |                                                                                                                                                                                                     |                         |                |            | LSB |
| R            | R  | R             | R                                                                                                                                                                                                   | R                       | R              | R/W        | R/W |
| Reserved     |    |               |                                                                                                                                                                                                     | VBUS<br>_SEL            | VBUS<br>_EN    |            |     |
| VBUS_EN      |    | <b>0</b><br>1 | VBUS_EN se<br>VBUS_EN se                                                                                                                                                                            | et to high<br>et to low |                |            |     |
| VBUS_SEL     |    | 0<br>1        | VBUS_EN set to low<br>VBUS_EN controlled by ULPI_VBUS_EN<br>VBUS_EN controlled by VBUS_CTRL.VBUS_EN bit<br>Regardless of VBUS_EN and VBUS_SEL, VBUS_EN is low whe<br>SLP_S3_B is asserted means low |                         |                | s low when |     |

The maximum current of this power domain is defined to 900mA

| VBUS_    | CTRL.   | LILPI VRUS EN | VBUS EN |
|----------|---------|---------------|---------|
| VBUS_SEL | VBUS_EN |               |         |
| 0        | Х       | Low           | Low     |
| 0        | х       | high          | High    |
| 1        | 0       | Х             | Low     |
| 1        | 1       | Х             | high    |

Table 82: VBUS\_EN Truth Table

| Parameter | Value  | Val |
|-----------|--------|-----|
| V_IL      | >0.66V |     |
| V_IH      | <1.1V  |     |
| I_EN      | >0.5µA |     |

Table 83: VBUS External Switch Driver Capability

**Data Sheet** 

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## VHDMI:

VHDMI is the 5V power supply to HDMI connector sourced by V5P0S through an internal switch. The  $R_{DSon}$  of the internal switch it 900m $\Omega$ 

| Description                                        | Value [max, mΩ] | Val   |
|----------------------------------------------------|-----------------|-------|
| Input power path board resistance                  | 20              | -     |
| Output power path board resistance                 | 200             | -     |
| Input, output rails wirebond & internal FET RDS-ON | 1200            | A,D,E |

Table 84: VHDMI Power Switch Specification

| Register Name VHDMI_CTRI |   |               | L                                                       | Address                                                             | 0x6D<br>Page 1                                      | Read/Write                                     |                        |
|--------------------------|---|---------------|---------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------|
|                          |   |               |                                                         | Reset Value                                                         | 0x02                                                |                                                |                        |
| MSB                      |   |               |                                                         |                                                                     |                                                     |                                                | LSB                    |
| R                        | R | R             | R                                                       | R                                                                   | R                                                   | R/W                                            | R/W                    |
|                          |   | Res           | erved                                                   |                                                                     |                                                     | VHDMI<br>_SEL                                  | VHDMI<br>_EN           |
| VHDMI_EN                 |   | <b>0</b><br>1 | VHDMI_EN o<br>VHDMI_EN o                                | ff<br>n                                                             |                                                     |                                                |                        |
| VHDMI_SEL                |   | 0<br>1        | VHDMI_EN c<br>VHDMI_EN c<br>Regardless o<br>SLP_S3_B is | ontrolled by SL<br>ontrolled by VH<br>f VHDMI_EN a<br>asserted, mea | P_S0iX_B ad<br>IDMI_CTRL.'<br>nd VHDMI_S<br>ins low | ccording seque<br>VHDMI_EN bit<br>EL, VHDMI is | encing<br>disable when |

The maximum current of this power domain is defined to 55mA

| VHDMI_    | CTRL.    |          | ИНОМІ |  |
|-----------|----------|----------|-------|--|
| VHDMI_SEL | VHDMI_EN | 3LF_33_B |       |  |
| 1         | 0        | 1        | Off   |  |
| 1         | 1        | 1        | On    |  |
| х         | х        | 0        | Off   |  |

Table 85: VHDMI Truth Table

#### 11.6.13 VLP Low Power Regulator

The LDO\_LP will be used for running the internal sequencer. It is supplied by the system supply voltage VSYS. This allows a power up prior the system power domains. This LDO acts as the supply for the bias, reference, OTP and DA6021 registers.

Electrical Characteristics (Ta = -40 to +85 °C) VSUP = 2.7 to 4.5V

| PARAMETER      |                         | TEST<br>CONDITIONS  | MIN  | ТҮР | MAX  | UNIT | Val |
|----------------|-------------------------|---------------------|------|-----|------|------|-----|
| VSYS1<br>VSYS2 | Input Voltage           |                     | 2.7  |     | 4.5  | V    | -   |
| VLP            | Output Voltage          | IOUT= Imax          | 2.45 | 2.5 | 2.55 | V    | А   |
| Accuracy       |                         | Room<br>temperature |      |     | 0.6  | %    | A   |
| Cstab          | Stabilization capacitor | Tolerance of ± 35%  | 2.2  |     |      | μF   | -   |
| Cdec           | Decoupling capacitor    | Tolerance of ±      | 220  |     |      | nF   | -   |

#### **Data Sheet**

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

|         |                        | 35%             |    |     |    |     |
|---------|------------------------|-----------------|----|-----|----|-----|
| Cesr    | ESR of capacitor       | F > 1MHz        |    | 0.1 | Ω  |     |
| IMAX    | Maximum Output         |                 | 10 |     | mA | D,E |
| Current |                        |                 |    |     |    |     |
| IQ_ON   | Quiescent current in   |                 |    | 10  | μA | D   |
| ON      | MODE                   |                 |    |     |    |     |
| PSRR    | Power Supply Rejection | Noise = 0.1VPP, | 50 | 60  | dB | D,E |
|         | Ratio                  | 1-10kHz, ½ lout |    |     |    |     |
| Vnoise  | Output Noise           | BW = 10-100kHz, | 60 | 100 | μV | D,E |
|         | -                      | ½ lout          |    |     | -  |     |
| Ton     | Turn on time from POR  |                 | 5  | 10  | ms | D,E |

Table 86: Electrical Parameter for LDO\_LP

### 11.7 Current Monitor

Following switching regulators include an output current measurement feature: VCC, VNN, V1P0A, V1P05S and VDDQ. The output current is measured internally and averaged across 1ms. The average current is digitalized by using 10 bits ADC (refer to ADC section) and stored into 2 x 8 bits registers for each mentioned voltage rail as specified. The average current is updated to the respective registers once every 1ms. VCC & VNN output current are stored in SVID registers 0x14(IoutH) and 0x15(IoutL) with their respective voltage rail address. V1P0A output current is stored in 0x1D(IoutH) and 0x1E(IoutL) registers at SVID voltage rail address of 00h. VDDQ output current is stored in 0x1D(IoutH) and 0x1E(IoutL) registers at SVID voltage rail address of 01h. V1P05S output current is stored in 0x1F(IoutH) & 0x20h(IoutL) registers at SVID voltage rail address of 00h.

Current measurement tolerance target for each voltage rails above is as below:



Figure 46: Current Measurement Tolerance Boundary

| Voltage Rail | Resolution | Tolerance | Val |
|--------------|------------|-----------|-----|
| VCC          | 20mA/LSB   | ±5%       | A*  |
| VNN          | 20mA/LSB   | ±5%       | A*  |
| V1P0A        | 5mA/LSB    | ±5%       | A*  |
| V1P05S       | 2.5mA/LSB  | ±5%       | A*  |
| VDDQ         | 5mA/LSB    | ±5%       | A*  |

Table 87: Current Measurement Resolution

# **C** SEMICONDUCTOR

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### **Company Confidential**

## 11.7.1 VCC/VNN Current vs ADC data







### Figure 48: Typical VCC Current Sensing Error



### Figure 49: Typical VNN Current Sensing Error

**Data Sheet** 

**Company Confidential** 

### 11.7.2 V1P0A Current vs ADC data







Figure 51: Typical V1P0A Current Sensing Error

#### **Company Confidential**

#### 11.7.3 V1P5S Current vs ADC data



## Figure 52: V1P05S ADC Current Coding



Figure 53: Typical V1P05S Current Sensing Error

### HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 11.7.4 VDDQ Current vs ADC data







Figure 55: Typical VDDQ Current Sensing Error



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 12. I2C Interface

#### 12.1 Overview

DA6021 is a slave-only device that is mastered by the SoC. It resides off the SoC's I2C. The slave device implemented on DA6021 side is an asynchronous implementation and will support the high speed mode (3.4MHz). Some of the main features for the I2C slave are:

- DA6021 is accessed using a 7-bit addressing scheme.
- I2C slave is not allowed to stretch the clock, and must be capable of being multi-mastered in a debug environment.
- The interface draws as minimum power when not actively reading/writing registers.
- The slave adapts to the incoming frequency without any communication as the protocol for fast mode and high speed mode is the same.
- 2 Slave Address are supported. Each address is targeting a 256 register page inside DA6021.
- Sequential offset accesses within a single transaction (burst reads and writes) are not required.
- Interface implementation is asynchronous.

### 12.2 Slave Addresses

DA6021 supports the standard I2C read and write functions. The configuration register space is divided into two 256-byte partitions. DA6021 supports five 7-bit device addresses to access each of the 256 byte partitions. Note that in 8-bit format, these addresses correspond to 0xBC and 0xDC for writes, and 0xBD and 0xDD for reads.

In order to avoid conflict with the assigned addresses the slave addresses will be programmable via OTP.

|          | Slave address | Read address | Write address |
|----------|---------------|--------------|---------------|
| Device 1 | 0x5E          | 0xBC         | 0xBD          |
| Device 2 | 0x6E          | 0xDC         | 0xDD          |

| Table 88: I | 2C Slave | Addresses |
|-------------|----------|-----------|
|-------------|----------|-----------|

The slave addresses need to be locked in order to avoid that software can overwrite them and disable the communication.

## 12.3 Protocol

Reads from PMIC registers follow the "combined protocol" as described in the I2C specification, in which the first byte written is the register offset to be read, and the first byte read (after a repeat START condition) is the data from that register offset. See the figures below for details. The following diagrams capture the different high-speed and fast-speed transaction format/protocol

| s                                      | 7b SLAVE<br>ADDRESS | 5 | R/W | A | 8b D                             | ATA                                           | Α                                            | 8b D         | ΑΤΑ       | A/Ā | Р |
|----------------------------------------|---------------------|---|-----|---|----------------------------------|-----------------------------------------------|----------------------------------------------|--------------|-----------|-----|---|
| 7'h5E or 7'h6E '0' (Write) Reg. Offset |                     |   |     |   | Offset                           |                                               | Reg.                                         | Data         |           |     |   |
| Master to Slave                        |                     |   |     |   | A = 2<br>A = 1<br>S = 3<br>P = 3 | Acknowle<br>Not Ackno<br>START Co<br>STOP Cor | dge (SDA<br>owledge (<br>ondition<br>ndition | LOW<br>SDA H | )<br>HGH) |     |   |

Figure 56: I2C Fast Speed Write

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



Sr = REPEAT START Condition



## **12.4 Electrical Requirements**

| Parameter     | Min     | Nom | Max     | Units | Notes               | Val |
|---------------|---------|-----|---------|-------|---------------------|-----|
| Voltage (VDD) | 1.71    | 1.8 | 1.89    | V     | At pin              | -   |
| Vil           |         |     | 0.3*VDD | V     |                     | А   |
| Vih           | 0.7*VDD |     |         | V     |                     | А   |
| Vhys          | 0.1     |     |         | V     |                     | D,E |
| Vol           |         |     | 0.2*VDD | V     |                     | А   |
| Cpin          | 2       |     | 5       | pF    |                     | D,E |
| Tfall_hs      | 10      |     | 40      | ns    | 3.33 Mb/s Operation | E   |
| Tfall_fs      | 20      |     | 300     | Ns    | 400 Kb/s Operation  | E   |
| Tr/Tf         | 30      |     | 70      | %     | Measurement Points  | E   |

Table 89: I2C Signal Electrical Specification



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## **13. External EEPROM Controller**

## 13.1 Overview

During the initial power-on sequence the content of the OTP is copied into the sequencer execution registers. As the OTP registers can be programmed only during manufacturing & testing process, the EEPROM controller function provides the possibility in overwriting the sequencer execution registers in the field and/or as backup.

During initial power-on the EEPROM access will always be interrogated. EEPROM reading and register copying depend on a valid signature inside the EEPROM. Therefore the EEPROM has to be supplied from a dedicated external power rail or directly from the main battery. If no valid signature is read, DA6021 operates with the register setting based on the OTP registers.

| Parameter | Min      | Nom | Max      | Units | Notes                                          | Val |
|-----------|----------|-----|----------|-------|------------------------------------------------|-----|
| Voltage   | 1.71     | 1.8 | 1.89     | V     | At pin                                         | -   |
| Vil       |          |     | 0.3*VDD1 | V     |                                                | А   |
| Vih       | 0.7*VDD1 |     |          | V     |                                                | А   |
| Vhys      | 0.1      |     |          | V     |                                                | D,E |
| Vol       |          |     | 0.2*VDD1 | V     |                                                | А   |
| Cpin      | 2        |     | 5        | pF    |                                                | D   |
| fmax      |          |     | 125      | kHz   |                                                | D,E |
| Trise_fs  | 20       |     | 300      | Ns    | Pull-up resistor is<br>integrated in<br>DA6021 | D,E |
| Tfall_fs  | 20       |     | 300      | ns    | Full Speed<br>Operation                        | D,E |
| Tr/Tf     | 30       |     | 70       | %     | Measurement Points                             | D,E |

## **13.2 Electrical Characteristics**

Table 90: EEPROM Signal Electrical Specifications

## 13.3 Functions

- The internal CLKGEN provides a 125kHz clock signal to the EEPROM I2C master clock output.
- An EEPROM read is internally initiated by DA6021 power sequence state machine.
- EEPROM initial address EEPROM\_SIGN\_ADDR, defined by Register Bit written by OTP is read first to see if EEPROM is connected and data at initial address is correct. If one of these two conditions is not fulfilled, EEPROM data will not be copied to register.
- In case EEPROM is connected and data at initial address SIGN\_ADDR is correct, EEPROM content from SIGN\_ADDR + 1 to end address STOP\_ADDR will be copied to register starting at address defined by register SIGN\_ADDR = SIGN\_ADDR + 1.
- There is a status register in DA6021 implemented indicating the status of EEPROM connection, the signature matching and data copying.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 14. Power Source Detection

#### 14.1 Overview

There are three input supply sources that can be detected by DA6021: VBAT, VDCIN\_SENSE and VBUS\_SENSE referring respectively to the battery, AC adapter and USB connector. For all power sources dedicated comparators are used for the power detection. All detectors include de-bounce logic with a nominal time period of 100ms which can be disabled by software.

## 14.2 VBAT Power Source Detection

#### 14.2.1 Battery Voltage Monitor & Removal / Insertion Detection



Figure 60: VBAT Input Detection

It is advantageous to use a battery pack with integrated BSI resistance (pull-down in the battery pack indicating the ID or size) as it offers an advanced warning on battery removal events. Such an implementation is necessary to meet the SDWN\_B signal timing requirement of some modem SIM cards.

During normal operation (battery pack present/inserted), the BSI resistance in the battery pack pulls the analog voltage at the BATID pin to an intermediate voltage, between VREF (ADC bias voltage from the VREFB pin) and GND. When the BSI terminal of the battery pack no longer makes contact (as on removal), BATID is immediately pulled high to VREF by the measurement resistance on the platform,  $R_{MBI}$  (30K $\Omega$  to 200K $\Omega$ ).

While using the BATID comparator sensing the battery insertion / removal, there are separate de-bounce times for insertion and removal. This provides sufficient power-up time for USB PHY related components on insertion, on the other hand it allows a quick detection time of battery removal for SIM card early warning (via SDWN\_B).

Note that BAITD comparator is giving a low output if the battery is removed.

When BATRMSRC=1 (using BATID comparator), the thresholds in the table below define the present/absent voltage trip points. Note that when using the BATID comparator to sense battery insertion / removal, there are separate debounce times for insertion and removal. This is to allow for sufficient power-up sequencing of USB PHY related components on insertion, and also allow for quick detection of battery removal for SIM card early warning (via SDWN\_B).

| Parameter           | Description                                                  | Min           | Тур      | Max           | Unit | Val |
|---------------------|--------------------------------------------------------------|---------------|----------|---------------|------|-----|
| V'BATIDREFH         | BATID Rising threshold (L->H, indicating battery removal)    | Тур-<br>0.025 | 0.9*Vref | Тур+<br>0.025 | V    | A   |
| V'BATIDREFL         | BATID Falling threshold (H->L, indicating battery insertion) | Тур-<br>0.025 | 0.8*Vref | Тур+<br>0.025 | V    | A   |
| tDEBOUNCE<br>insert | BATID Presence Comparator<br>Debouncing Time (Insertion)     | 90            | 100      | 110           | ms   | A   |
| tDEBOUNCE<br>remove | BATID Presence Comparator<br>Debouncing Time (Removal)       | 30            |          | 62            | μs   | A   |

### Table 91: BATID Comparator Threshold

The second method detecting a battery removal is while monitoring the battery voltage itself via a battery voltage comparator. The table below specifies the thresholds of the battery removal comparator.

| Parameter   | Description                                                             | Min   | Тур | Max   | Unit | Val |
|-------------|-------------------------------------------------------------------------|-------|-----|-------|------|-----|
| V'BATRMREFH | VBAT Rising Threshold (L->H, indicating battery insertion)              | 2.075 | 2.1 | 2.125 | V    | A   |
| V'BATRMREFL | VBAT Falling Threshold (H->L, indicating battery removal)               | 1.975 | 2.0 | 2.025 | V    | A   |
| tDEBOUNCE   | Battey Voltage Comparator<br>Debouncing Time (Insertion and<br>removal) | 90    | 100 | 110   | ms   | A   |

Table 92: VBAT Removal Comparator Threshold

#### 14.2.2 Battery Pack Interface

The BATID pin supports three possible functions: digital battery communication, analog measurement of an ID resistance, and/or analog battery presence detection.

This digital communication is intended to be left generic, with simple pass through level shifters to/from the host on 2 discrete pins, one to the SOC and one from the SOC. The intent is to be protocol agnostic to provide support for many standards. The figure below illustrates the multiple uses of BATID.



Figure 61: Battery Single Wire Block Diagram for Analog sensing, Digital communication

| Parameter | Min   | Nom | Max  | Units | Notes                 | Val  |
|-----------|-------|-----|------|-------|-----------------------|------|
| Frequency | 3.268 |     | 250  | kHz   | Digital communication | D, E |
| Voltage   | 1.71  | 1.8 | 1.89 | V     |                       | -    |
| Vil       |       |     | 0.35 | V     |                       | А    |
| Vih       | 0.9   |     |      | V     |                       | А    |
| Vhys      | 0.05  |     |      | V     |                       | D,E  |

#### **Data Sheet**



**Company Confidential** 



| Vol   |  | 0.1 | V  | 1mA source current | А   |
|-------|--|-----|----|--------------------|-----|
| Cload |  | 380 | pF |                    | D,E |
| Trise |  | 500 | ns | 0V to Vih(min)     | D,E |
| Tfall |  | 500 | ns | Vpu to Vil(max)    | D,E |

Table 93: BATID Electrical Specification

#### 14.2.3 Battery Presence Detection

Normally the BSI resistor will pull the voltage on the BATID line to a level that is lower than a set trip point. If the battery is removed, the BATID node will be pulled high by the  $R_{MBI}$  platform resistor which is typically in the range of 30K $\Omega$  to 200K $\Omega$ . When this occurs, DA6021 detects that the battery is being removed (if configured). The integrated 100ms de-bounce logic ensures there are no false removal alerts.

Depending on the DA6021 setting either a complete Cold Off sequence will be performed or an interrupt to the SOC will be sent.

If the DBIEN bit be set, allowing digital battery communication mode to be entered on the BATID pin, the battery presence logic is switched off to avoid battery removal detection. Prior to Digital Battery Communication, DA6021 retains the last known BATID line voltage value in order to ensure that no false battery removal events are reported.

#### 14.2.4 BSI Sensing

DA6021 is able to detect the presence of the  $R_{BSI}$  resistor as shown. The  $R_{BSI}$  is a 1% resistor and can range anywhere from 0 to 130k $\Omega$ . DA6021 is able to differentiate between different ID resistances (assuming standard 1% values over the aforementioned range).

#### 14.2.5 Digital Battery Communications

DA6021 includes level shifting hardware that will take the single BATID line and convert it to two unidirectional 1.8V I/O signals, BATIDIN and BATIDOUT. The SOC will communicate with the battery digital interface via DA6021 which is transparent and shifts the signals from the battery voltage domain to the 1.8V SOC domain. GPIO0P1 and GPIO0P2 pins are used for this function.

Software, based on the value of the BSI resistance discovered, may choose to enable digital battery communication.

Whenever digital communication is enabled (DBIEN bit in the BATDETCTRL register), DA6021 disables the analog BATID presence sensing logic, and not falsely report removal events.

| Parameter     | Min      | Nom | Max     | Units | Notes              | Val |
|---------------|----------|-----|---------|-------|--------------------|-----|
| Voltage (VDD) | 1.71     | 1.8 | 1.89    | V     | At pin             | -   |
| Vil           |          |     | 0.3*VDD | V     |                    | А   |
| Vih           | 0.7*VDD  |     |         | V     |                    | А   |
| Vhys          | 0.1      |     |         | V     |                    | D,E |
| Vol           |          |     | 0.2*VDD | V     |                    | А   |
| Voh           | VDD-0.45 |     |         | V     |                    |     |
| Trise         | 20       |     | 300     | ns    |                    | D,E |
| Tfall         | 20       |     | 300     | ns    |                    | D,E |
| Tr/Tf         | 30       |     | 70      | %     | Measurement Points |     |

Table 94: Digital Battery Interface Specification

### 14.2.6 System Voltage Monitor

For the system voltage comparator is meaningful to be acknowledged once the VSYS is considered valid. This can be done via simple comparator and fixed thresholds. For lower threshold the behavior must be seen together with the POR.



Figure 62: VSYS Valid Input Power Detection

| Parameter | Description                            | Min   | Тур  | Max   | Unit | Val |
|-----------|----------------------------------------|-------|------|-------|------|-----|
| VSYSREFH  | VSYS Rising Threshold (VSYS:<br>L->H)  | 2.975 | 3.0  | 3.035 | V    | A   |
| VSYSREFL  | VSYS Falling Threshold (VSYS:<br>H->L) | 2.675 | 2.70 | 2.725 | V    | A   |
| tDEBOUNCE | VSYS comparator debouncing time        | 90    | 100  | 110   | ms   | A   |

Table 95: VSYSREF Definition

## 14.3 VBUS Power Source Detection

Following is the diagram of the VBUS voltage detection.





#### VBUS Rising (Connection Event)

When the VBUS level at the comparator becomes higher than reference voltage (including rising edge hysteresis), VBUS is considered valid. If the VBUSDBEN bit is set in the VBUSDETCTRL register, VBUS must be sensed as valid for the full 100ms de-bounce time before the SVBUSDET bit in the SPWRSRCIRQ register is set, indicating charger connection. If VBUSDBEN is cleared, SVBUSDET is set immediately upon VBUS becoming valid.





#### VBUS Falling (Disconnection Event)

When the VBUS level at the comparator becomes lower than reference voltage (including falling edge hysteresis), VBUS is considered invalid. If the VBUSDBEN bit is set in the VBUSDETCTRL register, VBUS must be sensed as invalid for the full 100ms de-bounce time before the SVBUSDET bit in the SPWRSRCIRQ register is cleared, indicating charger disconnection. If VBUSDBEN is cleared, SVBUSDET is cleared immediately upon VBUS becoming invalid.

On any change in the SVBUSDET bit in the SPWRSRCIRQ register (set or clear), the corresponding interrupt flag, VBUSDET, is set in the PWRSRCIRQ 2<sup>nd</sup>-level interrupt register. This automatically sets the PWRSRC interrupt flag in the IRQLVL1 interrupt register, and alerts the SOC. The SOC is expected to query the SVBUSDET bit in SPWRSRCIRQ to determine if the event was a connection or disconnection.

#### Analog electrical parameters:

| Parameter          | Symbol | Condition | Min | Тур | Max | unit | Val |
|--------------------|--------|-----------|-----|-----|-----|------|-----|
| Static parameters  |        |           |     |     |     |      |     |
| Rising Threshold   |        |           | 895 | 940 | 990 | mV   | А   |
| Falling Threshold  |        |           | 810 | 860 | 900 | mV   | А   |
| Hysteresis         |        |           | 65  | 80  | 90  | mV   | D,E |
| Dynamic parameters |        |           |     |     |     |      |     |
| Rising Delay       |        |           | 1   | 10  | 20  | us   | D,E |
| Falling Delay      |        |           | 1   | 10  | 20  | us   | D,E |

Table 96: VBUS Detection, Analog Electrical Parameters

## 14.4 VDCIN Power Source Detection Comparators

The VDCIN\_SENSE detection will be done in a similar fashion as for the VBUS.



Figure 64: DCIN Detection

The same sequence of operation as in the case of the VBUS will be followed to decide on the booting. After detecting the DCIN an IRQ on removal / Insertion event will be generated.

#### VDCIN Rising (Connection Event)

When the VDCIN level at the comparator becomes higher than the reference voltage (including rising edge hysteresis), VDCIN is considered valid. If the VDCINDBEN bit is set in the VDCINDETCTRL register, VDCIN must be sensed as valid for the full 100ms de-bounce time before the SDCINDET bit in the SPWRSRCIRQ register is set, indicating adapter connection. If VDCINDBEN is cleared, SDCINDET is set immediately upon VDCIN becoming valid.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### VDCIN Falling (Disconnection Event)

When the VDCIN level at the comparator becomes lower than the reference voltage (including falling edge hysteresis), VDCIN is considered invalid. If the VDCINDBEN bit is set in the VDCINDETCTRL register, VDCIN must be sensed as invalid for the full 100ms de-bounce time before the SDCINDET bit in the SPWRSRCIRQ register is cleared, indicating charger disconnection. If VDCINDBEN is cleared, SDCINDET is cleared immediately upon VDCIN becoming invalid.

On any change in the SDCINDET bit in the SPWRSRCIRQ register (set or clear), the corresponding interrupt flag, DCINDET, is set in the PWRSRCIRQ 2<sup>nd</sup>-level interrupt register. This automatically sets the PWRSRC interrupt flag in the IRQLVL1 interrupt register, and alerts the SOC. The SOC is expected to query the SDCINDET bit in SPWRSRCIRQ to determine if the event was a connection or disconnection.

Analog electrical parameters:

| Parameter                            | Symbol    | Min | Тур | Max | unit | Val |
|--------------------------------------|-----------|-----|-----|-----|------|-----|
| VDCIN Rising Threshold (VDCIN: L->H) | VDCINREFH | 895 | 940 | 990 | mV   | А   |
| VDCIN Falling Threshold (VDCIN H->L) | VDCINREFL | 810 | 860 | 900 | mV   | А   |
| debouncing                           |           | 90  | 100 | 110 | ms   | А   |

Table 97: VDCIN Detection, Analog Electrical Parameters

## 14.5 BATLOW Definition

Once detection is done, according to the supply configuration, the ADC will be triggered to measure the VBAT voltage. The result register will be compared with one of the four possible threshold levels defined to generate the BATLOW signal. This is needed in order to decide if we can boot or not. Below a figure with the levels and the explanation for the different LOWBAT levels



Figure 65: Valid Battery Thresholds

- **LOWBAT**: No supply source detected apart from the main battery.
- LOWBATSDP: VBUS\_SENSE detected and USB is of the SDP type.
- LOWBATDCP: VBUS\_SENSE detected and USB is of the DCP, CDP or ACA type.
- **LOWBATDC**: VDCIN\_SENSE is detected so an AC adapter is connected.

After every battery measurement the result will be compared with the corresponding thresholds. If the system is running on AC/DC plug or USB supply the VBAT input voltage is measured frequently with the ADC. If the level drops below an appropriate threshold the PMIC will assert the BATLOW pin, the processor will then take action. All thresholds are preprogrammed in OTP and can be overwritten by software.

**Data Sheet** 



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### **14.6 Power Source Detection Events**

The events generated from the Power Source Detection Logic and driven into the event interface are:

- Battery Insertion Event.
- Battery Removal Event.
- USB Insertion Event.
- USB Removal Event.
- DCIN Insertion Event.
- DCIN Removal Event.
- VSYS Valid Event

All power source detection events will generate an Interrupt towards the SoC

- Battery wake-up
- AC/DC wake-up
- USB wake-up

### 14.7 Wake-Up Logic

In order to make decision about the wakeup, SYSCO takes status information regarding power supply source and the power button and event generated from these. Following table shows the wakeup decision.

| Events                   | Condition to be Fulfilled                                                                          | Comments                                                                                                                                                                                                                   |
|--------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Battery Insertion        | <ul> <li>BATWAKEEN = 1</li> <li>BATLOW_B = 1</li> </ul>                                            | Regardless of other power supplies status.                                                                                                                                                                                 |
| AC Adapter<br>Insertion  | <ul> <li>ADPWAKEEN = 1</li> <li>BATLOW_B = 1</li> <li>DCBOOT = 0</li> </ul>                        | Dependency on battery status                                                                                                                                                                                               |
|                          | <ul> <li>ADPWAKEEN = 1</li> <li>BATLOW_B = 1</li> <li>DCBOOT = 1</li> </ul>                        | No dependency on battery status                                                                                                                                                                                            |
| USB Insertion            | <ul> <li>USBWAKEEN = 1</li> <li>BATLOW_B = 1</li> <li>Battery Present.</li> </ul>                  | Wakeup is not allowed if we are running only on USB.                                                                                                                                                                       |
| Battery<br>Becomes Valid | <ul> <li>BATLOW_B = 1</li> <li>ADPWAKEEN = 1</li> </ul>                                            | Battery present. AC/DC insertion<br>event (DCBOOT = 0). The wakeup is<br>only delayed till battery is charged<br>enough (VBAT > BATLOW)                                                                                    |
|                          | <ul> <li>BATLOW_B = 1</li> <li>USBWAKEEN = 1</li> </ul>                                            | Battery present. USB insertion event.<br>The wakeup is only delayed till<br>battery is charged enough.                                                                                                                     |
| Power Button             | <ul> <li>BATLOW_B = 1</li> <li>PWRBTNWAKE.USBWAKE = 01</li> <li>PWRBTNWAKE.USBWAKE = 10</li> </ul> | System running on battery<br>Battery present and charging from<br>USB. Battery not charged enough.<br>01 = DCP charging wakeup<br>11 = SDP (500mA) charging wakeup<br>With 100mA USB source there is not<br>boot possible. |
|                          | <ul> <li>PWRBTNWAKE.ACDCWAKE = 1</li> <li>DCBOOT = 0</li> </ul>                                    | Battery present and charging from AC/DC. Battery still not charged enough.                                                                                                                                                 |
|                          | <ul> <li>DCBOOT = 1</li> <li>BSTRMDETRN = 0</li> </ul>                                             | Wakeup immediately                                                                                                                                                                                                         |

Table 98: System Wake-Up Condition

#### **Data Sheet**

Version 3.A - Final



It is assumed that DA6021 is in SOC\_G3 and VSYS is valid. Such wake-up event will be generated even if the system is in SOC\_S4, SOC\_S3 and SOC\_SX. Wake-up is completely under the control of the processor.

A power button event is forwarded to the SOC via the DA6021 PWRBTN\_B output pin and SOC will take the action. In case of an event other than the power button an interrupt towards the SoC will be generated.

Following the wake-up signal generation in SOC\_G3:

- 1. Power Source Detection Logic detects an event (power button or power source insertion)
- 2. ADC is triggered to measure VBAT
- 3. ADC will provide the measurement result is available
- 4. Power Source detection Logic compares the measurement result with the programmed LOWBAT value, according to the available source
- 5. Issue a wake-up event notifying the wake-up source

This will be done only if in SOC\_G3 and there is no need to measure the VBUS and DCIN. In case of USB insertion and the battery measurement gives as result battery low Power Source Detection Logic will trigger the ADC every 4 second. As this is not critical time an error of 100ms is tolerated.

## 14.8 DA6021 Catastrophic and Critical Events

There are 9 "catastrophic and critical events" which may force an immediate Cold Off, i.e. force an immediate hardware-controlled VR shutdown, or simply alert the SOC. Four of these events – BCU VCRIT, BATRM, System TEMP and battery TEMP – may have configurable action, programmed via the I2C register map. These events are split into two categories: "Catastrophic" and "Critical"

Catastrophic events are:

- THERMTRIP\_B The SOC asserts THERMTRIP\_B in response to an SOC over-temperature condition. DA6021 asserts SDWN\_B immediately. After 90us, shuts down all VRs.
- PMICTEMP DA6021 detects a critical over-temperature condition on its internal die sensor and asserts SDWN\_B immediately. After 90us, shuts down all VRs.
- System TEMP DA6021 detects a critical over-temperature condition on an external system thermistor. If programmed DA6021 asserts SDWN\_B immediately. After 90us, shuts down all VRs.
- Battery TEMP DA6021 detects a critical over-temperature condition on an external battery thermistor. If programmed DA6021 asserts SDWN\_B immediately. After 90us, shuts down all VRs.
- VSYSUVP DA6021 detects VSYS "undervoltage" (VSYS ≤ 2.7V) by VSYS under voltage hard-coded comparator for more than 100µs.DA6021 asserts SDWN\_B immediately. After 90us, shuts down all VRs.
- VSYSOVP DA6021 detects VSYS "overvoltage" (VSYS ≥ 5.4V min) by VSYS over voltage hard-coded comparator for more than 100µs.DA6021 asserts SDWN\_B together with shutting down all VRs immediately.
- VBATRM DA6021 detects that a battery was removed from the system by VBAT comparator when the bit BATRMSRC in the PSDETCTRL register is cleared (=0). If BATRMPDEN is set (=1), DA6021 asserts SDWN\_B immediately. After 90us, shut down all VRs. If BATRMPDEN is cleared, DA6021 operates without detecting a valid battery is present ONLY if an AC/DC adapter (SDCINDET\_B=1), therefore no Cold Off in this case. Instead, an interrupt is sent to the SOC (assuming unmasked, via the normal behavior of the SBATDET bit). However, even if BATRMPDEN is cleared, a Cold Off will still be executed if no AC/DC adapter is detected (SDCINDET\_B=0).



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

Critical events are:

- IDBATRM DA6021 detects that a battery was removed from the system by BATID presence comparator when the bit BATRMSRC in the PSDETCTRL register is set (=1). All VRs are shut down in sequenced order but without waiting for SLP\_S\*\_B from SOC. If BATRMPDEN is cleared, the PMIC may operate without detecting a valid battery is present ONLY if an AC/DC adapter (SDCINDET\_B=1), therefore no Cold Off in this case. Instead, an interrupt is sent to the SOC (assuming unmasked, via the normal behavior of the SBATDET bit). However, even if BATRMPDEN is cleared, a Cold Off will still be executed if no AC/DC adapter is detected (SDCINDET\_B=0)
- BCU VCRIT The BCU detects that the VSYS voltage node has entered the "VCRIT" operating zone. If the VCRITCFG register in the BCU configuration space is set to enable shutdown action, All VRs are shut down in sequenced order but without waiting for SLP\_S\*\_B from SOC. If VCRITCFG is not set to enable shutdown action, only an interrupt is sent to the SOC (via the normal method).

## 14.9 Power Source Registers

| Register Name | Register Name <b>PWRSRCIRQ</b> |          | 2                           | Address        | 0x03<br>Page 1 | Read/Write |         |
|---------------|--------------------------------|----------|-----------------------------|----------------|----------------|------------|---------|
|               |                                |          |                             | Reset Value    | 0x00           |            |         |
| MSB           |                                |          |                             |                |                |            | LSB     |
| R             | R                              | R        | R                           | R              | R/W            | R/W        | R/W     |
|               |                                | reserved |                             |                | BATDET         | DCDET      | VBUSDET |
| VBUSDET       |                                | 0        | No change                   |                |                |            |         |
|               |                                | 1        | Change in c                 | onnection stat | us             |            |         |
| DCDET         |                                | 0        | No change                   |                |                |            |         |
|               |                                | 1        | Change in connection status |                |                |            |         |
| BATDET        |                                | 0        | No change                   |                |                |            |         |
|               |                                | 1        | Change in connection status |                |                |            |         |

| Register Name MPWRSRC                                   |     | MPWRSRCI | RQS0                                         | Address                                 | 0x0F<br>Page 1  | Read/Write   |        |  |  |
|---------------------------------------------------------|-----|----------|----------------------------------------------|-----------------------------------------|-----------------|--------------|--------|--|--|
|                                                         |     |          |                                              | Reset<br>Value                          | 0x07            |              |        |  |  |
| MSB                                                     |     |          |                                              |                                         |                 |              | LSB    |  |  |
| R                                                       | R   | R        | R                                            | R                                       | R/W             | R/W          | R/W    |  |  |
|                                                         |     | Reserved |                                              | MBATDET                                 | MDCDET          | MVBUS        |        |  |  |
|                                                         |     |          |                                              |                                         | _S0             | _S0          | DET_S0 |  |  |
| <b>MVBUSDET</b>                                         | _S0 | 0        | VBUS detec                                   | VBUS detection not masked, S0 mode only |                 |              |        |  |  |
|                                                         |     | 1        | VBUS detect                                  | tion masked,                            | S0 mode only    |              |        |  |  |
| MDCDET_S                                                | )   | 0        | AC/DC adap                                   | oter detection                          | not masked, S   | S0 mode only |        |  |  |
|                                                         |     | 1        | AC/DC adapter detection masked, S0 mode only |                                         |                 |              |        |  |  |
| MBATDET_S0 0 Battery detection not masked, S0 mode only |     |          |                                              |                                         |                 |              |        |  |  |
|                                                         |     | 1        | Battery dete                                 | ction masked                            | l, S0 mode only | /            |        |  |  |



**Company Confidential** 

| Register Name M |   | MPWRSRCIR | MPWRSRCIRQSX                                                                                             |                               | 0x10<br>Page 1                  | Read/Write       |                 |
|-----------------|---|-----------|----------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|------------------|-----------------|
|                 |   |           |                                                                                                          | Reset Value                   | 0x07                            |                  |                 |
| MSB             |   |           |                                                                                                          |                               |                                 |                  | LSB             |
| R               | R | R         | R                                                                                                        | R                             | R/W                             | R/W              | R/W             |
|                 |   | reserved  |                                                                                                          |                               | MBATDET                         | MDCDET           | <b>MVBUSDET</b> |
| MVBUSDET        |   | 0<br>1    | VBUS detection VBUS detection                                                                            | ction not masked,             | ed, sleep mode<br>sleep modes o | es only<br>only  |                 |
| MDCDET          |   | 0<br>1    | AC/DC adapter detection not masked, sleep modes only<br>AC/DC adapter detection masked, sleep modes only |                               |                                 |                  |                 |
| MBATDET         |   | 0         | Battery dete<br>Battery dete                                                                             | ection not maslection masked, | ked, sleep mo<br>sleep modes    | des only<br>only |                 |

| Register Name S                                                 |   | SPWRSRC  |             | Address                           | 0x1E<br>Page 1 | Read/Write |          |  |
|-----------------------------------------------------------------|---|----------|-------------|-----------------------------------|----------------|------------|----------|--|
|                                                                 |   |          |             | Reset Value                       | 0x00           |            |          |  |
| MSB                                                             |   |          |             |                                   |                |            | LSB      |  |
| R                                                               | R | R        | R           | R                                 | R/W            | R/W        | R/W      |  |
|                                                                 |   | reserved |             |                                   | SBATDET        | SDCDET     | SVBUSDET |  |
| SVBUSDET                                                        |   | 0        | VBUS detec  | BUS detection status disconnected |                |            |          |  |
|                                                                 |   | 1        | Connected   |                                   |                |            |          |  |
| SDCDET                                                          |   | 0        | AC/DC dete  | ction status di                   | sconnected     |            |          |  |
|                                                                 |   | 1        | 1 Connected |                                   |                |            |          |  |
| SBATDET         0         Battery detection status disconnected |   |          |             |                                   |                |            |          |  |
| 1 Connected                                                     |   |          |             |                                   |                |            |          |  |

| Register Name |     | PSDETCFG |                                                                | Address                                    | 0x25<br>Page 1 | Read/Write |          |  |  |
|---------------|-----|----------|----------------------------------------------------------------|--------------------------------------------|----------------|------------|----------|--|--|
|               |     |          |                                                                | Reset Value                                | 0x07           |            |          |  |  |
| MSB           |     |          |                                                                |                                            |                |            | LSB      |  |  |
| R             | R   | R        | R/W                                                            | R/W R/W R/W                                |                |            |          |  |  |
| reserv        | ved | DBIEN    | BATRMSR                                                        | BATRMDEN                                   | I BATDBEN      | VDCINDBEN  | VBUSDBEN |  |  |
|               |     |          | С                                                              |                                            |                |            |          |  |  |
| VBUSDBEN      |     | 0        | VBUS de-bo                                                     | unce window                                | disable        |            |          |  |  |
|               |     | 1        | VBUS de-bo                                                     | unce window                                | enable         |            |          |  |  |
| VDCDBEN       |     | 0        | VDCIN_SENSE de-bounce window disable                           |                                            |                |            |          |  |  |
|               |     | 1        | VDCIN_SEN                                                      | ISE de-bounce                              | e window enab  | ole        |          |  |  |
| BATDBEN       |     | 0        | Battery dete                                                   | Battery detection de-bounce window disable |                |            |          |  |  |
|               |     | 1        | Battery dete                                                   | ction de-bound                             | ce window ena  | ble        |          |  |  |
| BATRMDEN      |     |          | Battery removal power down enable                              |                                            |                |            |          |  |  |
|               |     | 0        | Disable, take no action upon battery removal. If CHGDET=0 send |                                            |                |            |          |  |  |
|               |     |          | DCP, if CHG                                                    | DET=1 then p                               | erform a Cold  | off        |          |  |  |
|               |     | 1        | Enable, perf                                                   | orm a cold off                             |                |            |          |  |  |
| BATRMSRC      |     | 0        | VBAT comparator                                                |                                            |                |            |          |  |  |
|               |     | 1        | BATID presence comparator                                      |                                            |                |            |          |  |  |
| DBIEN         |     | 0        | Digital battery interface communication disable                |                                            |                |            |          |  |  |
|               |     | 1        | Digital batter                                                 | y interface co                             | mmunication e  | nable      |          |  |  |



**Company Confidential** 

#### **Register Name** LOWBATDET0 Address 0x23 Read/Write Page 1 Reset Value 0xCB MSB LSB R/W R/W R/W R/W R/W R/W R/W R DCBOOT LOWBATDC LOWBAT LOWBAT[3:0] 0000 2.2V 0001 2.4V 2.6V 0010 0011 2.7V 0100 2.8V 2.9V 0101 3.0V 0110 3.1V 0111 1000 3.2v 1001 3.3V 3.4V 1010 3.5V 1011 3.6V 1100 1101 3.7V 1110 3.8V 1111 3.9V LOWBATDC[2:0] 000 2.2V 001 2.4V 010 2.6V 2.8V 011 100 3.0V 3.2V 101 110 3.4V 3.6V 111 DCBOOT 0 System boot depending on battery setting by LOWBAT[3:0] when AD/DC adapter is plugged in 1 System boot enable with AD/DC adaptor alone, no battery required

| Register Name |        | LOWBATDET1 |     | Address     | 0x24<br>Page 1 | Read/Write |     |
|---------------|--------|------------|-----|-------------|----------------|------------|-----|
|               |        |            |     | Reset Value | 0x8A           |            |     |
| MSB           |        |            |     |             |                |            | LSB |
| R/W           | R/W    | R/W        | R/W | R/W         | R/W            | R/W        | R/W |
|               | LOWBAT | DCP        |     | LOWBATSDP   |                |            |     |

# 

**Company Confidential** 

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| LOWBATSDP[3:0] | 0000 | 2.2V |
|----------------|------|------|
|                | 0001 | 2.4V |
|                | 0010 | 2.6V |
|                | 0011 | 2.7V |
|                | 0100 | 2.8V |
|                | 0101 | 2.9V |
|                | 0110 | 3.0V |
|                | 0111 | 3.1V |
|                | 1000 | 3.2V |
|                | 1001 | 3.3V |
|                | 1010 | 3.4V |
|                | 1011 | 3.5V |
|                | 1100 | 3.6V |
|                | 1101 | 3.7V |
|                | 1110 | 3.8V |
|                | 1111 | 3.9V |
| LOWBATDCP[3:0] | 0000 | 2.2V |
|                | 0001 | 2.4V |
|                | 0010 | 2.6V |
|                | 0011 | 2.7V |
|                | 0100 | 2.8V |
|                | 0101 | 2.9V |
|                | 0110 | 3.0V |
|                | 0111 | 3.1V |
|                | 1000 | 3.2V |
|                | 1001 | 3.3V |
|                | 1010 | 3.4V |
|                | 1011 | 3.5V |
|                | 1100 | 3.6V |
|                | 1101 | 3.7V |
|                |      |      |
|                | 1110 | 3.8V |

| Register Name                                                                                                                                                                              |   | SRCWAKECFG    |                                                                                                                                                          | Address                                                                                                                                      | 0xDB<br>Page 0            | Read/Write    |               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|---------------|--|
|                                                                                                                                                                                            |   |               |                                                                                                                                                          | Reset<br>Value                                                                                                                               | 0x00                      |               |               |  |
| MSB                                                                                                                                                                                        |   |               |                                                                                                                                                          |                                                                                                                                              |                           |               | LSB           |  |
| R                                                                                                                                                                                          | R | R             | R R R/W R/W                                                                                                                                              |                                                                                                                                              |                           | R/W           |               |  |
| reserved                                                                                                                                                                                   |   | rese          | rved                                                                                                                                                     |                                                                                                                                              | ADP<br>WAKEEN             | USB<br>WAKEEN | BAT<br>WAKEEN |  |
| BATWAKEEI                                                                                                                                                                                  | N | <b>0</b><br>1 | System wor<br>System wak<br>conditions a                                                                                                                 | System won't wake up when battery insertion is detected<br>System wakes up when battery insertion is detected and boot<br>conditions are met |                           |               |               |  |
| USBWAKEEN           0         System won't wake up when USB charger insertion is detected           1         System wakes up when USB charger insertion is detected and bo conditions met |   |               |                                                                                                                                                          |                                                                                                                                              | detected<br>cted and boot |               |               |  |
| ADPWAKEE                                                                                                                                                                                   | N | <b>0</b><br>1 | System won't wake up when AC/DC adapter insertion is detected<br>System wakes up when AC/DC adapter insertion is detected and boot<br>conditions are met |                                                                                                                                              |                           |               |               |  |



**Company Confidential** 

| Register Name                                        |         | RESETSRC0 |                                                          | Address             | 0x20<br>Page 1 | Read/Write            |            |  |  |
|------------------------------------------------------|---------|-----------|----------------------------------------------------------|---------------------|----------------|-----------------------|------------|--|--|
|                                                      |         |           | Reset Value 0x00                                         |                     |                |                       |            |  |  |
| MSB                                                  |         |           |                                                          |                     |                |                       | LSB        |  |  |
| R                                                    | R       | R         | R                                                        | R R R               |                |                       |            |  |  |
| reserved                                             | RVBATRM | RVSYSOVP  | RVSYSUVP                                                 | P RBATTEMP RSYSTEMP |                | RPMICTEMP             | RTHERMTRIP |  |  |
| RTHERMTRIP 0                                         |         |           |                                                          |                     |                |                       |            |  |  |
| 1 Previous immediate shutdown due to SOC THERMTRIP_B |         |           |                                                          |                     |                | Р_В                   |            |  |  |
| RPMICTEM                                             | Ρ       | 0         |                                                          |                     |                |                       |            |  |  |
|                                                      |         | 1         | Previous immediate shutdown due to PMIC over temperature |                     |                |                       |            |  |  |
| RSYSTEMP                                             |         | 0         |                                                          |                     |                |                       |            |  |  |
|                                                      |         | 1         | Previous imr                                             | mediate shutd       | own due to sy  | stem over temperature |            |  |  |
| RBATTEMP                                             |         | 0         |                                                          |                     |                |                       |            |  |  |
|                                                      |         | 1         | Previous imr                                             | mediate shutd       | own due to ba  | ttery over tempe      | erature    |  |  |
| RVSYSUVP                                             |         | 0         |                                                          |                     |                |                       |            |  |  |
|                                                      |         | 1         | Previous imr                                             | mediate shutd       | own due to VS  | SYS under volta       | ge         |  |  |
| RVSYSOVP                                             | 1       | 0         |                                                          |                     |                |                       |            |  |  |
|                                                      |         | 1         | Previous immediate shutdown due to VSYS over voltage     |                     |                |                       |            |  |  |
| RVBATRM 0                                            |         |           |                                                          |                     |                |                       |            |  |  |
|                                                      |         | 1         | Previous imr                                             | mediate shutd       | own due to ba  | ttery removal         |            |  |  |

| Register Name |   | RESETSRC1                                                                                                           |                                                                                    | Address     | 0x21<br>Page 1 | Read/Write |            |  |
|---------------|---|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|----------------|------------|------------|--|
|               |   |                                                                                                                     |                                                                                    | Reset Value | 0x00           |            |            |  |
| MSB           |   |                                                                                                                     |                                                                                    |             |                | LSB        |            |  |
| R             | R | R                                                                                                                   | R R R R                                                                            |             |                |            | R          |  |
| reserved      |   |                                                                                                                     |                                                                                    |             | RFCO           | RIDBATRM   | RVCRIT     |  |
| RVCRIT        |   | 0 Default<br>1 Previous shutdown was due to violation of the VCRIT threshold<br>programmed in the BCU configuration |                                                                                    |             |                |            | reshold as |  |
| RIDBATRM      |   | <b>0</b><br>1                                                                                                       | Previous shutdown was due to battery removal event detected by<br>BATID comparator |             |                |            |            |  |
| RFCO          |   | <b>0</b><br>1                                                                                                       | Previous shutdown was due to user holding down the power button                    |             |                |            |            |  |

| Register Name    | е   | WAKESRC |                                            | Address                                      | 0x22<br>Page 1        | Read/Write |         |  |  |
|------------------|-----|---------|--------------------------------------------|----------------------------------------------|-----------------------|------------|---------|--|--|
|                  |     |         |                                            | Reset Value                                  | 0x00                  |            |         |  |  |
| MSB              | MSB |         |                                            |                                              |                       |            | LSB     |  |  |
| R                | R   | R       | R                                          | R                                            | R                     | R          | R       |  |  |
| reserved WAKEADP |     |         |                                            |                                              |                       | WAKEBAT    | WAKEBTN |  |  |
| WAKEBTN          |     | 0       |                                            |                                              |                       |            |         |  |  |
|                  |     | 1       | Wake-up trig                               | ggered by pow                                | gered by power button |            |         |  |  |
| WAKEBAT          |     | 0       |                                            |                                              |                       |            |         |  |  |
|                  |     | 1       | Wake-up trig                               | ggered by batt                               | ery insertion         |            |         |  |  |
| WABEUSB          |     | 0       |                                            |                                              |                       |            |         |  |  |
|                  |     | 1       | Wake-up triggered by USB charger insertion |                                              |                       |            |         |  |  |
| WAKEADP          |     | 0       |                                            |                                              |                       |            |         |  |  |
|                  |     | 1       | Wake-up trig                               | Nake-up triggered by AC/DC adapter insertion |                       |            |         |  |  |



## 15. Analog-to-Digital Converter

A general purpose analog-to-digital converter (GPADC) provides measurements of various voltages, currents and temperatures within the device. There is one 10-bit ADC which is time-division multiplexed to perform the measurements of the various parameters. The GPADC contains the 10-bit ADC, the analog input channel multiplexer and some additional analog functions.

The digital ADC block automates the measurement process by overlaying a sequencer function. It performs some automatic measurements at predefined sequence points, if enabled. Besides that, the host can initiate manual measurements at certain points in the sequence. The ADC replaces some on-chip comparator used for internal purpose so in addition to the automatic measures initiated by the host, internal measure sequences are processed, too.

The automatic measurements can raise interrupts if the measurement is outside of configurable thresholds.

The digital block controls the analog-to-digital (AD) conversion process. This allows testing the conversion logic via scan tests.

When powering down the device the digital ADC block may stop the measurements and disable the GPADC in order to reduce the power consumption. This feature is controlled by the Power Supply Sequencer (PSS) and some registers.

| PARAMETER                            | SYMBOL           | <b>TEST CONDITIONS</b>                                                 | Min | Тур     | Max | UNIT | Val |
|--------------------------------------|------------------|------------------------------------------------------------------------|-----|---------|-----|------|-----|
| ADC Resolution                       |                  |                                                                        |     | 10      |     | bit  | D,E |
| Absolute Accuracy                    |                  |                                                                        | 12  |         | 15  | mV   | А   |
| Integral Non-Linearity               | INL              |                                                                        |     | +/- 2   |     | LSB  | А   |
| Differential Non-<br>Linearity       | DNL              |                                                                        |     | +/- 0.8 |     | LSB  | A   |
| ADC Supply Voltage                   |                  |                                                                        |     | 2.5     |     | V    | -   |
| ADC Reference<br>Voltage             | VADC_R<br>EF     | VDD_CORE                                                               |     | 2.5     |     | V    | -   |
| ADC Operating<br>Current             |                  | during conversion                                                      |     | 100     |     | μA   | D   |
| Power Down Current                   |                  |                                                                        |     |         | 1   | μA   | D   |
| ADC Clock                            |                  |                                                                        |     | 1       |     | MHz  | D   |
| Auto-Zero Time                       |                  |                                                                        |     | 3       |     | us   | D   |
| Total Sampling Time                  |                  | including the Auto-<br>Zero time                                       |     | 10      |     | us   | D   |
| Conversion Time                      |                  |                                                                        |     | 11      |     | us   | D   |
| Total ADC Conversion<br>Time         |                  |                                                                        |     | 21      |     | us   | D   |
| Maximum Source<br>Impedance          | R <sub>s</sub>   | RS is the impedance<br>of the external<br>source sampled by<br>the ADC |     |         | 120 | kΩ   | D   |
| Internal Mux<br>Resistance           | R <sub>INT</sub> |                                                                        |     | 5       |     | kΩ   | D   |
| Internal Sampling<br>Capacitor       | Cs               |                                                                        |     | 10      |     | pF   | D   |
| Total Input<br>Capacitance           | C <sub>INT</sub> | parasitic and pad<br>capacitance included                              |     | 11      |     | pF   | D   |
| Acquisition Time                     |                  | ~7t = 7 x (RS +<br>RINT) x CINT                                        |     |         | 10  | us   | D   |
| VSYS Voltage Range<br>/ channel A0 / |                  | ADC=[(VSYS-2.5) x<br>0.5] x 1023                                       | 2.5 |         | 5.5 | V    | A   |

## **15.1 Electrical Characteristics**



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

|                                                       | gain = 0.8                                    |   |    |       |    |   |
|-------------------------------------------------------|-----------------------------------------------|---|----|-------|----|---|
| ADC_IN1÷3 Voltage<br>Range<br>/ channels A1, A2, A3 / | ADC=[VIN / 2.5] x<br>1023<br>gain = 1.0       | 0 |    | 2.5   | V  | A |
| Internal Temp. Sensor<br>Voltage<br>/ channel A4 /    | ADC=[1 – 1.2 x VTJ]<br>x 1023<br>gain = 3.0   | 0 |    | 0.833 | V  | A |
| VBBAT Voltage Range<br>/ channel A5 /                 | ADC=[1 - 0.2 x<br>VBBAT] x 1023<br>gain = 0.5 | 0 |    | 5     | V  | A |
| Inter Channel Isolation                               | 80dB for channel A3<br>(ADC_IN6)              |   | 60 |       | dB | D |
| Regulator OV/UV<br>monitoring Channel A8<br>÷ A10     | Gain =0.5                                     | 0 |    | 5.5   | V  |   |

Table 99: ADC Electrical Charakteristics

### 15.2 Analog Overview

The AD conversion is of successive approximation type using sample and hold. It has a resolution of 10 bits and a conversion cycle of 21 clock cycles including an auto-zero phase (23 cycles consumed back-to-back). The GPADC is supplied from the same supply, VDDCORE, as the digital block. If unused, the GPADC can be disabled to reduce its power consumption by a factor around 100.

The GPADC has an analog input multiplexer with in total 16 input channels.

| СН | Description                                     | Signal<br>name       | Measur<br>ement<br>range | Cond. | Comment                                                                                                                                                                | ADC<br>value             | Gain |
|----|-------------------------------------------------|----------------------|--------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|
| 0  | Battery Voltage,<br>VBAT<br>(Pin:<br>IBATSENSE) | VREG                 | 0.0V<br>5.0V             | YES   |                                                                                                                                                                        | 0.5*<br>Vin/VLP*1<br>023 | 0.5  |
| 1  | Battery ID<br>(Pin: BATID)                      | ADCIN1               | 0.0V<br>VLP              | NO    | VREFB needs to be<br>switched on 1ms prior to<br>ADC measurement.<br>VREFB needs to stay on<br>when battery removal has<br>to be detected by the<br>VBATID Comparator. | Vin/VREF<br>B*1023       | 1    |
| 2  | DA6021 Die<br>Temperature<br>(no pin)           | vbe_ADC/<br>adc_temp | 0.0V<br>VLP/3            | YES   |                                                                                                                                                                        | 3*<br>Vin/VLP<br>*1023   | 3    |
| 3  | Battery Pack<br>Temp 0<br>(Pin:<br>BPTHERM0)    | ADCIN2               | 0.0V<br>VLP              | NO    |                                                                                                                                                                        | Vin/VREF<br>T<br>*1023   | 1    |
| 4  | Battery Pack<br>Temp 1<br>(Pin:<br>BPTHERM1)    | ADCIN3               | 0.0V<br>VLP              | NO    | VREFT needs to be<br>switched on 1ms prior to<br>ADC measurement.                                                                                                      | Vin/VREF<br>T*1023       | 1    |
| 5  | System Temp 0<br>(Pin:<br>SYSTHERM0)            | ADCIN4               | 0.0V<br>VLP              | NO    |                                                                                                                                                                        | Vin/VREF<br>T*1023       | 1    |
| 6  | System Temp 1<br>(Pin:                          | ADCIN5               | 0.0V<br>VLP              | NO    |                                                                                                                                                                        | Vin/VREF<br>T*1023       | 1    |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

|   | SYSTHERM1)                           |        |              |     |                                                                                          |                                     |     |
|---|--------------------------------------|--------|--------------|-----|------------------------------------------------------------------------------------------|-------------------------------------|-----|
| 7 | System Temp 2<br>(Pin:<br>SYSTHERM2) | ADCIN6 | 0.0V<br>VLP  | NO  |                                                                                          | Vin/VREF<br>T*1023                  | 1   |
| 8 | VSYS<br>(Pin: VSYS)                  | VSYS   | 2.5V<br>5.5V | YES |                                                                                          | 0.8*(VSYS<br>-<br>VLP)/VLP*<br>1023 | 0.8 |
| 9 | Averaging output current             | ADCIN7 | 0.0V<br>VLP  | YES | There is a pre-selection on<br>which rail the current<br>measurement will be<br>averaged | 2*Vin/VRE<br>F*1023                 | 2   |

Table 100: ADC Channel Overview

The ADC is used for temperature, current and voltage measurements. It is managed by the DA6021 ADC state machine. The state machine performs ADC operations are, like regular readings of temperatures, current and voltage, programmed in registers and may be modified by the SOC after boot and initialization. The ADC state machine is an independent hardware engine which prevents the management of lengthy ADC transactions from blocking time-critical power sequencing tasks.

The GPADC will be used to perform the following tasks:

- 1. Repeated (on-going) battery temperature acquisition (initiated via timer defined in THRMMONCTL)
- 2. Repeated (on-going) system temperature acquisition (initiated via timer defined in THRMMONCTL)
- 3. Repeated (on-going) PMIC die temperature acquisition (initiated via timer defined in THRMMONCTL)
- 4. Repeated (on-going) VR current acquisition (initiated via timer define VRIMONCTL)
- 5. SOC-requested acquisition of any GPADC channels (initiated via MANCONV0-1)
- 6. Thermal Alerts triggering thermal interrupts when either battery temperatures, system temperatures or PMIC temperature exceed the alert thresholds which are set in corresponding registers, asserts PROCHOT\_ B to SOC when enabled
- Critical Temperature Shutdown if enabled, triggering system shutdown when either battery temperatures, system temperatures or PMIC temperature exceed the critical temperature thresholds which are set in corresponding registers

#### 15.2.1 ADC Measurement Support

The analog ADC domain includes 2 voltage reference switches VREFB and VREFT. The reference switches for the reference sources are enabled according vrefb/t\_en signals.

There is another measurement function which allows comparing the input voltage against a fixed reference voltage. Although this feature is implemented within the analog part of the ADC, it is completely independent from all the scheduler based ADC functions. Because the comparison result may be put out via a pad, the PADS block manages this function instead of the digital ADC block.

#### 15.2.2 Preamplifier

A preamplifier is used for channels with an input range exceeding the ADC input range. The preamplifier is an inverting amplifier so the ADC conversion values for these channels are bitwise inverted before use. For channel 3-7 it includes low pass filtering to reduce impact on platform noise.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Ch | Input   | Data Format |
|----|---------|-------------|
| 0  | VBAT    |             |
| 1  | BATID   |             |
| 2  | TPMIC   | inverted    |
| 3  | TBAT0   | Inverted    |
| 4  | TBAT1   | Inverted    |
| 5  | TSYS0   | Inverted    |
| 6  | TSYS1   | Inverted    |
| 7  | TSYS2   | Inverted    |
| 8  | IVCC    |             |
| 9  | IVNN    |             |
| 10 | IV1P0A  |             |
| 11 | IV1P05S |             |
| 12 | IVDDQ   |             |
| 13 | VSYS    |             |

Table 101: ADC Channel Data Format

#### 15.3 ADC Sequencer

The operation of all ADC functionality is controlled by an independent standalone ultra-flexible ADC sequencer. The sequence has 16 slots and each slot a duration of min  $t_{slot} = ~64 \ \mu s$ . Each slot contains two steps. First a single automatic measure initiated by the SOC and configured by register settings is performed, second a single (if min  $t_{slot} = ~64 \ \mu s$ ) or multiple (min  $t_{slot} > 64 \ \mu s$ ) internal measure for on-chip functions and decisions might be performed. Whenever there is no automatic or internal measurement, manual measure initiated by the SOC can be performed. If no measurement is performed, the ADC is turning off to reduce power consumption.

The sequencing is configured in such a way that it fulfills the Intel ADC specification and performs automatically measurement at the appropriate time (platform state defendant)

#### 15.3.1 Manual Measurements

An automatic measurement can be assigned to a specific slot while a manual measurement can't. Manual measurements will be performed at free slots or whenever there is space in the internal measure frame. Free slots are unassigned slots, slot with down sampling while not measuring and masked or disabled slots in standby mode. To initiate a manual measurement two separate registers MANCONV0 and MANCONV1 exists, one bit for each ADC Channel. One or more channels can be selected in one register write.

| Register Name |        | MANCONV0 |                                                                  | Address     | 0x72<br>Page 1 | Read/Write |      |  |
|---------------|--------|----------|------------------------------------------------------------------|-------------|----------------|------------|------|--|
|               |        |          |                                                                  | Reset Value | 0x00           |            |      |  |
| MSB           |        |          |                                                                  |             |                |            | LSB  |  |
| R/W           | R/W    | R/W      | R/W                                                              | R/W         | R/W            | R/W        | R/W  |  |
| SYS           | SYS    | SYS      | BP                                                               | BP          | PMIC           | BATID      | VBAT |  |
| THERM2        | THERM1 | THERM0   | THERM1                                                           | THERM0      | TEMP           |            |      |  |
| VBAT 0        |        |          |                                                                  |             |                |            |      |  |
|               |        | 1        | Initiates manual conversion of VBAT, clears after conversion     |             |                |            |      |  |
| BATID         |        | 0        |                                                                  |             |                |            |      |  |
|               |        | 1        | Initiates manual conversion of BATID, clears after conversion    |             |                |            |      |  |
| PMICTEMP      |        | 0        |                                                                  |             |                |            |      |  |
|               |        | 1        | Initiates manual conversion of PMICTEMP, clears after conversion |             |                |            |      |  |
| BPTHERM0      |        | 0        |                                                                  |             |                |            |      |  |
| 1             |        |          | Initiates manual conversion of BPTHERM0, clears after conversion |             |                |            |      |  |
| BPTHERM1 0    |        |          |                                                                  |             |                |            |      |  |
| 1             |        | 1        | Initiates manual conversion of BPTHERM1, clears after conversion |             |                |            |      |  |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| SYSTHERM0 | 0 |                                                                   |
|-----------|---|-------------------------------------------------------------------|
|           | 1 | Initiates manual conversion of SYSTHERM0, clears after conversion |
| SYSTHERM1 | 0 |                                                                   |
|           | 1 | Initiates manual conversion of SYSTHERM1, clears after conversion |
| SYSTHERM2 | 0 |                                                                   |
|           | 1 | Initiates manual conversion of SYSTHERM2, clears after conversion |

| Register Name        |      | MANCONV1                                                             |                                                                        | Address     | 0x73<br>Page 1 | Read/Write |      |  |
|----------------------|------|----------------------------------------------------------------------|------------------------------------------------------------------------|-------------|----------------|------------|------|--|
|                      |      |                                                                      |                                                                        | Reset Value | 0x00           |            |      |  |
| MSB                  |      |                                                                      |                                                                        |             |                |            | LSB  |  |
| R                    | R    | R/W                                                                  | R/W                                                                    | R/W         | R/W            | R/W        | R/W  |  |
| rese                 | rved | VSYS                                                                 | IVDDQ                                                                  | IV1P05S     | IV1P0A         | IVNN       | IVCC |  |
| IVCC 0               |      |                                                                      | Initiates manual conversion of VCC current, clears after conversion    |             |                |            |      |  |
| IVNN <b>0</b><br>1   |      |                                                                      | Initiates manual conversion of VNN current, clears after conversion    |             |                |            |      |  |
| IV1P0A <b>0</b><br>1 |      |                                                                      | Initiates manual conversion of V1P0A current, clears after conversion  |             |                |            |      |  |
| IV1P05S 0<br>1       |      |                                                                      | Initiates manual conversion of V1P05S current, clears after conversion |             |                |            |      |  |
| IVDDQ 0<br>1         |      | Initiates manual conversion of VDDQ current, clears after conversion |                                                                        |             |                |            |      |  |
| VSYS 0<br>1          |      |                                                                      | Initiates manual conversion of VSYS, clears after conversion           |             |                |            |      |  |

As soon as at least one of the manual register is set, the sequencer starts to measure the first manual channel at the next MAN\_TRIGGER from the main state machine. At the end of this first conversion, it puts the result in to the result register related to the channel measured. The next channel selected in the MANCONV register is measured at the next trigger.

Manual measurements include setting an event bit and raising a nIRQ interrupt after end of conversion.

| Register Name   |               | ADCIRQ0       |                                                                | Address        | 0x08<br>Page 1 | Read/Write      |             |
|-----------------|---------------|---------------|----------------------------------------------------------------|----------------|----------------|-----------------|-------------|
|                 |               |               |                                                                | Reset Value    | 0x00           |                 |             |
| MSB             |               |               |                                                                |                |                |                 | LSB         |
| R/W             | R/W           | R/W           | R/W                                                            | R/W            | R/W            | R/W             | R/W         |
| SYS<br>THERM2   | SYS<br>THERM1 | SYS<br>THERM0 | BP<br>THERM1                                                   | BP<br>THERM0   | PMIC<br>TEMP   | BATID           | VBAT        |
| VBAT 0          |               |               | Conversion request for VBAT complete, clear by writing "1"     |                |                |                 |             |
| BATID 0         |               |               | Conversion request for BATID complete, clear by writing "1"    |                |                |                 |             |
| PMICTEMP 0      |               |               | Conversion request for PMICTEMP complete, clear by writing "1" |                |                |                 |             |
| BPTHERM0 0<br>1 |               |               | Conversion request for BPTHERM0 complete, clear by writing "1" |                |                |                 |             |
| BPTHERM1 0<br>1 |               |               | Conversion re                                                  | equest for BPT | HERM1 comp     | ete, clear by v | vriting "1" |

#### **Data Sheet**

143 of 224



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| SYSTHERM0 | 0 |                                                                 |
|-----------|---|-----------------------------------------------------------------|
|           | 1 | Conversion request for SYSTHERM0 complete, clear by writing "1" |
| SYSTHERM1 | 0 |                                                                 |
|           | 1 | Conversion request for SYSTHERM1 complete, clear by writing "1" |
| SYSTHERM2 | 0 |                                                                 |
|           | 1 | Conversion request for SYSTHERM2 complete, clear by writing "1" |

| Register Name       |       | ADCIRQ1                                                    |                                                              | Address     | 0x09<br>Page 1 | Read/Write |      |  |
|---------------------|-------|------------------------------------------------------------|--------------------------------------------------------------|-------------|----------------|------------|------|--|
|                     |       |                                                            |                                                              | Reset Value | 0x00           |            |      |  |
| MSB                 |       |                                                            |                                                              |             |                |            | LSB  |  |
| R                   | R     | R/W                                                        | R/W                                                          | R/W         | R/W            | R/W        | R/W  |  |
| rese                | erved | VSYS                                                       | IVDDQ                                                        | IV1P05S     | IV1P0A         | IVNN       | IVCC |  |
| IVCC 0              |       |                                                            | Conversion request for IVCC complete, clear by writing "1"   |             |                |            |      |  |
| IVNN 0              |       |                                                            | Conversion request for IVNN complete, clear by writing "1"   |             |                |            |      |  |
| IV1P0A              |       | <b>0</b><br>1                                              | Conversion request for IV1P0A complete, clear by writing "1" |             |                |            |      |  |
| IV1P05S 0<br>1      |       |                                                            | Conversion request for V1P05S complete, clear by writing "1" |             |                |            |      |  |
| IVDDQ <b>0</b><br>1 |       | Conversion request for VDDQ complete, clear by writing "1" |                                                              |             |                |            |      |  |
| VSYS 0<br>1         |       | Conversion request for VSYS complete, clear by writing "1" |                                                              |             |                |            |      |  |

| Register Name    |               | MADCIRQ0      |                      | Address      | 0x15<br>Page 1 | Read/Write |      |  |  |
|------------------|---------------|---------------|----------------------|--------------|----------------|------------|------|--|--|
|                  |               |               |                      | Reset Value  | 0xFF           |            |      |  |  |
| MSB              |               |               |                      |              |                |            | LSB  |  |  |
| R/W              | R/W           | R/W           | R/W                  | R/W          | R/W            | R/W        | R/W  |  |  |
| SYS<br>THERM2    | SYS<br>THERM1 | SYS<br>THERM0 | BP<br>THERM1         | BP<br>THERM0 | PMIC<br>TEMP   | BATID      | VBAT |  |  |
| VBAT             |               | 0<br>1        | mask channel 0 event |              |                |            |      |  |  |
| BATID            |               | 0<br>1        | mask channel 1 event |              |                |            |      |  |  |
| PMICTEMP         |               | 0<br>1        | mask channel 2 event |              |                |            |      |  |  |
| BPTHERM0         |               | 0<br>1        | mask channel 3 event |              |                |            |      |  |  |
| BPTHERM1         |               | 0<br>1        | mask channel 4 event |              |                |            |      |  |  |
| SYSTHERM0 0<br>1 |               | 0<br>1        | mask channel 5 event |              |                |            |      |  |  |
| SYSTHERM1 0<br>1 |               | 0<br>1        | mask channel 6 event |              |                |            |      |  |  |
| SYSTHERM2        |               | 0<br>1        | mask channel 7 event |              |                |            |      |  |  |


**Company Confidential** 

| Register Nam | ne | MADCIRQ1 |             | Address     | 0x16<br>Page 1 | Read/Write |      |
|--------------|----|----------|-------------|-------------|----------------|------------|------|
|              |    |          |             | Reset Value | 0x3F           |            |      |
| MSB          |    |          |             |             |                |            | LSB  |
| R            | R  | R/W      | R/W         | R/W         | R/W            | R/W        | R/W  |
| reserved     |    | VSYS     | IVDDQ       | IV1P05S     | IV1P0A         | IVNN       | IVCC |
| IVCC         |    | 0        |             |             |                |            |      |
|              |    | 1        | mask channe | el 8 event  |                |            |      |
| IVNN         |    | 0        |             |             |                |            |      |
|              |    | 1        | mask channe | el 9 event  |                |            |      |
| IV1P0A       |    | 0        |             |             |                |            |      |
|              |    | 1        | mask channe | el 10 event |                |            |      |
| IV1P05S      |    | 0        |             |             |                |            |      |
|              |    | 1        | mask channe | el 11 event |                |            |      |
| IVDDQ        |    | 0        |             |             |                |            |      |
|              |    | 1        | mask channe | el 12 event |                |            |      |
| VSYS         |    | 0        |             |             |                |            |      |
|              |    | 1        | mask channe | el 13 event |                |            |      |

#### 15.3.2 Reference Source

The reference voltage or current sources for the thermal measurements needs to be enabled at least 1ms before a measurement is performed at the resistive channels. The settling time is handled by the sequencer module.

On manual measure requests the references will be turned on when a measurement of such a channel is requested. The measurement request of such channel will be delayed by 1-2ms by the state machine. The remaining channels will be measured. If the channel counter for the manual measurements has reached this channel before the settling time of 1-2ms, the next channels will be measured first. In this case the channel counter will start again from channel 0 after finishing with channel 8.

The similar approach is used on internal measure request. The request for channels with a reference will be delayed by 1-2ms.

Automatic measurements use a different approach. There the channels with a reference will delayed by an entire cycle. So when they are due to be measured, the reference will be turned on and the measurement will be done on the next appearance of that slot. In case the channel is measured on each cycle, the reference keeps on all the time.

#### 15.3.3 Event and Status Generation

Some channels contain event and status information in automatic measure mode when a predefined result threshold is exceeded. The status information is stored in read only registers. In case a measurement exceeds a certain threshold, the status flag is set. If the measurement is in normal range again, the status flag is cleared. The status information on auto measures is handled in the SVTM module.

Along with a change of a status an event is generated and flagged to SOC via an interrupt port. The event register is usually generated on both edges of a status change if not otherwise stated. The event register of automatic measures is handled by SVTM. The ADC generates interrupts on manual measure only. These interrupt flags are send to the event interface and are 1MHz pules only. The handling of the event pulses is done in the IRQ module.

The SOC needs to write a '1' to the event register to serve and clear the event. This clears the interrupt line, too if there is not another interrupt request pending.

As with all event registers in the DA6021 device, a Mask bit to disable the event and interrupt generation exists.



#### **Company Confidential**

#### 15.3.4 Result register

Each channel has an individual 10 bit result register. Each result of an automatic, internal or manual measurement will simply be stored into the according result register after end of conversion no matter where the measurement is initiated from. So always the newest value is represented in the result register. All result registers are split to two register addresses with 2 bit MSB and 8 bit LSB.

In case a LBUS read access appears on one of the 2 result register addresses of a channel, MSBs and LSBs of result register of that channel will be locked for internal accesses from the ADC. So no result will be written to these registers in this case. The sequencer will not be interrupted. All other ADC results of that channel will be lost if a register is locked and a result is due to be stored. Since the result of a manual measurement cannot be stored in case the result register of this channel is locked, no interrupt will be generated and the manual request register will not be cleared. This channel will be measured until the result register can be accessed.

If another LBUS read access is detected on this or another register, the result register will be unlocked again. All locks will be cleared when entering SOC\_G3.

#### 15.3.5 CH0: Battery Pack Voltage

The Battery Pack Voltage measurement requires the preamplifier to be turned on with a gain of 0.5.

Battery Pack Voltages is internally measured every 4s in all active and standby states S4-S0.

#### 15.3.6 CH1: Battery ID resistance

The Battery ID resistance measurement requires the Voltage Reference VREFB to be turned on at least 1ms before a measurement is initiated. Instead of the Voltage Reference a Current Source ISRCB can be used. This is selected by bit CALIB.ISRC\_ENA

#### 15.3.7 CH2: Die Temperature

The DA6021 die temperature thermistor has an alert event register EPMICALRT that flag an interrupt when the according temperature threshold PMICALRT is exceeded. In case temperature exceeds one of the thresholds, the status register SPMICALRT and the event register EPMICALRT are set and an Interrupt is generated to the SOC. A hysteresis is implemented for this event, so the status is cleared and another event is generated when the temperature falls below the PMICALRT + PMICHYS threshold.

Note, high temperature means low ADC result values.

#### 15.3.8 CH3-4: Battery Pack Temperature

A critical event is implemented with an upper and a lower threshold defined in THRMBATCRIT registers. In case temperature exceeds one of the thresholds, the charger is turned off, the status register SBATCTRITALRT and the event register EBATCTRITALRT are set and an Interrupt is generated to the SOC. The status register is cleared when the over-temperature condition is not given any longer. Since there is no hysteresis register for this measurement threshold, three consecutive measurements need to be in the normal range to clear the over/under temp status.

Charging is only allowed between the HOT and COLD thresholds.

Each of the battery temperature thermistors BAT0 and BAT1 has its own alert event register EBATxALRT that flag an interrupt when the according temperature threshold BATxALRT-missing in Intel requirement spec is exceeded. In case temperature exceeds one of the thresholds, the status register SBATxALRT and the event register EBATxALRT are set and an Interrupt is generated to the SOC. A hysteresis is implemented for this event, so the status is cleared and another event is generated when the temperature falls below the BATxALRT + BATxHYS threshold.

Note, high temperature means low ADC result values.

**Data Sheet** 

Version 3.A - Final



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 15.3.9 CH5-7: System Temperature Thermistor

Each of the system temperature thermistors SYS0, SYS1 and SYS2 has its own alert event register ESYSxALRT that flag an interrupt when the according temperature threshold SYSxALRT is exceeded. In case temperature exceeds one of the thresholds, the status register SSYSxALRT and the event register ESYSxALRT are set and an Interrupt is generated to the SOC. A hysteresis is implemented for this event, so the status is cleared and another event is generated when the temperature falls below the SYSxALRT + SYSxHYS threshold.

Note, high temperature means low ADC result values.

#### 15.3.10 CH8-12: VR Current Measurement

DA6021 is capable to monitor the output current of the VCC, VNN, V1P0A, V1P05S and VDDQ buck regulator. The results are stored in the corresponding result registers.

Usually the current of the buck regulators is monitored when the system is in S0 state. The current is averaged and measured per default every 1ms. The control register described below provides flexibility for user enable/disable and program the average time constant.

| Register Nam          | ie          | VRIMONCTL                   |                                                                                                                              | Address                             | 0x71<br>Page 1                 | Read                            |        |  |  |
|-----------------------|-------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------|---------------------------------|--------|--|--|
|                       |             |                             |                                                                                                                              | Reset Value                         | 0x03                           |                                 |        |  |  |
| MSB                   |             |                             |                                                                                                                              |                                     |                                |                                 | LSB    |  |  |
| R                     | R           | R                           | R                                                                                                                            | R                                   | R                              | R                               | R      |  |  |
|                       | reserved VI |                             |                                                                                                                              | RQS                                 | VRIF                           | RQA                             | VRIEN  |  |  |
| VRIEN 0<br>1 Enable A |             |                             |                                                                                                                              | pased current r                     | nonitor timer                  |                                 |        |  |  |
| VRIFRQA               |             | 00<br><b>01</b><br>10<br>11 | Specifies the time constant at which the current measurements<br>initiated while system is in S0 mode<br>0.5ms<br>1ms<br>2ms |                                     |                                |                                 |        |  |  |
| VRIFRQS               |             | <b>00</b><br>01<br>10<br>11 | Specifies the<br>measurement<br>Disable<br>1ms<br>4ms<br>8ms                                                                 | time constant a<br>ts are initiated | at which syste<br>while system | m temperature<br>is in S0iX mod | e<br>e |  |  |

#### 15.3.11 CH8: VSYS Voltage Measurements

The System Voltage measure requires the preamplifier to be turned on with a gain of 0.8 System Voltages is internally measured every 128us in active states S0.



#### **Company Confidential**

## 15.4 ADC Registers

| Register Name SY                                                      |                 | SYS0_THRM_RSLTH |   | Address     | 0x74<br>Page 1 | Read |      |
|-----------------------------------------------------------------------|-----------------|-----------------|---|-------------|----------------|------|------|
|                                                                       |                 |                 |   | Reset Value | 0x00           |      |      |
| MSB                                                                   |                 |                 |   |             |                |      | LSB  |
| R                                                                     | R               | R               | R | R           | R              | R    | R    |
|                                                                       | Reserved SYS0TE |                 |   |             |                |      | TEMP |
| SYS0TEMP[9:8]     03     Upper bits of system0 thermistor temperature |                 |                 |   |             | rature result  |      |      |

| Register Name SYS0_TH |                                                                          | SYS0_THRN | SYS0_THRM_RSLTL Address |             | 0x75<br>Page 1 | Read |     |
|-----------------------|--------------------------------------------------------------------------|-----------|-------------------------|-------------|----------------|------|-----|
|                       |                                                                          |           |                         | Reset Value | 0x00           |      |     |
| MSB                   |                                                                          |           |                         |             |                |      | LSB |
| R                     | R                                                                        | R         | R                       | R           | R              | R    | R   |
|                       | SYSOTEMP                                                                 |           |                         |             |                |      |     |
| SYS0TEMP[7            | IP[7:0]     0255     Lower bits of system0 thermistor temperature result |           |                         |             |                |      |     |

| Register Name S                                                         |                   | SYS1_THRM | _RSLTH | Address | 0x76<br>Page 1 | Read |     |
|-------------------------------------------------------------------------|-------------------|-----------|--------|---------|----------------|------|-----|
| Reset Value 0x00                                                        |                   |           |        |         |                |      |     |
| MSB                                                                     |                   |           |        |         |                |      | LSB |
| R                                                                       | R                 | R         | R      | R       | R              | R/W  | R/W |
|                                                                         | Reserved SYS1TEMP |           |        |         |                |      |     |
| SYS1TEMP[9:8] 03 Upper bits of temperature alert threshold for SYS1TEMP |                   |           |        |         | C              |      |     |

| Register Name |                                                                         | SYS1_THRM_RSLTL |  | Address     | 0x77<br>Page 1 | Read |     |
|---------------|-------------------------------------------------------------------------|-----------------|--|-------------|----------------|------|-----|
|               |                                                                         |                 |  | Reset Value | 0x00           |      |     |
| MSB           |                                                                         |                 |  |             |                |      | LSB |
| R             | R                                                                       | R R R           |  |             | R              | R    | R   |
|               | SYS1TEMP                                                                |                 |  |             |                |      |     |
| SYS1TEMP[7    | S1TEMP[7:0] 0255 Lower bits of temperature alert threshold for SYS1TEMP |                 |  |             |                | C    |     |

| Register Name                                                           |   | SYS2_THRM | _RSLTH | Address     | 0x78<br>Page 1 | Read |      |
|-------------------------------------------------------------------------|---|-----------|--------|-------------|----------------|------|------|
|                                                                         |   |           |        | Reset Value | 0x00           |      |      |
| MSB                                                                     |   |           |        |             |                |      | LSB  |
| R                                                                       | R | R         | R      | R           | R              | R    | R    |
|                                                                         |   | Rese      | erved  |             |                | SYS2 | TEMP |
| SYS2TEMP[9:8] 03 Upper bits of temperature alert threshold for SYS2TEMP |   |           |        |             | Р              |      |      |

| Register Name SYS2_THRM                                                   |          | _RSLTL | Address | 0x79<br>Page 1 | Read |   |     |
|---------------------------------------------------------------------------|----------|--------|---------|----------------|------|---|-----|
|                                                                           |          |        |         |                | 0x00 |   |     |
| MSB                                                                       |          |        |         |                |      |   | LSB |
| R                                                                         | R        | R      | R       | R              | R    | R | R   |
|                                                                           | SYS2TEMP |        |         |                |      |   |     |
| SYS2TEMP[7:0] 0255 Lower bits of temperature alert threshold for SYS2TEMP |          |        |         |                | P    |   |     |



**Company Confidential** 

| Register Name BAT0_THR |                                                                       | BAT0_THRM | _RSLTH | Address     | 0x7A<br>Page 1 | Read |     |
|------------------------|-----------------------------------------------------------------------|-----------|--------|-------------|----------------|------|-----|
|                        |                                                                       |           |        | Reset Value | 0x00           |      |     |
| MSB                    |                                                                       |           |        |             |                |      | LSB |
| R                      | R                                                                     | R         | R      | R           | R              | R    | R   |
|                        | Reserved BAT0TEMP                                                     |           |        |             |                |      |     |
| BAT0TEMP[9:            | :8] <b>0</b> 3 Upper bits of temperature alert threshold for BAT0TEMP |           |        |             |                | Р    |     |

| Register Name B                                                           |                  | BAT0_THRM_RSLTL |   | Address | 0x7B<br>Page 1 | Read |     |
|---------------------------------------------------------------------------|------------------|-----------------|---|---------|----------------|------|-----|
|                                                                           | Reset Value 0x00 |                 |   |         |                |      |     |
| MSB                                                                       |                  | LS              |   |         |                |      | LSB |
| R                                                                         | R                | R               | R | R       | R              | R    | R   |
|                                                                           | BATOTEMP         |                 |   |         |                |      |     |
| BAT0TEMP[7:0] 0255 Lower bits of temperature alert threshold for BAT0TEMP |                  |                 |   |         | P              |      |     |

| Register Name                              |                   | BAT1_THRM_RSLTH |   | Address         | 0x7C<br>Page 1 | Read |       |
|--------------------------------------------|-------------------|-----------------|---|-----------------|----------------|------|-------|
| Re                                         |                   |                 |   | Reset Value     | 0x00           |      |       |
| MSB                                        |                   |                 |   |                 |                |      | LSB   |
| R                                          | R                 | R               | R | R               | R              | R    | R     |
|                                            | Reserved BAT1TEMP |                 |   |                 |                |      | ITEMP |
| BAT1TEMP[9:8] 03 Upper bits of temperature |                   |                 |   | alert threshold | for BAT1TEM    | IP   |       |

| Register Name                        |          | BAT1_THRM_RSLTL |   | Address        | 0x7D<br>Page 1  | Read          |   |
|--------------------------------------|----------|-----------------|---|----------------|-----------------|---------------|---|
|                                      |          |                 |   | Reset Value    | 0x00            |               |   |
| MSB                                  |          |                 |   |                |                 | LSB           |   |
| R                                    | R        | R               | R | R              | R               | R             | R |
|                                      | BAT1TEMP |                 |   |                |                 |               |   |
| BAT1TEMP[7:0] <b>0</b> 255 Lower bit |          |                 |   | of temperature | alert threshold | d for BAT1TEM | Р |

| Register Name |                               | PMIC_THRM_RSLTH |   | Address | 0x7E<br>Page 1  | Read        |      |
|---------------|-------------------------------|-----------------|---|---------|-----------------|-------------|------|
|               | ·                             |                 |   |         | 0x00            |             |      |
| MSB           |                               |                 |   |         |                 |             | LSB  |
| R             | R                             | R               | R | R       | R               | R           | R    |
|               | Reserved                      |                 |   |         |                 | PMIC        | TEMP |
| PMICTEMP[9:   | <b>0</b> 3Upper bits of tempe |                 |   |         | alert threshold | for PMICTEM | P    |

| Register Name PMIC_1 |                                                                          | PMIC_THRM_RSLTL |   | Address     | 0x7F<br>Page 1 | Read |     |
|----------------------|--------------------------------------------------------------------------|-----------------|---|-------------|----------------|------|-----|
|                      |                                                                          |                 |   | Reset Value | 0x00           |      |     |
| MSB                  |                                                                          |                 |   |             |                |      | LSB |
| R                    | R                                                                        | R               | R | R           | R              | R    | R   |
|                      |                                                                          | PMICTEMP        |   |             |                |      |     |
| PMICTEMP[7:          | 7:0] <b>0</b> 255 Lower bits of temperature alert threshold for PMICTEMP |                 |   |             | P              |      |     |



**Company Confidential** 

| Register Name VBATRSLTH |   | I             | Address                              | 0x80<br>Page 1 | Read |   |     |
|-------------------------|---|---------------|--------------------------------------|----------------|------|---|-----|
|                         |   |               |                                      | Reset Value    | 0x00 |   |     |
| MSB                     |   |               |                                      |                |      |   | LSB |
| R                       | R | R             | R                                    | R              | R    | R | R   |
|                         |   | Reserved VBAT |                                      |                |      |   | BAT |
| VBAT[9:8]               |   | <b>0</b> 3    | 03 Upper bits of the battery voltage |                |      |   |     |

| Register Name | r Name VBATRSLTL |              | Address      | 0x81<br>Page 1  | Read   |   |     |
|---------------|------------------|--------------|--------------|-----------------|--------|---|-----|
|               |                  |              |              | Reset Value     | 0x00   |   |     |
| MSB           |                  |              |              |                 |        |   | LSB |
| R             | R                | R            | R            | R               | R      | R | R   |
|               |                  | VBAT         |              |                 |        |   |     |
| VBAT[7:0]     |                  | <b>0</b> 255 | Lower bits o | f the battery v | oltage |   |     |

| Register Name BATIDRSLTH |                | H                                                   | Address | 0x82<br>Page 1 | Read |     |     |
|--------------------------|----------------|-----------------------------------------------------|---------|----------------|------|-----|-----|
|                          |                |                                                     |         | Reset Value    | 0x00 |     |     |
| MSB                      |                |                                                     |         |                |      |     | LSB |
| R                        | R              | R                                                   | R       | R              | R    | R   | R   |
|                          | Reserved BATID |                                                     |         |                |      | TID |     |
| BATID[9:8]               |                | 03 Upper bits of the battery ID voltage measurement |         |                |      |     |     |

| Register Name BATIDRSLTL |   | -            | Address      | 0x83<br>Page 1   | Read          |          |     |
|--------------------------|---|--------------|--------------|------------------|---------------|----------|-----|
|                          |   |              |              | Reset Value      | 0x00          |          |     |
| MSB                      |   |              |              |                  |               |          | LSB |
| R                        | R | R            | R            | R                | R             | R        | R   |
|                          |   | BATID        |              |                  |               |          |     |
| BATID[7:0]               |   | <b>0</b> 255 | Lower bits o | f the battery ID | D voltage mea | surement |     |

| Register Name IVCCRSLTH |                                          |   | Address | 0x84<br>Page 1 | Read |    |     |
|-------------------------|------------------------------------------|---|---------|----------------|------|----|-----|
|                         |                                          |   |         | Reset Value    | 0x00 |    |     |
| MSB                     |                                          |   |         |                |      |    | LSB |
| R                       | R                                        | R | R       | R              | R    | R  | R   |
|                         | Reserved                                 |   |         |                |      | IV | 'CC |
| IVCC[9:8]               | 03 Upper bits of VCC current measurement |   |         |                |      |    |     |

| Register Name IVCCRSLTL |   |              | Address      | 0x85<br>Page 1 | Read        |   |     |
|-------------------------|---|--------------|--------------|----------------|-------------|---|-----|
|                         |   |              |              | Reset Value    | 0x00        |   |     |
| MSB                     |   |              |              |                |             |   | LSB |
| R                       | R | R            | R            | R              | R           | R | R   |
|                         |   | IVCC         |              |                |             |   |     |
| IVCC[7:0]               |   | <b>0</b> 255 | Lower bits o | f VCC current  | measurement |   |     |



**Company Confidential** 

| Register Name IVNNRSLTH |   |                                          | Address | 0x86<br>Page 1 | Read |   |     |
|-------------------------|---|------------------------------------------|---------|----------------|------|---|-----|
|                         |   |                                          |         | Reset Value    | 0x00 |   |     |
| MSB                     |   |                                          |         |                |      |   | LSB |
| R                       | R | R                                        | R       | R              | R    | R | R   |
|                         |   | Reserved IVNN                            |         |                |      |   | 'NN |
| IVNN[9:8]               |   | 03 Upper bits of VNN current measurement |         |                |      |   |     |

| Register Name | gister Name IVNNRSLTL |                                            | Address | 0x87<br>Page 1 | Read |   |     |
|---------------|-----------------------|--------------------------------------------|---------|----------------|------|---|-----|
|               |                       |                                            |         | Reset Value    | 0x00 |   |     |
| MSB           |                       |                                            |         |                |      |   | LSB |
| R             | R                     | R                                          | R       | R              | R    | R | R   |
|               | IVNN                  |                                            |         |                |      |   |     |
| IVNN[7:0]     |                       | 0255 Lower bits of VNN current measurement |         |                |      |   |     |

| Register Name IV1P0ARSLTH |                 | н                                          | Address | 0x88<br>Page 1 | Read |     |   |
|---------------------------|-----------------|--------------------------------------------|---------|----------------|------|-----|---|
|                           |                 |                                            |         | Reset Value    | 0x00 |     |   |
| MSB                       |                 | i                                          |         |                |      | LSB |   |
| R                         | R               | R                                          | R       | R              | R    | R   | R |
|                           | Reserved IV1P0A |                                            |         |                |      | P0A |   |
| IV1P0A[9:8]               |                 | 03 Upper bits of V1P0A current measurement |         |                |      |     |   |

| Register Name IV1P0ARSLTI |   | Ľ                                            | Address | 0x89<br>Page 1 | Read |   |     |
|---------------------------|---|----------------------------------------------|---------|----------------|------|---|-----|
|                           |   |                                              |         | Reset Value    | 0x00 |   |     |
| MSB                       |   |                                              |         |                |      |   | LSB |
| R                         | R | R                                            | R       | R              | R    | R | R   |
|                           |   | IV1P0A                                       |         |                |      |   |     |
| IV1P0A[7:0]               |   | 0255 Lower bits of V1P0A current measurement |         |                |      |   |     |

| Register Name |                                             | IV1P05SRSLTH |   | Address     | 0x8A<br>Page 1 | Read |      |
|---------------|---------------------------------------------|--------------|---|-------------|----------------|------|------|
|               |                                             |              |   | Reset Value | 0x00           |      |      |
| MSB           | LSB                                         |              |   |             |                |      | LSB  |
| R             | R                                           | R            | R | R           | R              | R    | R    |
| Reserved      |                                             |              |   |             |                | IV1  | P05S |
| IV1P05S[9:8]  | 03 Upper bits of V1P05S current measurement |              |   |             |                |      |      |

| Register Name IV1P05SRSLT |        | TL           | Address      | 0x8B<br>Page 1 | Read         |      |   |  |  |
|---------------------------|--------|--------------|--------------|----------------|--------------|------|---|--|--|
|                           |        |              |              |                | 0x00         |      |   |  |  |
| MSB                       |        | LSB          |              |                |              |      |   |  |  |
| R                         | R      | R            | R            | R              | R            | R    | R |  |  |
|                           | IV1P0A |              |              |                |              |      |   |  |  |
| IV1P05S[7:0]              |        | <b>0</b> 255 | Lower bits o | f V1P05S curr  | ent measurem | ient |   |  |  |



#### **Company Confidential**

| Register Name    |                | IVDDQRSLTH                                |   | Address | 0x8C<br>Page 1 | Read |     |
|------------------|----------------|-------------------------------------------|---|---------|----------------|------|-----|
| Reset Value 0x00 |                |                                           |   |         |                |      |     |
| MSB              |                |                                           |   |         |                |      | LSB |
| R                | R              | R                                         | R | R       | R              | R    | R   |
|                  | Reserved IVDDQ |                                           |   |         |                |      |     |
| IVDDQ[9:8]       |                | 03 Upper bits of VDDQ current measurement |   |         |                |      |     |

| Register Name IVDDQRSLTL |       | L                                           | Address | 0x8D<br>Page 1 | Read |   |     |  |  |
|--------------------------|-------|---------------------------------------------|---------|----------------|------|---|-----|--|--|
|                          |       |                                             |         | Reset Value    | 0x00 |   |     |  |  |
| MSB                      |       |                                             |         |                |      |   | LSB |  |  |
| R                        | R     | R                                           | R       | R              | R    | R | R   |  |  |
|                          | IVDDQ |                                             |         |                |      |   |     |  |  |
| IVDDQ[7:0]               |       | 0255 Lower bits of VDDQ current measurement |         |                |      |   |     |  |  |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 16. System Voltage & Temperature Monitoring

## 16.1 Overview

The system voltage and temperature monitoring allows high power, high temperature events as well as the system voltage monitoring. These functions allow several system conditions to be monitored by DA6021, taking autonomous action and informing the SoC on system voltage and temperature events.

The SVTM will monitor the following:

- System voltage input VSYS: in SOC\_S0 via the ADC channel 8
- DA6021 onDie temperature: this is done via comparator in real time and via ADC channel 2
- Battery temperature: 2 ADC channels (channel 3 & 4)
- **Platform temperature**: 3 ADC channels (channel 5, 6 & 7)
- **Under Voltage**: A comparator flags such a condition.
- Over Voltage: A comparator will flag such a condition

In reaction to either threshold crosses or a flag coming from several comparators the SVTM will drive several pins on DA6021 for use by the processor and to other platform components. According to the condition it can generate warnings, and or interrupts and can generate a shutdown event.

| Register Name TS_ENABLE |     |        | Address                   | 0x90<br>Page 1           | Read/Write |        |        |  |  |
|-------------------------|-----|--------|---------------------------|--------------------------|------------|--------|--------|--|--|
|                         |     |        |                           | Reset Value              | 0x00       |        |        |  |  |
| MSB                     |     |        |                           |                          |            |        | LSB    |  |  |
| R                       | R   | R/W    | R/W                       | R/W                      | R/W        | R/W    | R/W    |  |  |
| reser                   | ved | PMICEN | BAT1EN                    | BAT0EN                   | SYS2EN     | SYS1EN | SYS0EN |  |  |
| SYS0EN                  |     | 0      | Platform ser              | nsor 0 disable           |            |        |        |  |  |
| 1                       |     |        | Enable                    |                          |            |        |        |  |  |
| SYS1EN                  |     | 0      | Platform ser              | nsor 1 disable           |            |        |        |  |  |
|                         |     | 1      | Enable                    |                          |            |        |        |  |  |
| SYS2EN                  |     | 0      | Platform sensor 2 disable |                          |            |        |        |  |  |
|                         |     | 1      | Enable                    |                          |            |        |        |  |  |
| BAT0EN                  |     | 0      | Battery sense             | Battery sensor 0 disable |            |        |        |  |  |
|                         |     | 1      | Enable                    |                          |            |        |        |  |  |
| BAT1EN 0 Battery        |     |        | Battery sense             | Battery sensor 1 disable |            |        |        |  |  |
|                         |     | 1      | Enable                    |                          |            |        |        |  |  |
| PMICEN 0 PMIC s         |     |        | PMIC sense                | VIC sensor 0 disable     |            |        |        |  |  |
|                         |     | 1      | Enable                    |                          |            |        |        |  |  |

| Register Name |     | TS_CRIT_EN | IABLE                     | Address                   | 0x91   | Read/Write |        |  |  |
|---------------|-----|------------|---------------------------|---------------------------|--------|------------|--------|--|--|
|               |     |            |                           |                           | Page 1 |            |        |  |  |
|               |     |            |                           | Reset Value               | 0x00   |            |        |  |  |
| MSB           |     |            |                           |                           |        |            | LSB    |  |  |
| R             | R   | R/W        | R/W                       | R/W                       | R/W    | R/W        | R/W    |  |  |
| reser         | ved | PMICEN     | BAT1EN                    | BAT0EN                    | SYS2EN | SYS1EN     | SYS0EN |  |  |
| SYS0EN        |     | 0          | Platform sensor 0 disable |                           |        |            |        |  |  |
|               |     | 1          | Enable                    | Enable                    |        |            |        |  |  |
| SYS1EN        |     | 0          | Platform ser              | Platform sensor 1 disable |        |            |        |  |  |
| 1             |     |            | Enable                    |                           |        |            |        |  |  |
| SYS2EN 0      |     |            | Platform sensor 2 disable |                           |        |            |        |  |  |
| 1 Enable      |     |            | Enable                    |                           |        |            |        |  |  |

**Data Sheet** 

Version 3.A - Final

## **C** SEMICONDUCTOR

#### **Company Confidential**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| BATOEN | 0 | Battery sensor 0 disable |
|--------|---|--------------------------|
|        | 1 | Enable                   |
| BAT1EN | 0 | Battery sensor 1 disable |
|        | 1 | Enable                   |
| PMICEN | 0 | PMIC sensor 0 disable    |
|        | 1 | Enable                   |

| Register Name TS_A0_ST                                              |   | TS_A0_STA      | TUS Address                                        |                | 0x92<br>Page 1  | Read           |     |  |
|---------------------------------------------------------------------|---|----------------|----------------------------------------------------|----------------|-----------------|----------------|-----|--|
|                                                                     |   |                |                                                    | Reset Value    | 0x00            |                |     |  |
| MSB                                                                 |   |                |                                                    |                |                 |                | LSB |  |
| R                                                                   | R | R              | R                                                  | R              | R               | R              | R   |  |
| reserved PMIC_<br>A0 ST                                             |   | BAT1_<br>A0_ST | BAT0_<br>A0_ST                                     | SYS2_<br>A0_ST | SYS1_<br>A0_ST  | SYS0_<br>A0_ST |     |  |
| SYS0_A0_ST 0   1 Alert0 thermal status passed platform thermistor 0 |   |                |                                                    | -              |                 |                |     |  |
| SYS1_A0_ST 0<br>1                                                   |   |                | Alert0 thermal status passed platform thermistor 1 |                |                 |                |     |  |
| SYS2_A0_ST                                                          |   | <b>0</b><br>1  | Alert0 therm                                       | al status pass | ed platform the | ermistor 1     |     |  |
| BAT0_A0_ST                                                          |   | <b>0</b><br>1  | Alert0 thermal status passed battery thermistor0   |                |                 |                |     |  |
| BAT1_A0_ST                                                          |   | <b>0</b><br>1  | Alert0 thermal status passed battery thermistor1   |                |                 |                |     |  |
| PMIC_A0_ST                                                          |   | <b>0</b><br>1  | Alert0 therm                                       | al status pass | ed PMIC thern   | nistor         |     |  |

| Register Name TS_A1_STA |   | TS_A1_STA      | TUS Address                                        |                | 0x93<br>Page 1  | Read           |     |  |
|-------------------------|---|----------------|----------------------------------------------------|----------------|-----------------|----------------|-----|--|
|                         |   |                |                                                    | Reset Value    | 0x00            |                |     |  |
| MSB                     |   |                |                                                    |                |                 |                | LSB |  |
| R                       | R | R              | R                                                  | R              | R               | R              | R   |  |
| reserved PMIC_          |   | BAT1_<br>A1_ST | BAT0_<br>A1 ST                                     | SYS2_<br>A1_ST | SYS1_<br>A1_ST  | SYS0_<br>A1_ST |     |  |
| SYS0_A1_ST              |   | 0<br>1         | Alert1 thermal status passed platform thermistor 0 |                |                 |                |     |  |
| SYS1_A1_ST 0            |   |                | Alert1 thermal status passed platform thermistor 1 |                |                 |                |     |  |
| SYS2_A1_ST              |   | <b>0</b><br>1  | Alert1 therm                                       | al status pass | ed platform the | ermistor 1     |     |  |
| BAT0_A1_ST              |   | <b>0</b><br>1  | Alert1 therm                                       | al status pass | ed battery the  | rmistor0       |     |  |
| BAT1_A1_ST              |   | <b>0</b><br>1  | Alert1 thermal status passed battery thermistor1   |                |                 |                |     |  |
| PMIC_A1_ST              |   | <b>0</b><br>1  | Alert1 therm                                       | al status pass | ed PMIC thern   | nistor         |     |  |



**Company Confidential** 

| Register Name TS_CRIT_ |     | TS_CRIT_ST    |                                                      | Address        | 0xBD<br>Page 1  | Read        |        |
|------------------------|-----|---------------|------------------------------------------------------|----------------|-----------------|-------------|--------|
|                        |     |               |                                                      | Reset Value    | 0x00            |             |        |
| MSB                    |     |               |                                                      |                |                 |             | LSB    |
| R                      | R   | R             | R                                                    | R              | R               | R           | R      |
| reser                  | ved | PMICST        | BAT1ST                                               | BAT0ST         | SYS2ST          | SYS1ST      | SYS0ST |
| SYSOST                 |     | <b>0</b><br>1 | Critical thermal status passed platform thermistor 0 |                |                 |             |        |
| SYS1ST                 |     | <b>0</b><br>1 | Critical thermal status passed platform thermistor   |                |                 |             |        |
| SYS2ST                 |     | <b>0</b><br>1 | Critical therr                                       | nal status pas | sed platform th | nermistor 2 |        |
| BAT0ST                 |     | <b>0</b><br>1 | Critical thermal status passed platform thermistor 2 |                |                 |             |        |
| BAT1ST                 |     | <b>0</b><br>1 | Critical thermal status passed battery thermistor 1  |                |                 |             |        |
| PMICST                 |     | <b>0</b><br>1 | Critical thermal status passed PMIC thermistor       |                |                 |             |        |

| Register Name THERMIRQ0 |       |       | Address                                                             | 0x04<br>Page 1 | Read/Write     |                 |                 |
|-------------------------|-------|-------|---------------------------------------------------------------------|----------------|----------------|-----------------|-----------------|
|                         |       |       |                                                                     | Reset Value    | 0x00           |                 |                 |
| MSB                     |       |       |                                                                     |                |                |                 | LSB             |
| R/W                     | R/W   | R/W   | R/W                                                                 | R/W            | R/W            | R/W             | R/W             |
| PMIC                    | SYS2  | SYS1  | SYS0                                                                | PMIC           | SYS2           | SYS1            | SYS0            |
| ALRT1                   | ALRT1 | ALRT1 | ALRT1                                                               | ALRT0          | ALRT0          | ALRT0           | ALERT0          |
| SYS0ALRT0               |       | 0     | Set by therm                                                        | nal state mach | ine when syste | em thermistor ( | ) thermal alert |
|                         |       | 1     | 0 occurs                                                            |                |                |                 |                 |
| SYS1ALRT0               |       | 0     | Set by therm                                                        | nal state mach | ine when syste | em thermistor ? | 1 thermal alert |
|                         |       | 1     | 0 occurs                                                            |                |                |                 |                 |
| SYS3ALRT0               |       | 0     | Set by therm                                                        | nal state mach | ine when syste | em thermistor 2 | 2 thermal alert |
|                         |       | 1     | 0 occurs                                                            |                |                |                 |                 |
| PMICALRT0               |       | 0     | Set by therm                                                        | nal state mach | ine when PMI   | C thermal alert | 0 occurs        |
|                         |       |       |                                                                     |                |                |                 |                 |
| SYSUALR I 1             |       | 0     | Set by therm                                                        | nal state mach | ine when syste | em thermistor ( | ) thermal alert |
|                         |       | 1     | 1 occurs                                                            | · · · ·        |                |                 |                 |
| SYS1ALRT1               |       | 0     | Set by therm                                                        | nal state mach | ine when syste | em thermistor ? | 1 thermal alert |
|                         |       | 1     | 1 occurs                                                            |                |                |                 |                 |
| SYS3ALRT1               |       | 0     | Set by thermal state machine when system thermistor 2 thermal alert |                |                |                 |                 |
|                         |       | 1     | 1 occurs                                                            |                |                |                 |                 |
| PMICALRT1               |       | 0     | Set by therm                                                        | nal state mach | ine when PMI   | C thermal alert | 1 occurs        |
|                         |       | 1     |                                                                     |                |                |                 |                 |

| Register Name | Э    | THERMIRQ1                                                  |               | Address     | 0x05   | Read/Write      |           |
|---------------|------|------------------------------------------------------------|---------------|-------------|--------|-----------------|-----------|
|               |      |                                                            |               |             | Page 1 |                 |           |
|               |      |                                                            |               | Reset Value | 0x00   |                 |           |
| MSB           |      |                                                            |               |             |        |                 | LSB       |
| R/W           | R/W  | R/W                                                        | R/W           | R/W         | R/W    | R/W             | R/W       |
|               | rese | rved                                                       |               | PMIC        | SYS2   | SYS1            | SYS0      |
|               |      |                                                            |               | CRIT        | CRIT   | CRIT            | CRIT      |
| SYS0CRIT      |      | <b>0</b> Set by thermal state machine when system thermist |               |             |        | em thermistor ( | ) thermal |
|               |      | 1                                                          | critical even | t occurs    |        |                 |           |

**Data Sheet** 

Version 3.A - Final

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| SYS1CRIT | 0 | Set by thermal state machine when system thermistor 1 thermal |
|----------|---|---------------------------------------------------------------|
|          | 1 | critical event occurs                                         |
| SYS3CRIT | 0 | Set by thermal state machine when system thermistor 2 thermal |
|          | 1 | critical event occurs                                         |
| PMICCRIT | 0 | Set by thermal state machine when PMIC thermal critical event |
|          | 1 | occurs                                                        |

| Register Name T              |     | THERMIRQ2  |                                                                      | Address                                              | 0x06<br>Page 1 | Read/Write       |                 |  |  |
|------------------------------|-----|------------|----------------------------------------------------------------------|------------------------------------------------------|----------------|------------------|-----------------|--|--|
|                              |     |            |                                                                      | Reset Value                                          | 0x00           |                  |                 |  |  |
| MSB                          |     |            |                                                                      |                                                      |                |                  | LSB             |  |  |
| R/W                          | R/W | R/W        | R/W R/W R/W R/W R/W                                                  |                                                      |                |                  |                 |  |  |
| reserved                     |     | BAT1       | BAT0                                                                 | BAT1                                                 | BAT0           | BAT1             | BAT0            |  |  |
|                              |     | CRIT       | CRIT                                                                 | ALRT1                                                | ALRT1          | ALRT0            | ALERT0          |  |  |
| BAT0ALRT0 0                  |     |            | Set by thern                                                         | nal state mach                                       | ine when batte | ery thermistor ( | ) thermal alert |  |  |
|                              |     | 1 0 occurs |                                                                      |                                                      |                |                  |                 |  |  |
| BAT1ALRT0 0                  |     |            | Set by thern                                                         | nal state mach                                       | ine when batte | ery thermistor 1 | thermal alert   |  |  |
|                              |     | 1          | 0 occurs                                                             |                                                      |                |                  |                 |  |  |
| BAT0ALRT1                    |     | 0          | Set by thermal state machine when battery thermistor 0 thermal alert |                                                      |                |                  |                 |  |  |
|                              |     | 1          | 1 occurs                                                             |                                                      |                |                  |                 |  |  |
| BAT1ALRT1                    |     | 0          | Set by thermal state machine when battery thermistor 1 thermal alert |                                                      |                |                  |                 |  |  |
|                              |     | 1          | 1 occurs                                                             |                                                      |                |                  |                 |  |  |
| BAT0CRIT                     |     | 0          | Set by thermal state machine when a battery critical temperature     |                                                      |                |                  |                 |  |  |
|                              |     | 1          | event occurs                                                         | s. This bit indic                                    | cates that BAT | TEMP0) has c     | rossed the      |  |  |
|                              |     |            | value specified in the TCRIT.                                        |                                                      |                |                  |                 |  |  |
| BAT1CRIT 0 Set by thermal st |     |            | nal state mach                                                       | al state machine when a battery critical temperature |                |                  |                 |  |  |
|                              | 1   |            | event occurs. This bit indicates that BATTEMP1) has crossed the      |                                                      |                |                  |                 |  |  |
|                              |     |            | value specif                                                         | ied in the TCR                                       | RIT.           |                  |                 |  |  |

| Register Name                              |                | MTHERMIRG                       | 50                          | Address        | 0x11<br>Page 1 | Read/Write     |                 |  |
|--------------------------------------------|----------------|---------------------------------|-----------------------------|----------------|----------------|----------------|-----------------|--|
|                                            |                |                                 |                             | Reset Value    | 0xFF           |                |                 |  |
| MSB                                        |                |                                 |                             |                |                |                | LSB             |  |
| R                                          | R              | R/W                             | R/W                         | R/W            | R/W            | R/W            | R/W             |  |
| MPMIC<br>ALRT1                             | MSYS2<br>ALRT1 | MSYS1<br>ALRT1                  | MSYS0<br>ALRT1              | MPMIC<br>ALRT0 | MSYS2<br>ALRT0 | MSYS1<br>ALRT0 | MSYS0<br>ALERT0 |  |
| MSYS0ALRT0 0 No mask<br>1 Interrupt masked |                |                                 |                             |                |                |                |                 |  |
| MSYS1ALRT0 0<br>1                          |                |                                 | No mask<br>Interrupt masked |                |                |                |                 |  |
| MSYS2ALRT0 0 No mask                       |                |                                 |                             |                |                |                |                 |  |
| MPMICALRT                                  | 0              | 0<br>1                          | No mask<br>Interrupt ma     | sked           |                |                |                 |  |
| MSYS0ALRT                                  | 1              | 0<br>1                          | No mask<br>Interrupt ma     | sked           |                |                |                 |  |
| MSYS1ALRT                                  | 1              | 0 No mask<br>1 Interrupt masked |                             |                |                |                |                 |  |
| MSYS2ALRT                                  | 1              | 0<br>1                          | No mask<br>Interrupt masked |                |                |                |                 |  |
| MPMICALRT                                  | 1              | 0<br>1                          | No mask<br>Interrupt ma     | sked           |                |                |                 |  |



**Company Confidential** 

| Register Name |      | MTHERMIRG     | 21                          | Address       | 0x12<br>Page 1 | Read/Write    |               |  |
|---------------|------|---------------|-----------------------------|---------------|----------------|---------------|---------------|--|
|               |      |               |                             | Reset Value   | 0x0F           |               |               |  |
| MSB           |      |               |                             |               |                |               | LSB           |  |
| R/W           | R/W  | R/W           | R/W                         | R/W           | R/W            | R/W           | R/W           |  |
|               | rese | rved          |                             | MPMIC<br>CRIT | MSYS2<br>CRIT  | MSYS1<br>CRIT | MSYS0<br>CRIT |  |
| MSYS0CRIT     |      | 0<br><b>1</b> | No mask<br>Interrupt ma     | sked          |                |               |               |  |
| MSYS1CRIT     |      | 0<br>1        | No mask<br>Interrupt ma     | sked          |                |               |               |  |
| MSYS2CRIT     |      | 0<br>1        | No mask<br>Interrupt masked |               |                |               |               |  |
| MPMICCRIT     |      | 0<br>1        | No mask<br>Interrupt ma     | sked          |                |               |               |  |

| Register Name |     | MTHERMIRG | 22               | Address 0x13 Read/Write<br>Page 1 |       |       |        |  |  |
|---------------|-----|-----------|------------------|-----------------------------------|-------|-------|--------|--|--|
|               |     |           |                  | Reset Value                       | 0x3F  |       |        |  |  |
| MSB           |     |           |                  |                                   |       | LSB   |        |  |  |
| R/W           | R/W | R/W       | R/W              | R/W                               | R/W   | R/W   | R/W    |  |  |
| reserv        | /ed | MBAT1     | MBAT0            | MBAT1                             | MBAT0 | MBAT1 | MBAT0  |  |  |
|               |     | CRIT      | CRIT             | ALRT1                             | ALRT1 | ALRT0 | ALERT0 |  |  |
| BAT0ALRT0 0   |     |           | No mask          | No mask                           |       |       |        |  |  |
| 1             |     |           | Interrupt masked |                                   |       |       |        |  |  |
| BAT1ALRT0 0   |     |           | No mask          |                                   |       |       |        |  |  |
|               |     | 1         | Interrupt masked |                                   |       |       |        |  |  |
| BAT0ALRT1     |     | 0         | No mask          |                                   |       |       |        |  |  |
|               |     | 1         | Interrupt ma     | sked                              |       |       |        |  |  |
| BAT1ALRT1     |     | 0         | No mask          |                                   |       |       |        |  |  |
|               |     | 1         | Interrupt masked |                                   |       |       |        |  |  |
| BAT0CRIT      |     | 0         | No mask          |                                   |       |       |        |  |  |
| 1             |     |           | Interrupt ma     | sked                              |       |       |        |  |  |
| BAT1CRIT 0 I  |     |           | No mask          |                                   |       |       |        |  |  |
|               |     | 1         | Interrupt ma     | sked                              |       |       |        |  |  |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 16.2 SVTM Block Diagram



Figure 66: SVTM Block Diagram

Each specific implementation will connect the SVTM output as they deem appropriate except the PROCHOT\_B and IRQ which must be connected to the SoC.

## **16.3 Functional Description**

The SVTM will react on voltage comparators placed on the VSYS node and comparators related to the bandgap module (this is related to temperature thresholds). In addition it will react to the measurements results from the ADC according to the programmed values.

#### 16.3.1 VSYS Input Trip Points for ADC Measurement

There are three configurable independent VSYS trip points:

- **VWARNA**: Warning zone A trip point. Will assert the DISA signal and interrupts the SoC when the level crosses below and above the trip point for longer than the programmed value.
- **VWARNB**: Warning zone B trip point. Will assert the DISB signal and interrupts the SoC when the level crosses below and above the trip point for longer than the programmed value.
- VCRIT: Warning zone CRITICAL trip point. Will assert the DISCRIT signal and interrupts the SoC when the level crosses below and above the trip point for longer than the programmed value.

All the settings can be programmed via the configuration registers. It is assumed that these thresholds are programmed as VWARNA > VWARNB > VCRIT.

VSYS monitoring will only be executed while being in SoC\_S0 state.



**Company Confidential** 

| Register Nam                                                                                             | е      | VWARNA_C                                                                                | FG                                                                                                                                                                    | Address                                                                                          | 0xB4<br>page 1 | Read/Write  |     |  |  |
|----------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------|-------------|-----|--|--|
|                                                                                                          |        |                                                                                         |                                                                                                                                                                       | Reset Value                                                                                      | 0x04           |             |     |  |  |
| MSB                                                                                                      |        |                                                                                         |                                                                                                                                                                       |                                                                                                  |                |             | LSB |  |  |
| R/W                                                                                                      | R/W    | R/W                                                                                     | R/W                                                                                                                                                                   | R/W                                                                                              | R/W            | R/W         | R/W |  |  |
|                                                                                                          | VWARNA | _DEB[3:0]                                                                               |                                                                                                                                                                       | VWARNA_EN                                                                                        |                | VWARNA[2:0] |     |  |  |
| VWARNA[2:0] 000<br>001<br>010<br>011<br>100<br>101<br>110                                                |        | 000<br>001<br>010<br>011<br><b>100</b><br>101<br>110<br>111                             | 3.3V<br>3.2V<br>3.1V<br>3.0V<br>2.9V<br>2.8V<br>2.7V<br>2.6V                                                                                                          |                                                                                                  |                |             |     |  |  |
| VWARNA_EN                                                                                                |        | <b>0</b><br>1                                                                           | VWARNA logic disable<br>VWARNA logic enable                                                                                                                           |                                                                                                  |                |             |     |  |  |
| 1<br>VWARNA_DEB[3:0]<br>0000<br>0011<br>0010<br>0011<br>0100<br>0101<br>0110<br>0111<br>1000<br><br>1111 |        | <b>0000</b><br>0001<br>0010<br>0011<br>0100<br>0101<br>0110<br>0111<br>1000<br><br>1111 | 2 fast clock<br>3 fast clock<br>4 fast clock<br>5 fast clock<br>6 fast clock<br>7 fast clock<br>10 fast clock<br>20 fast clock<br>30 fast clock<br><br>100 fast clock | cycles<br>cycles<br>cycles<br>cycles<br>cycles<br>cycles<br>cycles<br>cycles<br>cycles<br>cycles |                |             |     |  |  |

| Register Nam    | е               | VWARNB_0             | CFG                 | Address     | 0xB5<br>page 1 | Read/Write |     |  |  |  |
|-----------------|-----------------|----------------------|---------------------|-------------|----------------|------------|-----|--|--|--|
|                 |                 |                      |                     | Reset Value | 0x04           |            |     |  |  |  |
| MSB             |                 |                      |                     |             | 0/10           |            | LSB |  |  |  |
| R/W             | R/W             | R/W                  | R/W                 | R/W         | R/W            | R/W        | R/W |  |  |  |
| VWARNB_DEB[3:0] |                 | •                    | VWARNB_EN           |             | VWARNB[2:0]    |            |     |  |  |  |
| VWARNB[2:0]     | VWARNB[2:0] 000 |                      | 3.3V                | -           | -              |            |     |  |  |  |
| 001             |                 | 001                  | 3.2V                |             |                |            |     |  |  |  |
|                 |                 | 010                  | 3.1V                |             |                |            |     |  |  |  |
|                 |                 | 011                  | 3.0V                | 3.0V        |                |            |     |  |  |  |
|                 |                 | 100                  | 2.9V                |             |                |            |     |  |  |  |
| 101             |                 |                      | 2.8V                |             |                |            |     |  |  |  |
|                 |                 | 110                  | 2.7V                | 2.7V        |                |            |     |  |  |  |
|                 |                 | 111                  | 2.6V                |             |                |            |     |  |  |  |
| VWARNB_EN       | 1               | 0                    | VWARNB lo           | gic disable |                |            |     |  |  |  |
|                 |                 | 1                    | VWARNB logic enable |             |                |            |     |  |  |  |
| VWARNB_DE       | B[3:0]          | 0000                 | 2 fast clock cvcles |             |                |            |     |  |  |  |
|                 |                 | 0001                 | 3 fast clock        | cycles      |                |            |     |  |  |  |
|                 |                 | 0010                 | 4 fast clock        | cycles      |                |            |     |  |  |  |
|                 |                 | 0011                 | 5 fast clock        | cycles      |                |            |     |  |  |  |
|                 |                 | 0100                 | 6 fast clock        | cycles      |                |            |     |  |  |  |
|                 |                 | 0101                 | 7 fast clock        | cycles      |                |            |     |  |  |  |
|                 |                 | 0110                 | 10 fast clock       | cycles      |                |            |     |  |  |  |
| 0111            |                 | 20 fast clock cycles |                     |             |                |            |     |  |  |  |
| 1000            |                 | 30 fast clock cycles |                     |             |                |            |     |  |  |  |
|                 |                 |                      |                     |             |                |            |     |  |  |  |
|                 |                 | 1111                 | 100 fast cloo       | ck cycles   |                |            |     |  |  |  |

#### **Data Sheet**

Version 3.A - Final

| C       | Confidential  |
|---------|---------------|
| Company | / Contidentia |
|         |               |

| Register Name VCRIT |          | VCRIT_CF                                                    | G                                                                                                                                                                                      | Address                              | 0xB6<br>page 1 | Read/Write    |          |
|---------------------|----------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|---------------|----------|
|                     |          |                                                             |                                                                                                                                                                                        | Reset Value                          | 0x06           |               |          |
| MSB                 |          |                                                             |                                                                                                                                                                                        |                                      |                |               | LSB      |
| R/W                 | R/W      | R/W                                                         | R/W                                                                                                                                                                                    | R/W                                  | R/W            | R/W           | R/W      |
| VCRIT_              | DEB[2:0] |                                                             | VCRITSDWNEN                                                                                                                                                                            | VCRIT_EN                             |                | VCRIT[2:0]    |          |
| VCRIT[2:0]          |          | 000<br>001<br>010<br>011<br>100<br>101<br><b>110</b><br>111 | 3.3V<br>3.2V<br>3.1V<br>3.0V<br>2.9V<br>2.8V<br>2.7V<br>2.6V                                                                                                                           |                                      |                |               |          |
| VCRIT_EN            |          | <b>0</b><br>1                                               | VCRIT logic disab                                                                                                                                                                      | le<br>le                             |                |               |          |
| VCRITSDWNEN         |          | <b>0</b><br>1                                               | DA6021 shuts dov<br>Disable<br>enable                                                                                                                                                  | wn when VSY                          | S is below th  | reshold in VC | RIT[2:0] |
| VCRIT_DEB[2:0]      |          | 000<br>001<br>010<br>011<br>100<br>101<br>110<br>111        | 2 fast clock cycles<br>3 fast clock cycles<br>4 fast clock cycles<br>5 fast clock cycles<br>6 fast clock cycles<br>7 fast clock cycles<br>10 fast clock cycles<br>20 fast clock cycles | 5<br>5<br>5<br>5<br>9<br>5<br>9<br>5 |                |               |          |

## 16.3.2 VSYS Related Output Control

The DA6021 outputs DISA, DISB, DISCRIT are directly derived from the current platform status and the register settings.

The PROCCHOT\_B signal is derived from a several input criterias as DA6021 on-die, battery and system temperature as well as battery voltage drop. In order to make decision, the corresponding result registers on the ADC side will be accessible (in static way) for reading from the SVTM.



#### **Company Confidential**



Figure 67: BCU Warning Flag Generation

There is a possibility to disable and change the polarity of a certain output via BEH register setting. In addition it is possible to have a sticky output so under certain conditions an output is asserted, the output value is maintained even when the condition is not valid.. The sticky function is selected with the ST bit and is cleared with the CL bit. The CL bit must be a self-clearing bit.

| Register Name |   | BCUIRQ                 |                   | Address     | 0x07  | Read/Write |        |
|---------------|---|------------------------|-------------------|-------------|-------|------------|--------|
|               |   |                        |                   | Page 1      |       |            |        |
|               |   |                        |                   | Reset Value | 0x00  |            |        |
| MSB           |   |                        |                   |             |       | LSB        |        |
| R             | R | R                      | R                 | R           | R/W   | R/W        | R/W    |
|               |   | reserved               |                   |             | VCRIT | VWARNB     | VWARNB |
| VWARNB        |   | 0                      | No interrupt      | pending     |       |            |        |
|               |   | 1                      | Interrupt per     | nding       |       |            |        |
| VWARNA        |   | 0                      | No interrupt      | pending     |       |            |        |
|               |   | 1                      | Interrupt pending |             |       |            |        |
| VCRIT         |   | 0 No interrupt pending |                   |             |       |            |        |
|               |   | 1                      | Interrupt per     | nding       |       |            |        |

| Register Name                 |     | MBCUIRQ |                  | Address     | 0x14   | Read/Write |         |
|-------------------------------|-----|---------|------------------|-------------|--------|------------|---------|
|                               |     |         |                  |             | Page 1 |            |         |
|                               |     |         |                  | Reset Value | 0x07   |            |         |
| MSB                           | MSB |         |                  |             | LSB    |            |         |
| R                             | R   | R       | R                | R           | R/W    | R/W        | R/W     |
| reserved                      |     |         |                  |             | MVCRIT | MVWARNB    | MVWARNB |
| MVWARNB                       |     | 0       | Interrupt not    | t masked    |        |            |         |
|                               |     | 1       | Interrupt ma     | isked       |        |            |         |
| MVWARNA                       |     | 0       | Interrupt not    | t masked    |        |            |         |
|                               |     | 1       | Interrupt masked |             |        |            |         |
| MVCRIT 0 Interrupt not masked |     |         |                  |             |        |            |         |
|                               |     | 1       | Interrupt ma     | isked       |        |            |         |



**Company Confidential** 

| Register Name <b>DISA_BEH</b> |   |               | Address                                             | 0xB7<br>Page1                                                    | Read/Write      |          |         |  |  |
|-------------------------------|---|---------------|-----------------------------------------------------|------------------------------------------------------------------|-----------------|----------|---------|--|--|
|                               |   |               |                                                     | Reset Value                                                      | 0x00            |          |         |  |  |
| MSB                           |   |               |                                                     |                                                                  |                 |          | LSB     |  |  |
| R                             | R | R             | R                                                   | R                                                                | R/W             | R/W      | R/W     |  |  |
|                               |   | reserved      |                                                     |                                                                  | DISA_<br>STICKY | DISA_POL | DISA_EN |  |  |
| DISA_EN                       |   | <b>0</b><br>1 | BCU DISA s<br>BCU DISA f                            | signal disable<br>unction signal                                 | enable          |          |         |  |  |
| DISA_POL                      |   | <b>0</b><br>1 | BCU DISA pin active low<br>BCU DISA pin active high |                                                                  |                 |          |         |  |  |
| DISA_STICKY                   | / | <b>0</b><br>1 | 0 = signal as<br>1= signal as                       | 0 = signal assertion not sticky<br>1= signal assertion is sticky |                 |          |         |  |  |

| Register Name          | е | DISB_BEH      |                                                     | Address                              | 0xB8<br>Page 1  | Read/Write |         |
|------------------------|---|---------------|-----------------------------------------------------|--------------------------------------|-----------------|------------|---------|
|                        |   |               |                                                     | Reset Value                          | 0x00            |            |         |
| MSB                    |   |               |                                                     |                                      |                 |            | LSB     |
| R                      | R | R             | R                                                   | R                                    | R/W             | R/W        | R/W     |
| reserved               |   |               |                                                     |                                      | DISB_<br>STICKY | DISB_POL   | DISB_EN |
| DISB_EN                |   | <b>0</b><br>1 | BCU DISB s<br>BCU DISB f                            | signal disable<br>unction signal     | enable          |            |         |
| DISB_POL               |   | <b>0</b><br>1 | BCU DISB pin active low<br>BCU DISB pin active high |                                      |                 |            |         |
| DISB_STICKY 0 0 = 1 1= |   |               | 0 = signal as<br>1= signal as                       | ssertion not sti<br>sertion is stick | cky<br>Sy       |            |         |

| Register Name                                                                       | Э | DISCRIT_BE    | H                                                         | Address                              | 0xB9<br>Page 1     | Read/Write      |                |
|-------------------------------------------------------------------------------------|---|---------------|-----------------------------------------------------------|--------------------------------------|--------------------|-----------------|----------------|
|                                                                                     |   |               |                                                           | Reset Value                          | 0x00               |                 |                |
| MSB                                                                                 |   |               |                                                           |                                      |                    |                 | LSB            |
| R                                                                                   | R | R             | R                                                         | R                                    | R/W                | R/W             | R/W            |
| reserved                                                                            |   |               |                                                           |                                      | DISCRIT_<br>STICKY | DISCRIT<br>_POL | DISCRIT<br>_EN |
| DISCRIT_EN                                                                          |   | <b>0</b><br>1 | BCU DISCR<br>BCU DISCR                                    | RIT signal disal<br>RIT function sig | ble<br>Inal enable |                 |                |
| DISCRIT_POL                                                                         | - | <b>0</b><br>1 | BCU DISCRIT pin active low<br>BCU DISCRIT pin active high |                                      |                    |                 |                |
| DISCRIT_STICKY 0 0 = signal assertion not sticky   1 1 = signal assertion is sticky |   |               |                                                           |                                      |                    |                 |                |

**Company Confidential** 

| Register Name | Э | BCU | _TRIP_ST |                              | Address        | 0xBB<br>Page 1 | Read    |         |
|---------------|---|-----|----------|------------------------------|----------------|----------------|---------|---------|
|               |   |     |          |                              | Reset Value    | 0x00           |         |         |
| MSB           |   |     |          |                              |                |                |         | LSB     |
| R             | R |     | R        | R                            | R              | R              | R       | R       |
|               |   |     | reserved |                              |                | SVSCRIT        | SVWARNA | SVWARNB |
| SVWARNB       |   |     | 0        | VSYS above                   | e VWARNB tri   | p point        |         |         |
|               |   |     | 1        | VSYS below                   | v VWARNB trip  | o point        |         |         |
| SVWARNA       |   |     | 0        | VSYS above VWARNA trip point |                |                |         |         |
|               |   |     | 1        | VSYS below VWARNA trip point |                |                |         |         |
| SVCRIT        |   |     | 0        | VSYS above                   | e VCRIT trip p | oint           |         |         |
|               |   |     | 1        | VSYS below                   | VCRIT trip po  | pint           |         |         |

| Register Nam | e | BCUOUT_S | Τ                      | Address        | 0xBC<br>Page 1 | Read     |            |  |
|--------------|---|----------|------------------------|----------------|----------------|----------|------------|--|
|              |   |          |                        | Reset<br>Value | 0x00           |          |            |  |
| MSB          |   |          |                        |                |                |          | LSB        |  |
| R            | R | R        | R                      | R              | R              | R        | R          |  |
| reserved     |   |          |                        | SDISA          | SDISB          | SDISCRIT | SPROTHOT_B |  |
| SPROTHOT_B 0 |   | 0        | PROTHOT_B not asserted |                |                |          |            |  |
|              |   | 1        | PROTHOT_B asserted     |                |                |          |            |  |
| DISCRIT      |   | 0        | DISCRIT not asserted   |                |                |          |            |  |
|              |   | 1        | DISCRIT as             | serted         |                |          |            |  |
| SDISB        |   | 0        | DISB not asserted      |                |                |          |            |  |
| 1            |   |          | DISB asserted          |                |                |          |            |  |
| SDISA 0      |   |          | DISA not asserted      |                |                |          |            |  |
|              |   | 1        | DISA assert            | ted            |                |          |            |  |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 16.3.2.1 VSYS Waveform Example

Below is an explanation of the BCU VSYS trip points and how the voltage may behave under a given situation. A table describes a select subset of the numbered events to describe expected BCU behavior.



Figure 68: VSYS Trip Points Flag Logic

| # | System Event                                                          | BCU Response                                                                                                |                                                             | SOC Response                                                                                                                                        |
|---|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                       | Interrupts                                                                                                  | Hardware Actions                                            |                                                                                                                                                     |
| 1 | Large system burst<br>event begins, dropping<br>VSYS                  | N/A                                                                                                         | N/A                                                         | N/A                                                                                                                                                 |
| 2 | VSYS goes below<br>VWARNA BCU<br>threshold and into<br>Warning Zone A | After the de-bounce<br>period for VWARNA,<br>the BCU interrupts<br>SOC with BCUIRQ<br>and VWARNAIRQ<br>bits | Assert BCUDISA<br>and/or PROCHOT_B<br>(if enabled as such)  | Gets interrupt and knows<br>what hardware actions (if<br>any) have been done.<br>Clears BCUIRQ and<br>VWARNA interrupt bits.                        |
| 3 | VSYS goes back<br>above VWARNA<br>threshold due to BCU<br>response    | After the de-bounce<br>period for VWARNA,<br>the BCU interrupts<br>SOC with BCUIRQ<br>and VWARNAIRQ<br>bits | De-assert BCUDISA<br>and/or PROCHOT_B<br>(if not sticky)    | Gets interrupt and knows<br>system is out of warning<br>Zone A. If pin assertion is<br>sticky, will clear BCUDISA<br>and/or PROCHOT_B<br>assertion. |
| 4 | A further large system<br>burst event begins,<br>dropping VSYS        | N/A                                                                                                         | N/A                                                         | N/A                                                                                                                                                 |
| 7 | VSYS goes below<br>VWARNB BCU<br>threshold and into<br>Warning Zone B | After the de-bounce<br>period for VWARNB,<br>the BCU interrupts<br>SOC with BCUIRQ<br>and VWARNBIRQ<br>bits | Asserts BCUDISB<br>and/or PROCHOT_B<br>(if enabled as such) | Gets interrupt and knows<br>what hardware actions (if<br>any) have been done.<br>Clears BCUIRQ and<br>VWARNB interrupt bits.                        |

#### **Data Sheet**

Version 3.A - Final

# **C** dialog

#### **Company Confidential**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| 9 t | VSYS goes back<br>above VWARNB<br>threshold due to BCU<br>response. Still in<br>Warning Zone A | After the de-bounce<br>period for VWARNB,<br>the BCU interrupts<br>SOC with BCUIRQ<br>and VWARNBIRQ | De-assert BCUDISB<br>and/or PROCHOT_B<br>(if not sticky).<br>VWARNA and/or<br>PROCHOT_B may<br>stay asserted since | Gets interrupt and knows<br>system is out of warning<br>Zone A. If pin assertion is<br>sticky, will clear BCUDISB<br>and/or PROCHOT_B |
|-----|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|-----|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|

Table 102: VSYS Event Table

#### 16.3.3 Under- & Over- Voltage Condition

Two comparator inputs monitor whether VSYS is between 2 predefined thresholds under-voltage (2.7V) and the over-voltage (5.5V±100mV).

Both comparators will have built-in hysteresis and in both cases the system will perform an immediate shutdown without processor control. This protects the system from damage due to over-voltage or in the under-voltage condition ensures the system does not become unstable because on the DA6021 has insufficient power.. Refer to the introduction section for an overview of the catastrophic events.

In the case of the over-voltage flag the system will go to the SOC\_G3 state and wait there until the overvoltage input flag is removed. Then the system is able to wake up again.

In the case of the under-voltage condition the VSYS is too low being considered valid and the analog circuitry cannot work properly. DA6021 will initiate a system shut down regardless of the SoC state and will end up in G3 state. It will stay here until the VSYS becomes valid again (VSY is valid, from input source detection logic). If the voltage on VSYS drops again, it will reach the POR level and DA6021 will go into the RESET state (under POR) There will be no IRQ sent to DA6021 due to over or under-voltage condition. Both under- and over-voltage conditions are de-bounced with a 100µs filter.

#### 16.3.4 Permanent Temperature Monitoring

The bandgap on DA6021 also implements an over temperature detection. Two temperature ranges are supervised:

- A pre-alarm is issued at about 110°C.
- An over-temperature system-shutdown is issued at about 140°C.

If a pre-alarm is detected for a time frame >  $100\mu$ s (de-bounce time), the PROCHOT\_B output gets asserted. If the pre-alarm is de-asserted for at least  $500\mu$ s (de-bounce time) PROCHOT\_B gets de-asserted. This guarantees a 500us minimum assertion time of PROCHOT\_B.

If asserting PROCHOT\_B (the external processor should start throttling which in turn should lead to a decrease of the temperature due to less power consumption) does not lower the temperature and the temperature reaches the 140°C limit for at least 100us circa (de-bounce time), DA6021 performers an immediate shutdown (it goes into SOC\_G3 state).

**Company Confidential** 

| Register Nam                             | ister Name PROCHOT_BE |          | EH         | Address                                       | 0xBA<br>Page 1 | Read/Write |           |  |
|------------------------------------------|-----------------------|----------|------------|-----------------------------------------------|----------------|------------|-----------|--|
|                                          |                       |          |            | Reset Value                                   | 0x00           |            |           |  |
| MSB                                      |                       |          |            |                                               |                |            | LSB       |  |
| R                                        | R                     | R        | R          | R                                             | R/W            | R/W        | R/W       |  |
|                                          |                       | reserved |            |                                               | PROCHOT_B      | PROCHOT_B  | PROCHOT_B |  |
|                                          |                       |          |            |                                               | _ST            | _VWA_EN    | _VWB_EN   |  |
| PROCHOT_E                                | 3_VWB_EN              | 0        | BCU will ı | BCU will not enable PROCHOT_B based on VWARNB |                |            |           |  |
|                                          |                       | 1        | Assert PF  | ROCHOT_B at                                   | VWARNB         |            |           |  |
| PROCHOT_E                                | 3_VWA_EN              | 0        | BCU will ı | BCU will not enable PROCHOT_B based on VWARNB |                |            |           |  |
|                                          |                       | 1        | Assert PF  | ROCHOT_B at                                   | VWARNB         |            |           |  |
| PROCHOT_B_ST 0 0 = low status indication |                       |          |            |                                               |                |            |           |  |
|                                          |                       | 1        | 1= high st | tatus indication                              | l              |            |           |  |

#### 16.3.5 Temperature Monitoring via ADC

DA6021 has the capability to monitor six miscellaneous temperatures and stores the measurement results in the corresponding registers

- SYSTHERM0: System temperature 0
- SYSTHERM1: System temperature 1
- SYSTHERM2: System temperature 2
- PMICTEMP: DA6021 on-die temperature
- BPTHERM0: Primary battery temperature
- BPTHERM1: Secondary battery temperature

The external temperatures are sensed using external precision NTC thermistors. PMICTEMP, the internal die temperature, is sensed using an internal silicon temperature thermometer circuit. All six temperatures are sampled by the 10-bit GPADC (ADC). Voltages across the thermistors are converted by the ADC channels. That means a higher temperature at a thermistor will give a lower voltage at the input of ADC channel thus produces a smaller digital code at the ADC result registers. The SVTM will read always the measurement result for the system, platform and PMIC temperature and will react according to some programmable thresholds.

The THRMMONCTL0-1 registers are the master control for the timer-based thermal monitoring state machine. They are defined in the table below.

| Register Nam | ie      | THRMMONC                    | TL0                                                                                                                                                      | Address     | 0x8E<br>Page 1 | Read/Write |                        |
|--------------|---------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------|------------------------|
|              |         |                             |                                                                                                                                                          | Reset Value | 0x15           |            |                        |
| MSB          |         |                             |                                                                                                                                                          |             |                |            | LSB                    |
| R/W          | R/W     | R/W                         | R/W                                                                                                                                                      | R/W         | R/W            | R/W        | R/W                    |
| reserved     | SYSFRQS | BATFRQS                     | SYS                                                                                                                                                      | FRQA        | BAT            | FRQA       | THRMEN                 |
| THRMEN       |         | 0<br>1                      | DA6021 shuts down if die temperature exceeds critical limit<br>Enables ADC based automatic thermal monitoring timer for system<br>battery and DA6021 die |             |                |            | limit<br>r for system, |
| BATFRQA[1:   | 0]      | 00<br>01<br><b>10</b><br>11 | Specifies the frequency at which battery temperature measureme<br>are initiated while system is in S0 mode<br>Disable<br>1s<br>4s<br>32s                 |             |                |            | easurements            |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| SYSFRQA[1:0] | 00 | Specifies the frequency at which system temperature measurements are initiated while system is in S0 mode Disable    |
|--------------|----|----------------------------------------------------------------------------------------------------------------------|
|              | 01 | 1s                                                                                                                   |
|              | 10 | 4s                                                                                                                   |
|              | 11 | 32s                                                                                                                  |
| BATFRQS      | 0  | Specifies the frequency at which battery temperature measurements are initiated while system is in S0iX mode disable |
|              | 1  | 32s                                                                                                                  |
| SYSFRQS      |    | Specifies the frequency at which system temperature measurements are initiated while system is in S0iX mode          |
|              | 0  | disable                                                                                                              |
|              | 1  | 32s                                                                                                                  |

| Register Name | Э                         | THRMMONC                    | CTL1 Address C                                                                                                                               |             | 0x8F<br>Page 1 | Read/Write |     |
|---------------|---------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------|-----|
|               |                           | •                           |                                                                                                                                              | Reset Value | 0x02           |            |     |
| MSB           |                           |                             |                                                                                                                                              | -           | -              |            | LSB |
| R             | R                         | R                           | R                                                                                                                                            | R           | R/W            | R/W        | R/W |
|               | reserved PMICFRQS PMICFRA |                             |                                                                                                                                              |             |                | CFRA       |     |
| PMICFRQA[1:   | 0]                        | 00<br>01<br><b>10</b><br>11 | Specifies the frequency at which PMIC die temperature<br>measurements are initiated while system is in S0 mode<br>Disable<br>1s<br>4s<br>32s |             |                |            |     |
| PMICFRQS      |                           | <b>0</b><br>1               | Specifies the frequency at which PMIC die temperature<br>measurements are initiated while system is in S0iX mode<br>disable<br>32s           |             |                |            | de  |

The thermal monitoring is active only in state SOC\_SX and SOC\_S0.

Temperature monitoring of each thermistor may be enabled or disabled (register TS\_ENABLE) depending on whether the thermistor and its bias circuit is populated on the platform. This enables the thermal monitoring state machine to know if any alert or interrupt associated with the thermistor should be generated. If in register TS\_ENABLE the corresponding enable bit is set, the thermistor is connected to the PMIC and the PMIC can poll the sensor.

There are three pre-defined and programmable threshold for each of the measurements

- ALERT0
- ALERT1
- TCRIT

Each ALERT has a 4-bit hysteresis and 4 STATUS bits (A0\_ST, A1\_ST, CRIT\_ST) and for all the ALERT0 a policy register (A0P\_EN) is defined in order to allow actions upon crossing thresholds.

#### **Company Confidential**

| Register Name | e       | SYS0_THRM                               | IALRT0H                                                             | Address               | 0x94<br>Page 1 | Read/Write |       |
|---------------|---------|-----------------------------------------|---------------------------------------------------------------------|-----------------------|----------------|------------|-------|
|               |         |                                         |                                                                     | Reset Value           | 0x00           |            |       |
| MSB           |         |                                         |                                                                     |                       |                |            | LSB   |
| R/W           | R/W     | R/W                                     | R/W                                                                 | R/W                   | R/W            | R/W        | R/W   |
| A0PEN         | A0EN    |                                         | ALERTO_HYST ALERTOMSB                                               |                       |                |            | TOMSB |
| ALERT0MSB[    | 1:0]    | <b>00</b> 11                            | Alert0 threshold MSBs                                               |                       |                |            |       |
| ALERT0_HYS    | ST[0:3] | <b>0000</b><br>0001<br><br>1110<br>1111 | SYSTEMP0 must be above ALERT0 + ALERT0_HYS to clear a thermal event |                       |                |            |       |
| A0EN          |         | <b>0</b><br>1                           | Disable<br>Enable                                                   |                       |                |            |       |
| A0PEN         |         | <b>0</b><br>1                           | Policy action<br>Policy action                                      | n disable<br>n enable |                |            |       |

| Register Name        | ame SYS0_THRMALRT0L |     | '0L | Address     | 0x95<br>Page 1 | Read/Write |     |  |  |
|----------------------|---------------------|-----|-----|-------------|----------------|------------|-----|--|--|
|                      |                     |     |     | Reset Value | 0x00           |            |     |  |  |
| MSB                  |                     |     |     |             |                |            | LSB |  |  |
| R/W                  | R/W                 | R/W | R/W | R/W         | R/W            | R/W        | R/W |  |  |
|                      | ALERTOLSB           |     |     |             |                |            |     |  |  |
| ALERTOLSB [7:0] 0255 |                     |     |     |             |                |            |     |  |  |

| Register Name      | e       | SYS0_THRM                                                                    | ALRT1H        | Address               | 0x96<br>Page 1 | Read/Write |            |  |
|--------------------|---------|------------------------------------------------------------------------------|---------------|-----------------------|----------------|------------|------------|--|
|                    |         |                                                                              |               | Reset Value           | 0x00           |            |            |  |
| MSB                |         |                                                                              |               |                       |                |            | LSB        |  |
| R/W                | R/W     | R/W                                                                          | R/W           | R/W                   | R/W            | R/W        | R/W        |  |
| reserved           | A1EN    |                                                                              | ALERT         | 1_HYST                |                | ALER       | ALERT1MSB  |  |
| ALERT1MSB[         | 1:0]    | <b>00</b> 11                                                                 | Alert1 thresh | Alert1 threshold MSBs |                |            |            |  |
| ALERT1_HYS         | ST[0:3] | 0000     SYSTEMP(       0001     thermal eve        1110       1111     1111 |               | must be abov<br>nt    | e ALERT1 + A   | LERT1_HYS1 | to clear a |  |
| A1EN <b>0</b><br>1 |         | Disable<br>Enable                                                            |               |                       |                |            |            |  |

| Register Name S      |     | SYS0_THRM | SYS0_THRMALRT1L |             | 0x97<br>Page 1 | Read/Write |     |  |
|----------------------|-----|-----------|-----------------|-------------|----------------|------------|-----|--|
|                      |     |           |                 | Reset Value | 0x00           |            |     |  |
| MSB                  |     |           |                 |             |                |            | LSB |  |
| R/W                  | R/W | R/W       | R/W             | R/W         | R/W            | R/W        | R/W |  |
| ALERT1LSB            |     |           |                 |             |                |            |     |  |
| ALERT1LSB [7:0] 0255 |     |           |                 |             |                |            |     |  |



**Company Confidential** 

| Register Name | Э   | SYS0THER                        | S0THERMCRIT |     | Address     | 0x98<br>Page 1 | Read/Write |     |
|---------------|-----|---------------------------------|-------------|-----|-------------|----------------|------------|-----|
|               |     |                                 |             |     | Reset Value | 0x00           |            |     |
| MSB           |     |                                 |             |     |             |                |            | LSB |
| R/W           | R/W | R/W                             |             | R/W | R/W         | R/W            | R/W        | R/W |
| TCRIT         |     |                                 |             |     |             |                |            |     |
| TCRIT [8:1]   |     | 0255 Note that TCRIT[9] and TCR |             |     |             | CRIT[0] are    | always 0   |     |

| Register Name SYS1THERM |        | IAL0                                                                           | Address               | 0x99<br>Page 1 | Read/Write |      |       |  |  |
|-------------------------|--------|--------------------------------------------------------------------------------|-----------------------|----------------|------------|------|-------|--|--|
|                         |        |                                                                                |                       | Reset Value    | 0x00       |      |       |  |  |
| MSB                     |        |                                                                                |                       |                |            |      | LSB   |  |  |
| R/W                     | R/W    | R/W                                                                            | R/W                   | R/W            | R/W        | R/W  | R/W   |  |  |
| A0PEN                   | A0EN   |                                                                                | ALERT                 | 0_HYST         |            | ALER | TOMSB |  |  |
| ALERTOMSB[              | 1:0]   | <b>00</b> 11                                                                   | Alert0 threshold MSBs |                |            |      |       |  |  |
| ALERT0_HYS              | T[0:3] | 0000SYSTEMP0 must be above ALERT0 + ALERT0_HYS to<br>thermal event111011111111 |                       |                | o clear a  |      |       |  |  |
| A0EN 0                  |        | Disable<br>Enable                                                              |                       |                |            |      |       |  |  |
| AOPEN 0                 |        | Policy action disable<br>Policy action enable                                  |                       |                |            |      |       |  |  |

| Register Name SYS1THERM |     | AL1 | Address | 0x9A<br>Page 1 | Read/Write |     |     |
|-------------------------|-----|-----|---------|----------------|------------|-----|-----|
|                         |     |     |         | Reset Value    | 0x00       |     |     |
| MSB                     |     |     |         |                |            |     | LSB |
| R/W                     | R/W | R/W | R/W     | R/W            | R/W        | R/W | R/W |
| ALERTOLSB               |     |     |         |                |            |     |     |
| ALERT0LSB [7:0] 0255    |     |     |         |                |            |     |     |

| Register Name | е       | SYS1THERN                               |                         | Address            | 0x9B<br>Page 1 | Read/Write |           |  |
|---------------|---------|-----------------------------------------|-------------------------|--------------------|----------------|------------|-----------|--|
|               |         |                                         |                         | Reset Value        | 0x00           |            |           |  |
| MSB           |         |                                         |                         |                    |                |            | LSB       |  |
| R/W           | R/W     | R/W                                     | R/W                     | R/W                | R/W            | R/W        | R/W       |  |
| reserved      | A1EN    |                                         | ALERT                   | 1_HYST AL          |                |            | RT1MSB    |  |
| ALERT1MSB[    | 1:0]    | <b>00</b> 11                            | Alert1 threshold MSBs   |                    |                |            |           |  |
| ALERT1_HYS    | ST[0:3] | <b>0000</b><br>0001<br><br>1110<br>1111 | SYSTEMP0<br>thermal eve | must be abov<br>nt | e ALERT1 + A   | LERT1_HYS1 | o clear a |  |
| A1EN 0<br>1   |         | Disable<br>Enable                       |                         |                    |                |            |           |  |



**Company Confidential** 

| Register Name SYS1THERM |     | AL3 | Address | 0x9C<br>Page 1 | Read/Write |     |     |
|-------------------------|-----|-----|---------|----------------|------------|-----|-----|
|                         |     |     |         | Reset Value    | 0x00       |     |     |
| MSB                     |     |     | LSE     |                |            |     |     |
| R/W                     | R/W | R/W | R/W     | R/W            | R/W        | R/W | R/W |
| ALERT1LSB               |     |     |         |                |            |     |     |
| ALERT1LSB [7:0] 0255    |     |     |         |                |            |     |     |

| Register Name | e   | SYS1THERM                                         | ICRIT | Address | 0x9D<br>Page 1 | Read/Write |     |
|---------------|-----|---------------------------------------------------|-------|---------|----------------|------------|-----|
|               |     |                                                   |       | 0x00    |                |            |     |
| MSB           |     | LS                                                |       |         |                |            | LSB |
| R/W           | R/W | R/W                                               | R/W   | R/W     | R/W            | R/W        | R/W |
| TCRIT         |     |                                                   |       |         |                |            |     |
| TCRIT [8:1]   |     | 0255 Note that TCRIT[9] and TCRIT[0] are always 0 |       |         |                |            |     |

| Register Name              | e SYS2THERM |                                                                                                              | IAL0                  | Address     | 0x9E<br>Page 1 | Read/Write |       |  |
|----------------------------|-------------|--------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------|------------|-------|--|
|                            |             |                                                                                                              |                       | Reset Value | 0x00           |            |       |  |
| MSB                        |             |                                                                                                              |                       |             |                |            | LSB   |  |
| R/W                        | R/W         | R/W                                                                                                          | R/W                   | R/W         | R/W            | R/W        | R/W   |  |
| A0PEN                      | A0EN        |                                                                                                              | ALERT                 | 0_HYST      |                | ALER       | TOMSB |  |
| ALERTOM                    | ISB[1:0]    | <b>00</b> 11                                                                                                 | Alert0 threshold MSBs |             |                |            |       |  |
| ALERT0_HYS                 | T[0:3]      | 0000     SYSTEMP0 must be above ALERT0 + ALERT0       0001     thermal event        1110       1111     1111 |                       |             | LERT0_HYS1     | to clear a |       |  |
| A0EN 0 Disable<br>1 Enable |             |                                                                                                              |                       |             |                |            |       |  |
| A0PEN 0<br>1               |             | Policy action disable<br>Policy action enable                                                                |                       |             |                |            |       |  |

| Register Name        | e SYS2THERMAL1 |     | Address | 0x9F<br>Page 1 | Read/Write |     |     |  |
|----------------------|----------------|-----|---------|----------------|------------|-----|-----|--|
|                      |                |     |         | Reset Value    | 0x00       |     |     |  |
| MSB                  |                |     |         |                |            |     | LSB |  |
| R/W                  | R/W            | R/W | R/W     | R/W            | R/W        | R/W | R/W |  |
| ALERTOLSB            |                |     |         |                |            |     |     |  |
| ALERT0LSB [7:0] 0255 |                |     |         |                |            |     |     |  |

| Register Name SYS2THERMAL |      | IAL2 | Address      | 0xA0<br>Page 1 | Read/Write |           |     |
|---------------------------|------|------|--------------|----------------|------------|-----------|-----|
|                           |      |      |              | Reset Value    | 0x00       |           |     |
| MSB                       |      |      |              |                |            |           | LSB |
| R/W                       | R/W  | R/W  | R/W          | R/W            | R/W        | R/W       | R/W |
| reserved                  | A1EN |      | ALERT        | 1_HYST         |            | ALERT1MSB |     |
| ALERT1MSB[1:0] 0011       |      |      | Alert1 thres | hold MSBs      |            |           |     |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| ALERT1_HYST[0:3] | <b>0000</b><br>0001 | SYSTEMP0 must be above ALERT1 + ALERT1_HYS to clear a thermal event |
|------------------|---------------------|---------------------------------------------------------------------|
|                  | <br>1110<br>1111    |                                                                     |
| A1EN             | 0                   | Disable                                                             |
|                  | 1                   | Enable                                                              |

| Register Name        | e SYS2THERMAL3 |     | Address | 0xA1<br>Page 1 | Read/Write |     |     |  |  |
|----------------------|----------------|-----|---------|----------------|------------|-----|-----|--|--|
| Reset Value 0x00     |                |     |         |                |            |     |     |  |  |
| MSB                  |                |     |         |                |            |     | LSB |  |  |
| R/W                  | R/W            | R/W | R/W     | R/W            | R/W        | R/W | R/W |  |  |
|                      | ALERT1LSB      |     |         |                |            |     |     |  |  |
| ALERT1LSB [7:0] 0255 |                |     |         |                |            |     |     |  |  |

| Register Name |                                                   | SYS2THERMCRIT |     | Address     | 0xA2<br>Page 1 | Read/Write |     |  |  |
|---------------|---------------------------------------------------|---------------|-----|-------------|----------------|------------|-----|--|--|
|               |                                                   |               |     | Reset Value | 0x00           |            |     |  |  |
| MSB           |                                                   |               |     |             |                |            | LSB |  |  |
| R/W           | R/W                                               | R/W           | R/W | R/W         | R/W            | R/W        | R/W |  |  |
|               | TCRIT                                             |               |     |             |                |            |     |  |  |
| TCRIT [8:1]   | 0255 Note that TCRIT[9] and TCRIT[0] are always 0 |               |     |             |                |            |     |  |  |

| Register Name BAT0THERN                                                                                       |      | IAL0             | Address                                       | 0xA3<br>Page 1 | Read/Write |       |     |  |
|---------------------------------------------------------------------------------------------------------------|------|------------------|-----------------------------------------------|----------------|------------|-------|-----|--|
|                                                                                                               |      | •                |                                               | Reset Value    | 0x00       |       |     |  |
| MSB                                                                                                           |      |                  |                                               |                |            |       | LSB |  |
| R/W                                                                                                           | R/W  | R/W              | R/W                                           | R/W            | R/W        | R/W   | R/W |  |
| A0PEN                                                                                                         | A0EN | ALERTO_HYST ALER |                                               |                |            | TOMSB |     |  |
| ALERT0MSB[                                                                                                    | 1:0] | <b>00</b> 11     | Alert0 thres                                  | hold MSBs      |            |       |     |  |
| ALERT0_HYST[0:3] 0000 SYSTEMP0 must be above ALERT0 + ALERT0_HYS to<br>0001 thermal event<br><br>1110<br>1111 |      |                  |                                               | to clear a     |            |       |     |  |
| A0EN 0 Disable<br>1 Enable                                                                                    |      |                  |                                               |                |            |       |     |  |
| A0PEN <b>0</b><br>1                                                                                           |      |                  | Policy action disable<br>Policy action enable |                |            |       |     |  |

| Register Name        |           | BAT0THERMAL1 |     | Address     | 0xA4<br>Page 1 | Read/Write |     |  |  |
|----------------------|-----------|--------------|-----|-------------|----------------|------------|-----|--|--|
|                      |           |              |     | Reset Value | 0x00           |            |     |  |  |
| MSB                  |           |              |     |             |                |            | LSB |  |  |
| R/W                  | R/W       | R/W          | R/W | R/W         | R/W            | R/W        | R/W |  |  |
|                      | ALERTOLSB |              |     |             |                |            |     |  |  |
| ALERTOLSB [7:0] 0255 |           |              |     |             |                |            |     |  |  |



#### **Company Confidential**

| Register Name                                     |      | BATOTHER          | BAT0THERMAL2            |                       | 0xA5<br>Page 1 | Read/Write |           |  |  |
|---------------------------------------------------|------|-------------------|-------------------------|-----------------------|----------------|------------|-----------|--|--|
|                                                   |      |                   |                         | Reset Value           | 0x00           |            |           |  |  |
| MSB                                               |      |                   |                         |                       |                |            | LSB       |  |  |
| R/W                                               | R/W  | R/W               | R/W                     | R/W                   | R/W            | R/W        | R/W       |  |  |
| reserved                                          | A1EN |                   | ALERT1_HYST             |                       |                |            | ALERT1MSB |  |  |
| ALERT1MSB[1:0] 0011                               |      |                   | Alert1 thres            | Alert1 threshold MSBs |                |            |           |  |  |
| ALERT1_HYST[0:3] 0000<br>0001<br><br>1110<br>1111 |      |                   | SYSTEMP(<br>thermal eve | ) must be abov<br>nt  | re ALERT1 + A  | LERT1_HYS1 | o clear a |  |  |
| A1EN 0                                            |      | Disable<br>Enable |                         |                       |                |            |           |  |  |

| Register Name        |           | BAT0THERMAL3 |     | Address     | 0xA6<br>Page 1 | Read/Write |     |  |
|----------------------|-----------|--------------|-----|-------------|----------------|------------|-----|--|
|                      |           |              |     | Reset Value | 0x00           |            |     |  |
| MSB                  |           |              |     |             |                |            | LSB |  |
| R/W                  | R/W       | R/W          | R/W | R/W         | R/W            | R/W        | R/W |  |
|                      | ALERT1LSB |              |     |             |                |            |     |  |
| ALERT1LSB [7:0] 0255 |           |              |     |             |                |            |     |  |

| Register Name BAT |   | BATOTHERN     | BAT0THERMCRITH                                                                                              |             | 0xA7<br>Page 1 | Read/Write |     |
|-------------------|---|---------------|-------------------------------------------------------------------------------------------------------------|-------------|----------------|------------|-----|
|                   |   |               |                                                                                                             | Reset Value | 0x00           |            |     |
| MSB               |   |               |                                                                                                             |             |                |            |     |
| R                 | R | R             | R                                                                                                           | R           | R              | R/W        | R/W |
|                   |   |               | TCF                                                                                                         | RIT[8:1]    |                |            |     |
| TCRIT [8:1]       |   | <b>0</b> .255 | 55 Value of the critical HIGH temperature threshold, bit8 bit1 for temperature measurement channel BPTHERM0 |             |                |            |     |

| Register Name |     | BAT0THERMCRITL                                                                                           |             | Address  | 0xA8<br>Page 1 | Read/Write |              |
|---------------|-----|----------------------------------------------------------------------------------------------------------|-------------|----------|----------------|------------|--------------|
|               |     |                                                                                                          | Reset Value | 0x00     |                |            |              |
| MSB           |     |                                                                                                          |             |          |                | LSB        |              |
| R/W           | R/W | R/W                                                                                                      | R/W         | R/W      | R/W            | R/W        | R/W          |
|               |     |                                                                                                          | TCF         | RIT[9:2] |                |            |              |
| TCRIT [9:2]   |     | 0255 Value of the critical LOW temperature threshold, bit9 bit2 temperature measurement channel BPTHERM0 |             |          |                |            | bit2 fot the |

| Register Name                    |      | BAT1THERMAL0 |               | Address   | 0xA9<br>Page 1 | Read/Write |     |  |
|----------------------------------|------|--------------|---------------|-----------|----------------|------------|-----|--|
|                                  |      |              | Reset Value   | 0x00      |                |            |     |  |
| MSB                              |      |              |               |           |                |            | LSB |  |
| R/W                              | R/W  | R/W          | R/W           | R/W       | R/W            | R/W        | R/W |  |
| A0PEN                            | A0EN |              | ALERT         | 0_HYST    |                | ALERTOMSB  |     |  |
| ALERTOMSB[1:0] 0011 Alert0 three |      |              | Alert0 thresh | nold MSBs |                |            |     |  |

**Data Sheet** 

Version 3.A - Final



| ALERT0_HYST[0:3] | 0000 | SYSTEMP0 must be above ALERT0 + ALERT0_HYS to clear a |
|------------------|------|-------------------------------------------------------|
|                  | 0001 | thermal event                                         |
|                  |      |                                                       |
|                  | 1110 |                                                       |
|                  | 1111 |                                                       |
| A0EN             | 0    | Disable                                               |
|                  | 1    | Enable                                                |
| A0PEN            | 0    | Policy action disable                                 |
|                  | 1    | Policy action enable                                  |

| Register Name         |           | BAT1THERMAL1 |     | Address     | 0xAA<br>Page 1 | Read/Write |     |  |  |
|-----------------------|-----------|--------------|-----|-------------|----------------|------------|-----|--|--|
|                       |           |              |     | Reset Value | 0x00           |            |     |  |  |
| MSB                   |           |              |     |             |                |            | LSB |  |  |
| R/W                   | R/W       | R/W          | R/W | R/W         | R/W            | R/W        | R/W |  |  |
|                       | ALERTOLSB |              |     |             |                |            |     |  |  |
| ALERT0LSB [7:0] 0.255 |           |              |     |             |                |            |     |  |  |

| Register Name                                     |      | BAT1THERMAL2 |                         | Address            | 0xAB<br>Page 1 | Read/Write  |           |  |
|---------------------------------------------------|------|--------------|-------------------------|--------------------|----------------|-------------|-----------|--|
|                                                   |      |              |                         | Reset Value        | 0x00           |             |           |  |
| MSB                                               |      |              |                         |                    |                |             | LSB       |  |
| R/W                                               | R/W  | R/W          | R/W                     | R/W                | R/W            | R/W         | R/W       |  |
| reserved                                          | A1EN |              | ALERT1_HYST             |                    |                |             | ALERT1MSB |  |
| ALERT1MSB[1:0] 0011                               |      |              | Alert1 threshold MSBs   |                    |                |             |           |  |
| ALERT1_HYST[0:3] 0000<br>0001<br><br>1110<br>1111 |      |              | SYSTEMP0<br>thermal eve | must be abov<br>nt | e ALERT1 + A   | LERT1_HYS t | o clear a |  |
| A1EN 0<br>1                                       |      |              | Disable<br>Enable       |                    |                |             |           |  |

| Register Name | Э    | BAT1THERM        | BAT1THERMAL3 / |     | 0xAC<br>Page 1 | Read/Write |     |
|---------------|------|------------------|----------------|-----|----------------|------------|-----|
|               |      | Reset Value 0x00 |                |     |                |            |     |
| MSB           |      | LSE              |                |     |                |            | LSB |
| R/W           | R/W  | R/W              | R/W            | R/W | R/W            | R/W        | R/W |
| ALERT1LSB     |      |                  |                |     |                |            |     |
| ALERT1LSB [   | 7:0] | <b>0</b> 255     |                |     |                |            |     |

| Register Name | e                   | BAT1THERMCRITH |      | Address     | 0xAD<br>Page 1 | Read/Write |     |
|---------------|---------------------|----------------|------|-------------|----------------|------------|-----|
|               |                     |                |      | Reset Value | 0x00           |            |     |
| MSB           |                     |                |      |             |                |            | LSB |
| R             | R                   | R              | R    | R           | R              | R/W        | R/W |
|               | reserved TCRIT[9:8] |                |      |             |                | IT[9:8]    |     |
| TCRIT [9:8]   |                     | <b>0</b> 3     | MSBs |             |                |            |     |



**Company Confidential** 

| Register Name | Э   | BAT1THERC        | BAT1THERCRITL |     | 0xAE<br>Page 1 | Read/Write |     |
|---------------|-----|------------------|---------------|-----|----------------|------------|-----|
|               |     | Reset Value 0x00 |               |     |                |            |     |
| MSB           |     | LSB              |               |     |                |            |     |
| R/W           | R/W | R/W              | R/W           | R/W | R/W            | R/W        | R/W |
| TCRIT[7:0]    |     |                  |               |     |                |            |     |
| TCRIT [7:0]   |     | <b>0</b> 255     |               |     |                |            |     |

| Register Name                                     | е    | PMICTHERMAL0                                                       |                      | Address      | 0xAF<br>Page 1 | Read/Write |       |
|---------------------------------------------------|------|--------------------------------------------------------------------|----------------------|--------------|----------------|------------|-------|
|                                                   |      |                                                                    |                      | Reset Value  | 0x00           |            |       |
| MSB                                               |      |                                                                    |                      |              |                |            | LSB   |
| R/W                                               | R/W  | R/W                                                                | R/W                  | R/W          | R/W            | R/W        | R/W   |
| A0PEN                                             | A0EN |                                                                    | ALERT                | 0_HYST       |                | ALER       | TOMSB |
| ALERT0MSB[1:0] 0011                               |      | Alert0 threshold MSBs                                              |                      |              |                |            |       |
| ALERT0_HYST[0:3] 0000<br>0001<br><br>1110<br>1111 |      | SYSTEMP0<br>thermal eve                                            | ) must be abov<br>nt | e ALERT0 + A | LERT0_HYS1     | o clear a  |       |
| A0EN 0<br>1<br>A0PEN 0                            |      | Disable<br>Enable<br>Policy action disable<br>Policy action enable |                      |              |                |            |       |

| Register Name | е                   | PMICTHERM        | PMICTHERMAL1 |     | 0xB0<br>Page 1 | Read/Write |     |
|---------------|---------------------|------------------|--------------|-----|----------------|------------|-----|
|               |                     | Reset Value 0x00 |              |     |                |            |     |
| MSB           |                     |                  |              |     |                |            | LSB |
| R/W           | R/W                 | R/W              | R/W          | R/W | R/W            | R/W        | R/W |
| ALERTOLSB     |                     |                  |              |     |                |            |     |
| ALERTOLSB [   | [7:0] <b>0</b> .255 |                  |              |     |                |            |     |

| Register Name | е          | PMICTHERM                               | AL2                     | Address            | 0xB1<br>Page 1 | Read/Write  |           |
|---------------|------------|-----------------------------------------|-------------------------|--------------------|----------------|-------------|-----------|
|               |            |                                         |                         | Reset Value        | 0x00           |             |           |
| MSB           |            |                                         |                         |                    |                |             | LSB       |
| R/W           | R/W        | R/W                                     | R/W                     | R/W                | R/W            | R/W         | R/W       |
| reserved      | A1EN       |                                         | ALERT1_HYST             |                    |                | ALERT1MSB   |           |
| ALERT1MSB[    | 1:0]       | <b>00</b> 11                            | Alert1 thresh           | nold MSBs          |                |             |           |
| ALERT1_HYS    | ST[0:3]    | <b>0000</b><br>0001<br><br>1110<br>1111 | SYSTEMP0<br>thermal eve | must be abov<br>nt | e ALERT1 + A   | LERT1_HYS t | o clear a |
| A1EN          | 1EN 0<br>1 |                                         | Disable<br>Enable       |                    |                |             |           |



**Company Confidential** 

| Register Name | e    | PMICTHERMAL3     |     | Address | 0xB2<br>Page 1 | Read/Write |     |
|---------------|------|------------------|-----|---------|----------------|------------|-----|
|               |      | Reset Value 0x00 |     |         |                |            |     |
| MSB           |      | LSB              |     |         |                |            |     |
| R/W           | R/W  | R/W              | R/W | R/W     | R/W            | R/W        | R/W |
| ALERT1LSB     |      |                  |     |         |                |            |     |
| ALERT1LSB [   | 7:0] | <b>0</b> 255     |     |         |                |            |     |

| Register Name | e F | PMICTHERMCRIT                                     |     | Address | 0xB3<br>Page 1 | Read/Write |     |  |
|---------------|-----|---------------------------------------------------|-----|---------|----------------|------------|-----|--|
|               |     |                                                   |     |         |                |            |     |  |
| MSB           |     |                                                   |     |         |                |            | LSB |  |
| R/W           | R/W | R/W                                               | R/W | R/W     | R/W            | R/W        | R/W |  |
|               |     |                                                   | Т   | CRIT    |                |            |     |  |
| TCRIT [8:1]   |     | 0255 Note that TCRIT[9] and TCRIT[0] are always 0 |     |         |                |            |     |  |

When in register TS\_ENABLE the corresponding thermistor bit as well as the corresponding A0PEN bit asserted, any crossover of ALERT0 will assert PROCHOT\_B. Any cross down below ALERT0\_HYST must remove the related warning and de-assert PROCHOT\_B if there are no other warnings.

A0\_ST and A1\_ST are always set if:

- temp > ALERTX or
- temp < (ALERTX ALERTX\_HYST) with X=0 or 1.</li>

Setting A0\_ST or A1\_ST will generate an interrupt for the processor

Alert warnings concurrently assert the PROCHOT\_B. The processor must investigate this and act to optimize power consumption to control the temperature until the sensed voltage is at the correct level. Assertion should hold until all the warnings are cleared.

## **16.4 Critical Thermal Events**

Unlike alerts, which are pre-emptive warnings, —critical thermal events occur when the system or battery pack(s) or DA6021 die temperature exceed design thresholds, immediate action must be taken to resolve this thermal issue.

#### 16.4.1 System Temperature

The system temperature exceeds the critical thermal limit set for the SYSTEMP0-2, and critical temperature shut down is enabled (CRITEN=1), the following actions are taken:

- If enabled, DA6021 forces the immediate shutdown of all VR rails currently in regulation, returning DA6021 to the SOC G3 state without depending on the assertion of SLP\_S\*\_B signals from the SOC.
- DA6021 sets the RSYSTEMP bit in the RESETSRC0 register to indicate the reason for shutdown.
- DA6021 sets SYS\*CRIT in THRMIRQ1 to interrupt the SOC. However, the SOC may not have time to respond before the system is shut down.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

The system temperature exceeds the critical thermal limit set for the SYSTEMP0-2, and critical temperature shut down is not enabled (CRIT\_EN=0), the following actions are taken:

- DA6021 sets SYS\*CRIT in THRMIRQ1 to interrupt the SOC.
- In response to the IRQ, the SOC should check CRIT\_ST in SYS\*\_THRM\_RSH to see if the system critical over/under temperature condition still exists
- When the battery critical over/under temperature event resolves (system thermistor voltages are back within defined voltage ranges), the SOC clears the SYS\*CRIT interrupt.

#### 16.4.2 Battery Critical Temperature

While the temperature threshold registers define the boundaries between different operating temperature alert levels, the absolute ends of the battery operating temperature are monitored/enforced by two voltage comparators (one per battery thermistor), comparing these voltages against programmable thresholds which, for a particular thermistor curve, specify the minimum and maximum battery temperatures.

These —critical temperaturell comparators monitor the same thermistor voltages as the ADC channels for the primary and/or secondary battery. These values (TCRIT\_HIGH and TCRIT\_LOW) have default values defined.

If the voltage on one or both battery temperature pins falls outside of the TCRIT\_HIGH and TCRIT\_LOW thresholds, and critical temperature shut down is enabled (CRIT\_EN=1), the following actions are taken:

- DA6021 forces the immediate shutdown of all VR rails currently in regulation, returning DA6021 to the SOC G3 state without depending on the assertion of SLP\_S\*\_B signals from the SOC.
- DA6021 sets the RBATTEMP bit in the RESETSRC0 register to indicate the reason for shutdown.
- DA6021 sets BATCRIT in THRMIRQ2 to interrupt the SOC. However, the SOC may not have time to respond before the system is shut down.

If the voltage on one or both battery temperature pins falls outside of the TCRIT\_HIGH and TCRIT\_LOW thresholds, and critical temperature shut down is not enabled (CRIT\_EN=0), the following actions are taken:

- DA6021 sets BAT\*CRIT in THRMIRQ to interrupt the SOC.
- In response to the IRQ, the SOC should check CRIT\_ST in BAT\*\_THRM\_RSH to see if the battery critical over/under temperature condition still exists
- When the battery critical over/under temperature event resolves (battery thermistor voltages are back within defined voltage ranges), the SOC clears the BAT\*CRIT interrupt.

This protection feature is disabled if the battery is detected to be not present (SBATDET). In order to avoid spurious tripping of this condition upon battery removal, a 200ms de-bounce is required. If, in that 200ms window, the battery presence detection logic determines the battery was removed, the thermal event de-bounce counter ends and no action is taken.

#### 16.4.3 DA6021 die Temperature

DA6021 die temperature monitor exceeds the hard-coded critical thermal limit for the device:

- A hardware comparator circuit forces the immediate shutdown of all VR rails currently in regulation, returning DA6021 to the SOC G3 state without depending on the assertion of SLP\_S\*\_B signals from the SOC.
- DA6021 sets the RPMICTEMP bit in the RESETSRC0 register to indicate the reason for shutdown.

However the ADC will also monitor the DA6021 temperature and have similar critical temperature handling procedure to that outlined above for the system and battery critical temperature events.

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 16.4.4 Thermal Monitoring Event Table

Following is a table which summarizes the behavior of DA6021 in relation to thermal monitoring.

| 'S_EN | 11_EN | 10_EN | \0P_EN | NLERT1_<br>SET | NLERT0<br>SET | rqALRT1 | rqALRT0 | РКОСНО<br>- В |
|-------|-------|-------|--------|----------------|---------------|---------|---------|---------------|
| 0     | X     | ×     | x      | X              | x             | .=<br>0 | .=<br>0 | 1             |
| 1     | 0     | 0     | x      | 0              | 0             | 0       | 0       | 1             |
|       |       |       |        |                |               |         |         |               |
| 1     | 0     | 1     | 0      | 0              | 0             | 0       | 0       | 1             |
| 1     | 0     | 1     | 0      | 0              | 1             | 0       | 1       | 1             |
|       |       |       |        |                |               |         |         |               |
| 1     | 0     | 1     | 1      | 0              | 0             | 0       | 0       | 1             |
| 1     | 0     | 1     | 1      | 0              | 1             | 0       | 1       | 0 (Asserted)  |
|       |       |       |        |                |               |         |         |               |
| 1     | 1     | 0     | х      | 0              | 0             | 0       | 0       | 1             |
| 1     | 1     | 0     | х      | 1              | 0             | 1       | 0       | 1             |
|       |       |       |        |                |               |         |         |               |
| 1     | 1     | 1     | 0      | 0              | 0             | 0       | 0       | 1             |
| 1     | 1     | 1     | 0      | 0              | 1             | 0       | 1       | 1             |
| 1     | 1     | 1     | 0      | 1              | 0             | 1       | 0       | 1             |
| 1     | 1     | 1     | 0      | 1              | 1             | 1       | 1       | 1             |
|       |       |       |        |                |               |         |         |               |
| 1     | 1     | 1     | 1      | 0              | 0             | 0       | 0       | 1             |
| 1     | 1     | 1     | 1      | 0              | 1             | 0       | 1       | 0 (Asserted)  |
| 1     | 1     | 1     | 1      | 1              | 0             | 1       | 0       | 1             |
| 1     | 1     | 1     | 1      | 1              | 1             | 1       | 1       | 0 (Asserted)  |

Table 103: Thermal Monitoring Events

**Note** that PROCHOT\_B only gets asserted when temperature crossed over (rose above) the ALERT0 temperature threshold and A0EN=1 and A0PEN=1. It gets de-asserted when temperature crossed down (fell below) the ALERT0 temperature threshold.

## 16.5 Backup Battery Management

Configuration and status registers of DA6021, and timekeeping logic (powered by a platform voltage rail VRTC) in the SOC are backed-up by a super capacitor or coin cell battery in case of SOC power loss (e.g., main battery changed). The VRTC is supplied usually through a diode by either V3P3A or VBATBKUP with V3P3A taking priority whenever it is available. If a SOC power loss is of an extended duration, the back-up supply will fall below the minimum operational voltage, VMIN, and the content of the registers will be lost and reset to default value.



#### 16.5.1 Backup Battery Charger

The Backup Battery Charger is used to charge coin cell Li-Ion batteries or "Super-capacitors". Due to the chemistry and/or relatively high internal resistance of these batteries it is necessary to charge in two stages: a constant current stage; and a constant voltage stage. In essence this means that the charger acts as a current-limited voltage source. The target voltage and maximum charge current are configurable via separate 2-bit register settings.

In addition to battery charging the circuit must protect against discharging of the backup battery in cases when the system supply drops below the backup battery voltage. For this reason an always-on protection circuit is utilized which shuts off the reverse current path as required.

To facilitate low power system modes wherein no oscillator is running, the Backup Battery Charger is capable of autonomously self-regulating its state such as to stop charging when the battery is full and to start once again when the battery is sufficiently emptied.

| Register Nam              | е               | BBCHR_CFG                                                                    |                                                                    | Address     | 0x2A<br>Page 1 | Read/Write |       |  |
|---------------------------|-----------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------|----------------|------------|-------|--|
|                           |                 | -                                                                            |                                                                    | Reset Value | 0x1F           |            |       |  |
| MSB                       |                 |                                                                              |                                                                    |             | -              |            | LSB   |  |
| R                         | R               | R                                                                            | R/W                                                                | R/W         | R/W            | R/W        | R/W   |  |
| reserved                  | CHG_<br>DONE_ST | CHG_ST                                                                       | C                                                                  | HGI         | C              | HGV        | CHGEN |  |
| CHGEN                     |                 | 0 Disable charging of back-up battery   1 Enable charging of back-up battery |                                                                    |             |                |            |       |  |
| CHGV 00<br>01<br>10<br>11 |                 |                                                                              | Back-up supply charging<br>2.5V<br>2.8V<br>3.0V<br>3.3V            |             |                |            |       |  |
| CHGI                      |                 | 00<br>01<br>10<br><b>11</b>                                                  | Current limit of back-up charger<br>10µA<br>50µA<br>100µA<br>500µA |             |                |            |       |  |
| CHG_ST                    |                 | <b>0</b><br>1                                                                | Not charging<br>Charging ongoing                                   |             |                |            |       |  |
| CHG_DONE_                 | ST              | <b>0</b><br>1                                                                | Not fully charged<br>Back-up charging completed                    |             |                |            |       |  |

#### 16.5.2 Power Consumption

The DA6021 logic supplied by the RTC domain will consume  $<5\mu$ A.



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 17. General Purpose IOs

#### 17.1 Overview

DA6021 provides 16 GPIO pins for general purpose IOs under the control of the SoC. The majority of these GPIO pins have a default configuration as CMOS inputs with weak (50 KOhm) pull downs enabled. The GPIO buffers support operation as open-drain or push pull outputs. They are split into 2 groups, each with a different fixed supply:

- GPIO0P0 GPIO0P7 support a level of 1.8V
- GPIO1P0 GPIO1P7 support 3.3V

Following are the supported feature from the digital GPIO IP:

- CMOS or Open Drain output and input configuration
- 2k-ohm or 50k-ohm pull-up or pull-down resistance
- Read back of output PAD values
- Output Level select by register
- Digital glitch filter of 62µs
- Digital filter (de-bouncer, typically 32ms) with programmable bypass
- Interrupt and interrupt mask functionality.
- Polarity selection (default active high)
- Analog/Digital Input
- Alternate input/output functionality.

**Note**: for the implementation of the GPIO core functionality is useful to know that the register file will not be part of the IP, same is for the logic which controls the mapping of the alternate functions.

## 17.2 Analog Block, Control & Data Signals



Figure 69 : GPIO Block Diagram

As is shown from the above picture (analog block as black box) there are 5 signals which controls the analog behavior of the GPIO pin. Note that EN is generated from the analog pad block itself.

The following tables show the coding for configuring the GPIO pads.

Version 3.A - Final

31-Jan-14



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| DI | R | <b>GPIO Configuration</b> |
|----|---|---------------------------|
| 0  | 0 | Input Analog              |
| 0  | 1 | Input Digital             |
| 1  | 0 | Output Open-Drain         |
| 1  | 1 | Output CMOS               |

Table 104: GPIO Direction Configuration

| PULL_EN | PULL_DIR | PULL_LVL | <b>GPIO Configuration</b> |
|---------|----------|----------|---------------------------|
| 0       | Х        | Х        | No pull-up / pull-down    |
| 1       | 0        | 0        | 2-KOhm pull-down          |
|         | 0        | 1        | 50-KOhm pull-down         |
|         | 1        | 0        | 2-KOhm pull-up            |
|         | 1        | 1        | 50-KOhm pull-up           |

Table 105: GPIO Pull-up/Pull-down Configuration

#### **17.3 GPIO Digital Features**

#### 17.3.1 De-Bouncing

When a GPIO is used as a digital input, a 32ms de-bounce circuit can be assigned to the input path. The input signal should be stable for the de-bounce time before the de-bounce circuit flags the output. If GPIOx\_DEB is set, de-bouncing is enabled. All pads share the same de-bounce time setting. High and low pulses that are shorter than 32ms +/- 4ms are filtered out. To reduce power consumption, a 3 bit counter running with the 4ms tick is used to generate the de-bounce functionality.

#### 17.3.2 Status Register

The GPIO status is synchronized, de-bounced and can be read back from the GPIOx\_CTLI[0] read-only register.

#### 17.3.3 Interrupt Functionality

In addition to the status information, the SOC can configure a GPIO to flag an edge sensitive interrupt on a state change of the GPIO PAD cell. Interrupts can be generated on rising and/or falling edges of GPIO inputs.

DA6021 provides includes an internal interrupt interface collecting all events from various modules to generate the interrupt signal to the SOC. The interrupt options are defined in GPIOx\_IRQCFG register.

#### 17.4 Analogue Mode

In case the GPIOx\_DIR register is set to 0x0, the PAD is used as analogue PAD and is disconnected from the digital. In this case the input (analogue input) will be feeding some analogue circuitry.

#### **17.5 Alternative Functions**

GPIOs also enable the use of alternative functions In order to use these GPIO need to be configured first. This consists of setting the GPIPO as input or output and then, selecting the mapping functionality to select which particular GPIO a certain alternate function should be related.

**Data Sheet** 

Version 3.A - Final


## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 17.6 Defining an Output Value

A DOUT bit for each GPIO has been defined so it is possible to define the output level of each GPIO. See the register file description for more information regarding the output.

#### **17.7 Supported Alternate Functions**

#### 17.7.1 GPIO0P0 – BATIDIN

GPIO0P0 can be configured as a digital battery interface input driven by SOC

#### 17.7.2 GPIO0P1 – BATIDOUT

GPIO0P1 can be used as a digital battery interface output driving the SOC

#### 17.7.3 GPIO0P2 – GPIO0P7-PCSMCNT

GPIO0P7 to GPIO0P2 outputs the PCSM state pointer to allow access of the power on sequence via pins in real-time.

#### 17.7.4 GPIO1P0 – UIBTN\_B

GPIO1P0 can be used as HW UI button as an additional interface button.

#### 17.7.5 GPIO1P1 – CLK32OUT

GPIO1P1 can be configured to output a 32k clock derived from the internal oscillator.

#### 17.7.6 GPIO1P2 – TRIG1

GPIO1P2 can be used as a power on control input forcing the PCSM to keep its current state. This gives the SOC the capability to insert additional wait states to the power on sequence. The sequencer can be programmed to wait at a certain point or an external trigger (TRIG1).

#### 17.7.7 GPIO1P3 – TRIG2

GPIO1P3 can be used as power on control input forcing the PCSM to keep its current state. Main purpose is to give the SOC the capability to insert additional wait states to the power on sequence. The sequencer can be programmed to wait at a certain point for an external trigger (TRIG2).

#### 17.7.8 GPIO1P4 – WAKE1

GPIO1P4 can be used as an additional wakeup input forcing the PCSM to switch to S0 state

#### 17.7.9 GPIO1P5 – WAKE2

GPIO1P5 can be used as an additional wakeup input forcing the PCSM to switch to S0 state.



#### **Company Confidential**

#### **17.8 Electrical Characteristics**

| Parameter     | Min      | Nom | Max      | Units | Notes                 | Val |
|---------------|----------|-----|----------|-------|-----------------------|-----|
| Voltage (VDD) | 1.71     | 1.8 | 1.89     | V     | At pin                | -   |
| Vil           |          |     | 0.35*VDD | V     |                       | Α   |
| Vih           | 0.65*VDD |     |          | V     |                       | Α   |
| Vhys          | 0.1      |     |          | V     |                       | D,E |
| Vol           |          |     | 0.45     | V     | Imax 8mA              | Α   |
| Voh           | VDD-0.45 |     |          | V     | Imax 4mA              | Α   |
| Trise         | 10       |     | 45       | ns    |                       | D,E |
| Tfall         | 10       |     | 45       | ns    |                       | D,E |
| Tr/Tf         | 10       |     | 90       | %     | Measurement<br>Points | D,E |
| Cload         |          |     | 150      | pF    |                       | -   |
| Rpu/Rpd50     | -30%     | 50  | 30%      | kΩ    | Programmable          | А   |
| Rpu2/Rpd2     | -30%     | 2   | 30%      | kΩ    | Programmable          | A   |

Table 106: GPIO 1.8V Electrical Specification

| Parameter     | Min      | Nom | Max      | Units | Notes                 | Val |
|---------------|----------|-----|----------|-------|-----------------------|-----|
| Voltage (VDD) | 3.135    | 3.3 | 3.465    | V     | At pin                | -   |
| Vil           |          |     | 0.35*VDD | V     |                       | А   |
| Vih           | 0.65*VDD |     |          | V     |                       | Α   |
| Vhys          | 0.1      |     |          | V     |                       | D,E |
| Vol           |          |     | 0.45     | V     | Imax 8mA              | Α   |
| Voh           | VDD-0.45 |     |          | V     | Imax 4mA              | Α   |
| Trise         | 18       |     | 75       | ns    |                       | D,E |
| Tfall         | 18       |     | 75       | ns    |                       | D,E |
| Tr/Tf         | 10       |     | 90       | %     | Measurement<br>Points | D,E |
| Cload         |          |     | 150      | pF    |                       | -   |
| Rpu/Rpd50     | -30%     | 50  | 30%      | kΩ    | Programmable          | A   |
| Rpu2/Rpd2     | -30%     | 2   | 30%      | kΩ    | Programmable          | A   |

Table 107: GPIO 3.3V Electrical Specification

## 17.9 GPIO Registers

| Register Name |     | GPIO0P07CTL0 |             | Address                         | 0x2B0x32<br>Page 1 | Read/Write |      |  |
|---------------|-----|--------------|-------------|---------------------------------|--------------------|------------|------|--|
|               |     |              |             | Reset Value                     | 0x14               |            |      |  |
| MSB           | MSB |              |             | LSB                             |                    |            |      |  |
| R             | R/W | R/W          | R/W         | R/W                             | R/W                | R/W        | R/W  |  |
| reserved      | ALT | DIR          | DRV         | PULL_EN                         | PULL_LVL           | PULL_DIR   | DOUT |  |
| DOUT          |     | 0            | Low output  | _ow output                      |                    |            |      |  |
|               |     | 1            | High output | High output (CMOS or high-Z OD) |                    |            |      |  |
| PULL_DIR      |     | 0            | Pull down   |                                 |                    |            |      |  |
| 1 Pull up     |     |              | Pull up     | 'ull up                         |                    |            |      |  |
| PULL_LVL 0 2  |     |              | 2kΩ         |                                 |                    |            |      |  |
|               |     | 1            | 50kΩ        |                                 |                    |            |      |  |

#### **Data Sheet**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| PULL_EN | 0 | No pull-up or pull-down             |
|---------|---|-------------------------------------|
|         | 1 | Pull-up/-down enable                |
| DRV     | 0 | CMOS                                |
|         | 1 | Open Drain                          |
| DIR     | 0 | Input                               |
|         | 1 | Output                              |
| ALT     | 0 | Normal GPIO port                    |
|         | 1 | GPIO used with alternative function |

| Register Name |                 | GPIO0P07CTLI |                   | Address                | 0x330x3A<br>Page 1 | Read/Write |     |  |  |
|---------------|-----------------|--------------|-------------------|------------------------|--------------------|------------|-----|--|--|
|               |                 |              |                   | Reset Value            | 0x00               |            |     |  |  |
| MSB           |                 |              |                   |                        |                    |            | LSB |  |  |
| R             | R               | R            | R/W               | R/W                    | R/W                | R/W        | R   |  |  |
|               | reserved        |              | POL               | DEB                    | IRQ                | CFG        | DIN |  |  |
| DIN           |                 | 0            | Input status      | low                    |                    |            |     |  |  |
|               |                 | 1            | Input status high |                        |                    |            |     |  |  |
| IRQCFG        |                 |              | Interrupt det     | Interrupt detection on |                    |            |     |  |  |
|               |                 | 00           | Disable           |                        |                    |            |     |  |  |
|               |                 | 01           | Negative edge     |                        |                    |            |     |  |  |
|               |                 | 10           | Positive edge     |                        |                    |            |     |  |  |
|               |                 | 11           | Both edges        |                        |                    |            |     |  |  |
| DEB           |                 |              | 30ms de-bo        | unce filter            |                    |            |     |  |  |
|               |                 | 0            | Off               |                        |                    |            |     |  |  |
|               |                 | 1            | On                |                        |                    |            |     |  |  |
| POL           | Input polarity: |              |                   |                        |                    |            |     |  |  |
| 0             |                 |              | Not inverted      |                        |                    |            |     |  |  |
|               |                 | 1            | inverted          |                        |                    |            |     |  |  |

| Register Name |     | GPIO1P07CTL0  |                                               | Address                    | 0x3B0x42<br>Page 1 | Read/Write |      |
|---------------|-----|---------------|-----------------------------------------------|----------------------------|--------------------|------------|------|
|               |     |               |                                               | Reset Value                | 0x14               |            |      |
| MSB           |     |               |                                               |                            |                    |            | LSB  |
| R             | R/W | R/W           | R/W R/W R/W                                   |                            |                    |            | R/W  |
| reserved      | ALT | DIR           | DRV                                           | PULL_EN                    | PULL_LVL           | PULL_DIR   | DOUT |
| DOUT          |     | <b>0</b><br>1 | Low output<br>High output (CMOS or high-Z OD) |                            |                    |            |      |
| PULL_DIR      |     | <b>0</b><br>1 | Pull down<br>Pull up                          |                            |                    |            |      |
| PULL_LVL      |     | 0<br>1        | 2kΩ<br>50kΩ                                   |                            |                    |            |      |
| PULL_EN       |     | <b>0</b><br>1 | No pull-up c<br>Pull-up/-dov                  | or pull-down<br>vn enable  |                    |            |      |
| DRV           |     | 0<br>1        | CMOS<br>Open Drain                            |                            |                    |            |      |
| DIR           |     | <b>0</b><br>1 | Input<br>Output                               |                            |                    |            |      |
| ALT           |     | <b>0</b><br>1 | Normal GPI<br>GPIO used                       | O port<br>with alternative | e function         |            |      |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Register Name |   | GPIO1P07CTLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   | Address     | 0x430x4A<br>Page 1 | Read/Write |     |
|---------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|--------------------|------------|-----|
|               |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   | Reset Value | 0x00               |            |     |
| MSB           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |             |                    |            | LSB |
| R             | R | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/W                                                                               | R/W         | R/W                | R/W        | R   |
| reserved      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POL                                                                               | DEB         | IRQ                | CFG        | DIN |
| DIN           |   | <b>0</b><br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input status low<br>Input status high                                             |             |                    |            |     |
| IRQCFG        |   | <b>00</b><br>01<br>10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Interrupt detection on<br>Disable<br>Negative edge<br>Positive edge<br>Both edges |             |                    |            |     |
| DEB           |   | <b>0</b><br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30ms de-bounce filter<br>Off<br>On                                                |             |                    |            |     |
| POL           |   | Image: Constraint of the constr |                                                                                   |             |                    |            |     |

| Register Nam  | Register Name GPIOII |          |                      | Address     | 0x0B<br>Page 1 | Read/Write |          |  |  |
|---------------|----------------------|----------|----------------------|-------------|----------------|------------|----------|--|--|
|               |                      |          |                      | Reset Value | 0x00           |            |          |  |  |
| MSB           |                      |          |                      |             |                |            | LSB      |  |  |
| R/W           | R/W                  | R/W      | R/W                  | R/W         | R/W            | R/W        | R/W      |  |  |
| GPIO0P7_      | GPIO0P6_             | GPIO0P5_ | GPIO0P4_             | GPIO0P3_    | GPIO0P2_       | GPIO0P1_   | GPIO0P0_ |  |  |
| IRQ           | IRQ                  | IRQ      | IRQ                  | IRQ         | IRQ            | IRQ        | IRQ      |  |  |
| GPIO0P0_IR    | Q                    | 0        | No pending           | Interrupt   |                |            |          |  |  |
|               |                      | 1        | Interrupt per        | nding       |                |            |          |  |  |
| GPIO0P1_IRQ 0 |                      |          | No pending           | Interrupt   |                |            |          |  |  |
| 1             |                      |          | Interrupt pending    |             |                |            |          |  |  |
| GPIO0P2_IR    | Q                    | 0        | No pending           | Interrupt   |                |            |          |  |  |
|               |                      | 1        | Interrupt pending    |             |                |            |          |  |  |
| GPIO0P3_IR    | Q                    | 0        | No pending Interrupt |             |                |            |          |  |  |
|               |                      | 1        | Interrupt pending    |             |                |            |          |  |  |
| GPIO0P4_IR    | Q                    | 0        | No pending Interrupt |             |                |            |          |  |  |
|               |                      | 1        | Interrupt pending    |             |                |            |          |  |  |
| GPIO0P5_IR    | Q                    | 0        | No pending Interrupt |             |                |            |          |  |  |
|               |                      | 1        | Interrupt pending    |             |                |            |          |  |  |
| GPIO0P6_IRQ 0 |                      |          | No pending Interrupt |             |                |            |          |  |  |
|               |                      | 1        | Interrupt pending    |             |                |            |          |  |  |
| GPIO0P7_IR    | Q                    | 0        | No pending Interrupt |             |                |            |          |  |  |
|               |                      | 1        | Interrupt per        | nding       |                |            |          |  |  |



| Register Nam  | ie       | GPIOIRQ1            |                      | Address           | 0x0C<br>Page 1 | Read/Write |          |  |  |
|---------------|----------|---------------------|----------------------|-------------------|----------------|------------|----------|--|--|
|               |          |                     |                      | Reset Value       | 0x00           |            |          |  |  |
| MSB           |          |                     |                      |                   |                |            | LSB      |  |  |
| R/W           | R/W      | R/W                 | R/W                  | R/W               | R/W            | R/W        | R/W      |  |  |
| GPIO1P7_      | GPIO1P6_ | GPIO1P5_            | GPIO1P4_             | GPIO1P3_          | GPIO1P2_       | GPIO1P1_   | GPIO1P0_ |  |  |
| IRQ           | IRQ      | IRQ                 | IRQ                  | IRQ               | IRQ            | IRQ        | IRQ      |  |  |
| GPIO1P0_IR    | Q        | 0                   | No pending           | Interrupt         |                |            |          |  |  |
| 1             |          |                     | Interrupt per        | nding             |                |            |          |  |  |
| GPIO1P1_IRQ 0 |          |                     | No pending           | Interrupt         |                |            |          |  |  |
| 1             |          |                     | Interrupt pending    |                   |                |            |          |  |  |
| GPIO1P2_IR    | Q        | 0                   | No pending           | Interrupt         |                |            |          |  |  |
|               |          | 1                   | Interrupt pending    |                   |                |            |          |  |  |
| GPIO1P3_IR    | Q        | 0                   | No pending Interrupt |                   |                |            |          |  |  |
|               |          | 1                   | Interrupt per        | Interrupt pending |                |            |          |  |  |
| GPIO1P4_IR    | Q        | 0                   | No pending Interrupt |                   |                |            |          |  |  |
|               |          | 1                   | Interrupt pending    |                   |                |            |          |  |  |
| GPIO1P5_IR    | Q        | 0                   | No pending Interrupt |                   |                |            |          |  |  |
|               |          | 1                   | Interrupt pending    |                   |                |            |          |  |  |
| GPIO1P6_IRQ 0 |          |                     | No pending Interrupt |                   |                |            |          |  |  |
|               |          | 1 Interrupt pending |                      |                   |                |            |          |  |  |
| GPIO1P7_IR    | Q        | 0                   | No pending Interrupt |                   |                |            |          |  |  |
|               |          | 1                   | Interrupt per        | nding             |                |            |          |  |  |

| Register Nam        | ie               | MGPIO0IRQS0      |                            | Address                    | 0x19<br>Page 1   | Read/Write       |                  |  |  |
|---------------------|------------------|------------------|----------------------------|----------------------------|------------------|------------------|------------------|--|--|
|                     |                  |                  |                            | Reset Value                | 0xFF             |                  |                  |  |  |
| MSB                 |                  |                  |                            |                            |                  | •                | LSB              |  |  |
| R/W                 | R/W              | R/W              | R/W                        | R/W                        | R/W              | R/W              | R/W              |  |  |
| MGPIO<br>0P7 IRQ    | MGPIO<br>0P6 IRQ | MGPIO<br>0P5 IRQ | MGPIO<br>0P4 IRQ           | MGPIO<br>0P3 IRQ           | MGPIO<br>0P2 IRQ | MGPIO<br>0P1 IRQ | MGPIO<br>0P0 IRQ |  |  |
| MGPIO0P0_IRQ 0<br>1 |                  | 0<br>1           | IRQ unmasked               | IRQ unmasked<br>IRQ masked |                  |                  |                  |  |  |
| MGPIO0P1_IRQ        |                  | 0<br>1           | IRQ unmasked<br>IRQ masked |                            |                  |                  |                  |  |  |
| MGPIO0P2_I          | RQ               | 0<br>1           | IRQ unmasked<br>IRQ masked |                            |                  |                  |                  |  |  |
| MGPIO0P3_I          | RQ               | 0<br>1           | IRQ unmasked               |                            |                  |                  |                  |  |  |
| MGPIO0P4_I          | RQ               | 0<br>1           | IRQ unmasked<br>IRQ masked |                            |                  |                  |                  |  |  |
| MGPIO0P5_I          | RQ               | 0<br>1           | IRQ unmasked<br>IRQ masked |                            |                  |                  |                  |  |  |
| MGPIO0P6_I          | RQ               | 0<br>1           | IRQ unmasked<br>IRQ masked |                            |                  |                  |                  |  |  |
| MGPIO0P7_I          | RQ               | 0<br>1           | IRQ unmasker               | ked<br>d                   |                  |                  |                  |  |  |



| Register Nam   | ne      | MGPIO1IRQS0 |              | Address     | 0x1A<br>Page 1 | Read/Write |        |  |  |
|----------------|---------|-------------|--------------|-------------|----------------|------------|--------|--|--|
|                |         |             |              | Reset Value | 0xFF           |            |        |  |  |
| MSB            |         |             |              |             |                |            | LSB    |  |  |
| R/W            | R/W     | R/W         | R/W          | R/W         | R/W            | R/W        | R/W    |  |  |
| MGPIO          | MGPIO   | MGPIO       | MGPIO        | MGPIO       | MGPIO          | MGPIO      | MGPIO  |  |  |
| 1P7_IRQ        | 1P6_IRQ | 1P5_IRQ     | 1P4_IRQ      | 1P3_IRQ     | 1P2_IRQ        | 1P1_IRQ    | 1P_IRQ |  |  |
| MGPIO1P0_I     | RQ      | 0           | IRQ unmask   | ked         |                |            |        |  |  |
|                |         | 1           | IRQ masked   | ł           |                |            |        |  |  |
| MGPIO1P1_IRQ   |         | 0           | IRQ unmask   | ked         |                |            |        |  |  |
|                |         | 1           | IRQ masked   |             |                |            |        |  |  |
| MGPIO1P2_I     | RQ      | 0           | IRQ unmasked |             |                |            |        |  |  |
|                |         | 1           | IRQ masked   |             |                |            |        |  |  |
| MGPIO1P3_I     | RQ      | 0           | IRQ unmask   | ked         |                |            |        |  |  |
|                |         | 1           | IRQ masked   | ł           |                |            |        |  |  |
| MGPIO1P4_I     | RQ      | 0           | IRQ unmask   | ked         |                |            |        |  |  |
|                |         | 1           | IRQ masked   | ł           |                |            |        |  |  |
| MGPIO1P5_I     | RQ      | 0           | IRQ unmask   | ked         |                |            |        |  |  |
|                |         | 1           | IRQ masked   | ł           |                |            |        |  |  |
| MGPIO1P6_IRQ 0 |         | 0           | IRQ unmasked |             |                |            |        |  |  |
| 1              |         | 1           | IRQ masked   |             |                |            |        |  |  |
| MGPIO1P7_I     | RQ      | 0           | IRQ unmask   | ked         |                |            |        |  |  |
|                |         | 1           | IRQ masked   | 1           |                |            |        |  |  |

| Register Nam   | ie      | MGPIO0IRQSX |              | Address      | 0x1B<br>Page 1 | Read/Write |         |  |  |  |
|----------------|---------|-------------|--------------|--------------|----------------|------------|---------|--|--|--|
|                |         |             |              | Reset Value  | 0xFF           |            |         |  |  |  |
| MSB            |         |             |              |              | -              |            | LSB     |  |  |  |
| R/W            | R/W     | R/W         | R/W          | R/W          | R/W            | R/W        | R/W     |  |  |  |
| MGPIO          | MGPIO   | MGPIO       | MGPIO        | MGPIO        | MGPIO          | MGPIO      | MGPIO   |  |  |  |
| 0P7_IRQ        | 0P6_IRQ | 0P5_IRQ     | 0P4_IRQ      | 0P3_IRQ      | 0P2_IRQ        | 0P1_IRQ    | 0P0_IRQ |  |  |  |
| MGPIO0P0_IRQ 0 |         | 0           | IRQ unmask   | ked          |                |            |         |  |  |  |
|                |         | 1           | IRQ masked   | ł            |                |            |         |  |  |  |
| MGPIO0P1_IRQ   |         | 0           | IRQ unmask   | IRQ unmasked |                |            |         |  |  |  |
| 1              |         | 1           | IRQ masked   |              |                |            |         |  |  |  |
| MGPIO0P2_I     | RQ      | 0           | IRQ unmasked |              |                |            |         |  |  |  |
|                |         | 1           | IRQ masked   |              |                |            |         |  |  |  |
| MGPIO0P3_I     | RQ      | 0           | IRQ unmasked |              |                |            |         |  |  |  |
|                |         | 1           | IRQ masked   | ł            |                |            |         |  |  |  |
| MGPIO0P4_I     | RQ      | 0           | IRQ unmask   | ked          |                |            |         |  |  |  |
|                |         | 1           | IRQ masked   | ł            |                |            |         |  |  |  |
| MGPIO0P5_I     | RQ      | 0           | IRQ unmask   | ked          |                |            |         |  |  |  |
|                |         | 1           | IRQ masked   | ł            |                |            |         |  |  |  |
| MGPIO0P6_IRQ 0 |         | 0           | IRQ unmasked |              |                |            |         |  |  |  |
| 1              |         |             | IRQ masked   |              |                |            |         |  |  |  |
| MGPIO0P7_I     | RQ      | 0           | IRQ unmask   | ked          |                |            |         |  |  |  |
|                |         | 1           | IRQ masked   | ł            |                |            |         |  |  |  |



| Register Nam     | ter Name MGPIO1IRQSX |                  | SX                         | Address          | 0x1C<br>Page 1   | Read/Write       |                  |
|------------------|----------------------|------------------|----------------------------|------------------|------------------|------------------|------------------|
|                  |                      |                  |                            | Reset Value      | 0xFF             |                  |                  |
| MSB              |                      |                  |                            | •                | -                |                  | LSB              |
| R/W              | R/W                  | R/W              | R/W                        | R/W              | R/W              | R/W              | R/W              |
| MGPIO<br>1P7 IRQ | MGPIO<br>1P6 IRQ     | MGPIO<br>1P5 IRQ | MGPIO<br>1P4 IRQ           | MGPIO<br>1P3 IRQ | MGPIO<br>1P2 IRQ | MGPIO<br>1P1 IRQ | MGPIO<br>1P0 IRQ |
| MGPIO1P0_I       | RQ                   | 0<br>1           | IRQ unmaske<br>IRQ masked  | ed               |                  |                  |                  |
| MGPIO1P1_I       | RQ                   | 0<br>1           | IRQ unmasked<br>IRQ masked |                  |                  |                  |                  |
| MGPIO1P2_I       | RQ                   | 0<br>1           | IRQ unmasked<br>IRQ masked |                  |                  |                  |                  |
| MGPIO1P3_I       | RQ                   | 0<br>1           | IRQ unmaske<br>IRQ masked  | ed               |                  |                  |                  |
| MGPIO1P4_I       | RQ                   | 0<br>1           | IRQ unmaske<br>IRQ masked  | ed               |                  |                  |                  |
| MGPIO1P5_I       | RQ                   | 0<br>1           | IRQ unmaske<br>IRQ masked  | ed               |                  |                  |                  |
| MGPIO1P6_I       | RQ                   | 0<br>1           | IRQ unmaske<br>IRQ masked  | ed               |                  |                  |                  |
| MGPIO1P7_I       | RQ                   | 0                | IRQ unmaske<br>IRQ masked  | ed               |                  |                  |                  |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 18. External Battery Charger Control

#### 18.1 Overview

In order to determine the appropriate input current limit for the charger during certain scenarios, the CHGDET\_B pin is asserted or de-asserted by the USB PHY on the platform depending on output current capability of the USB charger detected.

ILIM0 and ILIM1 pins of DA6021 will output signals to the charger to set the charger input current limit. The external charger is capable of interrupt which will be forwarded to the SoC via DA6021. This interrupt will come from the CHGRINT\_B pin. During charging the battery temperature will be monitored.

#### 18.2 Charger Current Limit

The external charger input current limits are set according to the table below

| CHRDET_B | ILIM1 | ILIMO | Power source  | Input current limit                                         |
|----------|-------|-------|---------------|-------------------------------------------------------------|
| 1        | 0     | 0     | USB DCP       | More than 100mA, usually 1.5A                               |
| 1        | 0     | 1     | USB SDP       | 100mA                                                       |
| 1        | 1     | 1     | USB SDP       | 500mA                                                       |
| x        | 1     | 0     | AC/DC adapter | Customer specific, limited by max<br>charger output current |

Table 108: External Charger Current Limits

The AC/DC adapter usually takes priority over the USB charger as input power to the external battery charger. However, DA6021 detects the AC/DC adapter by monitoring VDCIN\_SENSE. DA6021 changes ILIM0 and ILIM1 level immediately VDCIN\_SENSE fall below the internal voltage reference threshold to inform the external charger to lower its current limit at the removal of AC/DC adapter.

## **18.3 External Charger Control Signals**

DA6021 has the following I/O pins to interface with a discrete charger and USB PHY.

| Name      | Dir | Voltage | Signal Description                                                                                                                                                               |
|-----------|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHGRINT_B | I   | VSYS    | Battery charging status and fault interrupt from<br>charger IC, active low.<br>Internal 10kOhm pull-up to VSYS.<br>0=interrupt, asserted with a minimum pulse<br>width of 200µs  |
| ILIM[1:0] | 0   | VSYS    | External charger input current limits                                                                                                                                            |
| CHGDET_B  | I   | VUSBPHY | USB DCP detection. Asserted by USBPHY<br>when it detected a charger that can source<br>more than 100mA<br>Internal 100kOhm pull-up to VSYS<br>1=SDP detected<br>0=DCP or CDP/ACA |

Table 109: Charger Control Pins

The external battery charger interrupt is routed through DA6021 via CHGRINT\_B pin. It alerts the SOC of an interrupt by the CHGRIRQ register in which bit D0 is set at the falling edge of CHGRINT\_B if not masked. The interrupt mask registers allow external battery charger interrupt to be masked. There are two sets of interrupt mask registers to offer the flexibility to selectively mask the interrupt in S0 state (MCHGRIRQS0) or in sleep (S0IX, S3, S4) states (MPCHGRIRQSX)

#### **Data Sheet**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## **18.4 Battery Charger Registers**

There are no configuration registers foreseen for the battery charger

| Register Name | Э | CHRG_IRQ      |                            | Address                      | 0x0A<br>Page 1 | Read/Write |              |
|---------------|---|---------------|----------------------------|------------------------------|----------------|------------|--------------|
|               |   |               |                            | Reset Value                  | 0x00           |            |              |
| MSB           |   |               |                            |                              |                |            | LSB          |
| R             | R | R             | R                          | R                            | R              | R          | R/W          |
|               |   |               | Reserved                   |                              |                |            | CHRG_<br>IRQ |
| CHRG_IRQ      |   | <b>0</b><br>1 | Charger IRC<br>Charger IRC | Q not asserted<br>Q asserted |                |            |              |

| Register Name | e                | MCHRG_IRC | _S0                        | Address                | 0x17<br>Page 1 | Read/Write |                  |
|---------------|------------------|-----------|----------------------------|------------------------|----------------|------------|------------------|
|               | Reset Value 0x01 |           |                            |                        |                |            |                  |
| MSB           |                  |           |                            |                        |                |            | LSB              |
| R             | R                | R         | R                          | R                      | R              | R          | R/W              |
|               |                  |           | Reserved                   |                        |                |            | MCHRG_<br>IRQ_S0 |
| CHRG_IRQ      |                  | 0<br>1    | Charger IRC<br>Charger IRC | Q unmasked<br>Q masked |                |            |                  |

| Register Name | Э | MCHRG_IRQ        |                            | Address                | 0x18<br>Page 1 | Read/Write |               |
|---------------|---|------------------|----------------------------|------------------------|----------------|------------|---------------|
|               |   | Reset Value 0x01 |                            |                        |                |            |               |
| MSB           |   |                  |                            |                        |                |            | LSB           |
| R             | R | R                | R                          | R                      | R              | R          | R/W           |
|               |   |                  | Reserved                   |                        |                |            | MCHRG_<br>IRQ |
| CHRG_IRQ      |   | 0<br>1           | Charger IRC<br>Charger IRC | Q unmasked<br>Q masked |                |            |               |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## **19. Interrupt Controller**

#### 19.1 Overview

The interrupt control unit maintains the state of the First Level IRQ tree and is responsible for asserting and deasserting the DA6021's IRQ to the application SoC. It contains status bits for interrupts from all the second-level sub-blocks. If unmasked, the second-level interrupts will propagate to the appropriate first-level interrupt bit, as assigned below. If the first-level interrupt is unmasked, it will propagate to the IRQ pin, which will remain high as long as unmasked interrupts have not been cleared.

#### **19.2 First Level Interrupt**

DA6021 interrupt signal IRQ signal is connected to a GPIO of the SoC indicating DA6021 unmasked events to be investigated by the SOC while reading the IRQ status registers via I2C.

The DA6021 interrupt scheme contains two levels. The first-level interrupt register contains 6 IRQ bits, and indicates which PMIC sub-block triggered the interrupt. One bit is dedicated to each of the interrupt-causing DA6021 sub-blocks. For all units, the second-level interrupt registers indicate the specific interrupt triggers for each sub-block. A masking system is provided to enable or disable specific interrupt handlers.

If any bits are set in the first-level IRQ mask, the assertion of an interrupt from the masked sub-block(s) will not cause an assertion of the IRQ signal, nor will it set the first-level IRQ bit. By limiting the first-level IRQ bits set to only those that are unmasked; this disambiguates the dispatching of interrupts.

First-Level IRQ bits may not be directly cleared; they are cleared by clearing all unmasked second-level IRQ bits, and then are implicitly cleared.

When all unmasked first-level IRQ bits are implicitly cleared (all unmasked second-level interrupts directly cleared), the IRQ pin is de-asserted.





#### **19.3 Second Level Interrupt**

While First-Level Interrupt bits inform the interrupt handler of which sub-block interrupted, second-level interrupt registers/bits provide the interrupt handler with the specific nature of the block's interrupt event.

If any bits are set in a second-level interrupt mask, then the appropriate second level interrupt bit is prevented from asserting the first level interrupt bit for the corresponding sub-block, nor will the bit become set. (Only unmasked 2nd level interrupt bits may be set).

#### **Data Sheet**



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

Interrupt bits are write-1-to-clear. This includes all second-level interrupt register locations. The IRQ signal will not be de-asserted until all unmasked interrupt bits are cleared. For detailed description of Second level interrupts refer to the dedicated blocks in this document.

The table below summarizes the second level interrupts.

| Interrupt Name | Register  | Source                                | First-Level<br>Interrupt | Related<br>Status Bit | DESCRIPTION                                                                                                                                                                 |
|----------------|-----------|---------------------------------------|--------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VBUSDET        | PWRSRCIRQ | Input<br>Power<br>source<br>Detection | PWRSRC                   | SVBUSDET              | Indicates that a valid VBUS voltage is<br>detected or removed.<br>Software can test the current cable<br>connection status by checking the<br>SVBUSDET bit in SPWRSRC.      |
| DCINDET        | PWRSRCIRQ | Input<br>Power<br>source<br>Detection | PWRSRC                   | SDCINDET              | Triggered when a AC/DC adapter has<br>been detected or removed.<br>The status of the DC cable connection<br>can be verified by reading the<br>SDCINDET bit in SPWRSRC.      |
| BATDET         | PWRSRCIRQ | Input<br>Power<br>source<br>Detection | PWRSRC                   | SBATDET               | Interrupt is triggered when a battery is<br>connected or disconnected.<br>The status of the battery connection<br>can be verified by reading the<br>SBATDET bit in SPWRSRC. |
| SYS0ALRT0      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 0 temperature<br>thermal alert0 occurs                                                                         |
| SYS1ALRT0      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 1 temperature<br>alert0 occurs                                                                                 |
| SYS2ALRT0      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 2 temperature<br>alert0 occurs                                                                                 |
| PMICALRT0      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when a PMIC die temperature alert0 occurs                                                                                                  |
| SYS0ALRT1      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 0 temperature<br>alert1 occurs                                                                                 |
| SYS1ALRT1      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 1 temperature<br>alert1 occurs                                                                                 |
| SYS2ALRT1      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 2 temperature<br>alert1 occurs                                                                                 |
| PMICALRT1      | THRMIRQ0  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when a PMIC die temperature alert1 occurs                                                                                                  |
| SYS0CRIT       | THRMIRQ1  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 0 critical<br>temperature event occurs                                                                         |
| SYS1CRIT       | THRMIRQ1  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 1 critical<br>temperature event occurs                                                                         |
| SYS2CRIT       | THRMIRQ1  | Thermal<br>Control<br>Unit            | THRM                     |                       | Set by the thermal state machine when<br>a system thermistor 2 critical<br>temperature event occurs                                                                         |
| PMICCRIT       | THRMIRQ1  | Thermal<br>Control                    | THRM                     |                       | Set by the thermal state machine when<br>a PMIC die critical temperature event                                                                                              |

#### **Data Sheet**

# **C** dialog

#### **Company Confidential**

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Interrupt Name | Register | Source  | First-Level | Related<br>Status Bit | DESCRIPTION                               |
|----------------|----------|---------|-------------|-----------------------|-------------------------------------------|
|                |          | Unit    |             |                       | occurs                                    |
|                |          | Thermal |             |                       | Set by the thermal state machine when     |
| BAT0ALRT0      | THRMIRQ2 | Control | THRM        |                       | a battery thermistor 0 temperature        |
|                |          | Unit    |             |                       | alert0 occurs                             |
|                |          | Thermal |             |                       | Set by the thermal state machine when     |
| BAT1ALRT0      | THRMIRQ2 | Control | THRM        |                       | a battery thermistor 1 temperature        |
| _              |          | Unit    |             |                       | alert0 occurs                             |
|                |          | Thermal |             |                       | Set by the thermal state machine when     |
| BATOAL RT1     |          | Control | THRM        |                       | a battery thermistor 0 temperature        |
|                |          | Unit    |             |                       | alert1 occurs                             |
|                |          | Thermal |             |                       | Set by the thermal state machine when     |
| BAT1ALRT1      |          | Control | THRM        |                       | a battery thermistor 1 temperature        |
|                |          | Unit    |             |                       | alert1 occurs                             |
|                |          | Thermal |             |                       | Set by thermal state machine when a       |
| BATOCRIT       |          | Control | THRM        |                       | battery thermistor 0 critical temperature |
| BATOORT        |          | Unit    |             |                       | event occurs                              |
|                |          | Thermal |             |                       | Set by thermal state machine when a       |
|                |          | Control | тирм        |                       | battery thermistor 1 critical temperature |
| DATIONI        |          | Unit    |             |                       |                                           |
|                |          | Unit    |             |                       | Triagers whenever the VSVS voltage        |
|                |          | DOLL    | DCU.        |                       | areases the VMARNE threshold rising       |
| VWARINDIRQ     | DCUIRQ   | БСО     | БСО         |                       | crosses the VWARND threshold, hsing       |
|                |          |         |             |                       | Or failing.                               |
|                |          |         |             |                       | I riggers whenever the VSYS voltage       |
| VWARNAIRQ      | BCUIRQ   | BCO     | BCO         |                       | crosses the VWARINA threshold, rising     |
|                |          |         |             |                       | or failing.                               |
|                |          |         | 5011        |                       | Triggers whenever the VSYS voltage        |
| VCRITIRQ       | BCUIRQ   | BCO     | BCO         |                       | crosses the VCRIT threshold, rising or    |
|                |          |         |             |                       | falling.                                  |
| VBAT           | ADCIRQ0  | ADC     | ADC         |                       | Bit is set after completion of VBA I      |
|                |          |         |             |                       | manual conversion if not masked           |
| BATID          | ADCIRQ0  | ADC     | ADC         |                       | Bit is set after completion of BATID      |
|                |          | -       | -           |                       | manual conversion if not masked           |
|                |          |         |             |                       | Bit is set after completion of PMIC die   |
| PMICTEMP       | ADCIRQ0  | ADC     | ADC         |                       | temperature manual conversion if not      |
|                |          |         | _           |                       | masked                                    |
|                |          |         |             |                       | Bit is set after completion of            |
| BPTHERM0       | ADCIRQ0  | ADC     | ADC         |                       | BPTHERM0 manual conversion if not         |
|                |          |         |             |                       | masked                                    |
|                |          |         |             |                       | Bit is set after completion of            |
| BPTHERM1       | ADCIRQ0  | ADC     | ADC         |                       | BPTHERM0 manual conversion if not         |
|                |          |         |             |                       | masked                                    |
|                |          |         |             |                       | Bit is set after completion of            |
| SYSTHERM0      | ADCIRQ0  | ADC     | ADC         |                       | SYSTHERM0 manual conversion if not        |
|                |          |         |             |                       | masked                                    |
|                |          |         |             |                       | Bit is set after completion of            |
| SYSTHERM1      | ADCIRQ0  | ADC     | ADC         |                       | SYSTHERM1 manual conversion if not        |
|                |          |         |             |                       | masked                                    |
|                |          |         |             |                       | Bit is set after completion of            |
| SYSTHERM2      | ADCIRQ0  | ADC     | ADC         |                       | SYSTHERM2 manual conversion if not        |
|                |          |         |             |                       | masked                                    |
|                |          | Charger |             |                       | Triggered when an interrupt input from    |
| CHRG           | CHGRIRQ  | Control | CHGR        |                       | the external discrete charger is          |
|                |          | Unit    |             |                       | generated.                                |
|                |          |         |             |                       | Each GPIO pin can be configured as        |
| GFIUXFX        | GFIUIKQ  | GPIU    | GPIU        |                       | input with programmable interrupt edge    |

#### **Data Sheet**



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| Interrupt Name | Register | Source | First-Level<br>Interrupt | Related<br>Status Bit | DESCRIPTION                                                                                                                                                                                                                                                                  |
|----------------|----------|--------|--------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |          |        |                          |                       | for rise, fall or both. See GPIOxPxCTLI<br>registers for INTCNTxPx setting.<br>Triggered when the conditions set with<br>GPIOxPxCTLI registers have been met.<br>The status of the GPIO input can be<br>verified by reading the DINxPx bit from<br>the GPIOxPxCTLI register. |
| VHDMIOCP       | VHDMIIRQ | VHDMI  | VHDMIOCP                 |                       | Bit is set when VHDMI over current<br>condition occurs if not masked                                                                                                                                                                                                         |

Table 110: Second Level Interrupts

## 19.4 Critical Race Condition (set vs. clear)

An IRQ register can only be cleared by the SoC. This can lead to a potential for critical race if a certain block try to assert the interrupt and at the same time the clearing command comes from the SoC. In this case it is given priority to the block skipping the clearing. In this case the SoC will try to clear it again. Due to block running with lower frequency (lowest 31,25 KHz) some of the IRQ can be in the SET mode for a time window of circa 30us. This means that the IRQ, in the corner case when clear is concurrent, it cannot be cleared within that time window.

### **19.5 Interrupt Controller Registers**

| Register Name | e    | IRQLVL1 |                       | Address      | 0x02<br>Page 1 | Read |      |
|---------------|------|---------|-----------------------|--------------|----------------|------|------|
|               |      | •       |                       | Reset Value  | 0x00           |      |      |
| MSB           |      |         |                       |              |                |      | LSB  |
| R             | R    | R       | R                     | R            | R              | R    | R    |
| reserved      | HDMI | GPIO    | CHRG                  | ADC          | BCU            | THRM | PSDL |
| PSDL          |      | 0       | PSDL IRQ n            | ot asserted  |                |      |      |
|               |      | 1       | PSDL IRQ asserted     |              |                |      |      |
| THRM          |      | 0       | THRM IRQ not asserted |              |                |      |      |
|               |      | 1       | THRM IRQ a            | asserted     |                |      |      |
| BCU           |      | 0       | BCU IRQ no            | t asserted   |                |      |      |
|               |      | 1       | BCU IRQ as            | serted       |                |      |      |
| ADC           |      | 0       | ADC IRQ no            | t asserted   |                |      |      |
|               |      | 1       | ADC IRQ as            | serted       |                |      |      |
| CHRG          |      | 0       | CHRG IRQ I            | not asserted |                |      |      |
|               |      | 1       | CHRG IRQ asserted     |              |                |      |      |
| GPIO          |      | 0       | GPIO IRQ not asserted |              |                |      |      |
|               |      | 1       | GPIO IRQ asserted     |              |                |      |      |
| HDMI          |      | 0       | HDMI IRQ not asserted |              |                |      |      |
|               |      | 1       | HDMI IRQ a            | sserted      |                |      |      |



|              |       |          |                   |             | _      |            |       |
|--------------|-------|----------|-------------------|-------------|--------|------------|-------|
| Register Nam | е     | MIRQLVL1 |                   | Address     | 0x0E   | Read/Write |       |
|              |       |          |                   |             | Page 1 |            |       |
|              |       |          |                   | Reset Value | 0x7F   |            |       |
| MSB          |       |          |                   |             |        |            | LSB   |
| R            | R/W   | R/W      | R/W               | R/W         | R/W    | R/W        | R/W   |
| reserved     | MHDMI | MGPIO    | MCHRG             | MADC        | MBCU   | MTHRM      | MPSDL |
| MPSDL        |       | 0        | PSDL IRQ u        | unmasked    | -      |            |       |
|              |       | 1        | PSDL IRQ n        | nasked      |        |            |       |
| MTHRM        |       | 0        | THRM IRQ unmasked |             |        |            |       |
|              |       | 1        | THRM IRQ          | masked      |        |            |       |
| MBCU         |       | 0        | BCU IRQ ur        | Imasked     |        |            |       |
|              |       | 1        | BCU IRQ m         | asked       |        |            |       |
| MADC         |       | 0        | ADC IRQ ur        | Imasked     |        |            |       |
|              |       | 1        | ADC IRQ m         | asked       |        |            |       |
| MCHRG        |       | 0        | CHRG IRQ          | unmasked    |        |            |       |
|              |       | 1        | CHRG IRQ          | masked      |        |            |       |
| MGPIO        |       | 0        | GPIO IRQ unmasked |             |        |            |       |
|              |       | 1        | GPIO IRQ m        | nasked      |        |            |       |
| MHDMI        |       | 0        | HDMI IRQ u        | Inmasked    |        |            |       |
|              |       | 1        | HDMI IRQ m        | nasked      |        |            |       |

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 20. Power Button & Utility Button

#### 20.1 Overview

The system has two buttons that can be used together to trigger the system to power "on" or "off" in different ways.

The main power button (PWRBTNIN\_B) is an active-low input with an internal pull-up resistor to VSYS.

The second button is the Utility button or user interface button (UI button, UIBTN\_B). This button is typically used as a home button and also includes the pull-up resistor to VSYS.

Both buttons are de-bounced with a 30ms filter and supervised by a timer unit measuring the pulse length.

#### PMIC VSYS Debouncer UIBTN\_B IRQ\_GPIO0P0 30ms CLK PWRBTNIN B PWRBTN\_B Debouncer ×-30ms Level Shifter PMIC Power Control Unit Timer OFF\_state CLK UIBHT[4:0] V RSVD RSVD PBHT[4:0] Compare PBSTATUS Logic FCOT[3:0] RSVD UIBTNDIS CLRUIBHT PBCONFIG

## 20.2 Power/Utility Button Block Diagram

Figure 71 : Power/Utility Button Detection Logic

## 20.3 PWRBTNIN\_B Electrical Parameters

The table below provides the PWRBTNIN\_B pad thresholds:

|     | L->H<br>Vth, high | H->L<br>Vth, Iow | Vhyst | Val |
|-----|-------------------|------------------|-------|-----|
|     | [mV]              | [mV]             | [mV]  |     |
| Min | 672.5             | 577.5            | 95    | А   |
| Тур | 927.5             | 732.5            | 195   | А   |
| Max | 1158.5            | 860.5            | 298   | А   |

#### **Data Sheet**

Version 3.A - Final

© 2014 Dialog Semiconductor GmbH



#### 20.4 Power Button

The DA6021 PWRBTNIN\_B input pin has an internal pull-up resistor ( $20k\Omega \pm 10\%$ ) to VSYS and includes a 30ms de-bouncing filter of 30ms, ensuring that spurious transitions are not logged. The de-bounced signal is forwarded to the timer logic, measuring the pulse length and comparing it with pre-programmed timing registers. DA6021 passes such power button information level-shifted to the SOC via the PWRBTN\_B output pin. Such PWRBTN\_B signal is only valid when RSMRST=1.

If the system is in SOC\_G3 state and the power button is pressed more than 100ms, the DA6021 switches on all suspend (\*\_A) rails, de-asserts RSMRST\_B after the power button is released and passes the power button information towards the SoC.

If the system is active or down to SOC\_S4, pressing the power button will cause DA6021 to pass the level shifted PWRBTNIN\_B signal after 100ms de-bouncing to the SoC, which takes the appropriate actions.

#### 20.5 Power Button Cold Boot Flow Diagram

The chart below shows how the boot signal is generated from the power button.



Figure 72: Power Button Boot Flow Diagram



#### HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

#### 20.6 Force a Cold Off Sequence

DA6021 triggers a "Cold Off" sequence when the power button is hold for more than in register PBCONFIG specified time (default is 4sec). In the event of such a "Cold Off" sequence, DA6021 sets the RFCO (Reset due to Forced Cold Off) in register RESETSRCCRIT and clears the timer PBHT bits in the power button status register PBSTATUS. The PMIC shuts down the system by turning off all its voltage rails in sequence without waiting for instructions (e.g. SLP\_S\*\_B signals) from the SOC.

#### 20.7 Force Cold Off Flow Diagram



Figure 73: Power Button Cold Off Flow Diagram

#### 20.8 UIBTN\_B

The UIBTN\_B pin is an input from a platform-defined functional interface button, such as the Home button. The GPIO1P0 pin can be programmed with its alternate function for the UI button. It is internally connected to VSYS via a pull-up resistor (20KOhm±10%). It includes a 30ms de-bouncer to ensure that spurious transitions aren't logged while the switch contacts bounce on initial contact. The output of the de-bouncer enters the edge detect circuits.

Both edges can trigger a utility button interrupt, which is the GPIOP1P0 bit in the second-level GPIO0IRQ Register. It is cleared when a 1 is written to this location. The output of the de-bouncer can be read from the UIBLVL bit of the UIBSTATUS register to determine the current state of the button.

**Data Sheet** 



The output of the de-bouncer also goes to the timer logic block that measures the length of time that the button has been held down, and this value can be read from the Hold Time field (UIBHT[4:0]) in the UIBSTATUS register.

## 20.9 Power Button Registers

| Register Name PBCONFIG                                                                                                             |   |                                                 |                                                                                                                                            | Address                 | 0x26<br>Page 1 | Read/Write |     |
|------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|------------|-----|
|                                                                                                                                    |   |                                                 |                                                                                                                                            |                         | 0x63           |            |     |
| MSB                                                                                                                                |   |                                                 |                                                                                                                                            |                         |                |            | LSB |
| R                                                                                                                                  | R | R/W                                             | R/W                                                                                                                                        | R/W                     | R/W            | R/W        | R/W |
| PBDBCNT UIBTNDISABLE CLRU                                                                                                          |   |                                                 | CLRUIBHT                                                                                                                                   |                         | FCC            | DT[3:0]    |     |
| FCOT[3:0]                                                                                                                          |   | 0000<br>0001<br>0010<br><b>0011</b><br><br>1111 | Time that PWR and UI buttons have to be held down together<br>before a system power down is triggered<br>Disable<br>3.0s<br>3.5s<br>4s<br> |                         |                |            |     |
| CLRUIBHT                                                                                                                           |   | <b>0</b><br>1                                   | No action pe<br>Reset the U                                                                                                                | erformed<br>IBTN HT tim | er logic       |            |     |
| UIBTNDISABLE 0 UIBTN not disabled<br>1 UIBTN disabled                                                                              |   |                                                 |                                                                                                                                            |                         |                |            |     |
| PBDBCNT         Power but           00         10ms           01         30ms           10         60ms           11         100ms |   |                                                 | Power butto<br>10ms<br>30ms<br>60ms<br>100ms                                                                                               | n input pin c           | lebounce time  |            |     |

| Register Nam | ie    | PBSTATUS  |                    | Address        | 0x27<br>Page 1  | Read      |     |  |  |  |
|--------------|-------|-----------|--------------------|----------------|-----------------|-----------|-----|--|--|--|
|              |       |           |                    |                | 0x20            |           |     |  |  |  |
| MSB          |       |           |                    |                |                 |           | LSB |  |  |  |
| R            | R     | R         | R                  | R              | R               | R         | R   |  |  |  |
| PE           | BDT   | PBLVL     |                    |                | PBHT[3:0]       |           |     |  |  |  |
| PBHT[3:0]    |       | 00000     | Time that PV<br>0s | VR button ha   | is been held do | own       |     |  |  |  |
| 00001        |       |           | 0.5s               |                |                 |           |     |  |  |  |
|              | 00010 |           |                    |                |                 |           |     |  |  |  |
|              |       | <br>11111 | <br>15.5s          |                |                 |           |     |  |  |  |
| PBLVL        |       | 0         | PWR button         | pressed        |                 |           |     |  |  |  |
|              |       | 1         | PWR button         | released       |                 |           |     |  |  |  |
| PBDT Power b |       |           |                    | n disable time | er, clears wher | n expired |     |  |  |  |
| 00 not disat |       |           |                    | (0s)           |                 |           |     |  |  |  |
|              |       | 01        | 30s disabled       |                |                 |           |     |  |  |  |
| 10 60s disab |       |           |                    | 60s disabled   |                 |           |     |  |  |  |
|              |       | 11        | 120s disable       | d              |                 |           |     |  |  |  |

**Data Sheet** 

| Register Name UBSTATUS |       |                                             | Address                                       | 0x28<br>Page 1 | Read          |   |     |  |
|------------------------|-------|---------------------------------------------|-----------------------------------------------|----------------|---------------|---|-----|--|
|                        |       |                                             |                                               |                | 0x20          |   |     |  |
| MSB                    |       |                                             |                                               |                |               |   | LSB |  |
| R                      | R     | R                                           | R                                             | R              | R             | R | R   |  |
| rese                   | erved | UBLVL                                       | UBLVL UBHT[3:0]                               |                |               |   |     |  |
| PBHT[3:0]              |       | <b>00000</b><br>00001<br>00010<br><br>11111 | Time that UI<br>0s<br>0.5s<br>1s<br><br>15.5s | button has b   | een held dowr | 1 |     |  |
| UBLVL                  |       | 0<br>1                                      | UI button pre<br>UI button rel                | essed<br>eased |               |   |     |  |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 21. Pulse Width Modulation Generation

#### 21.1 Overview

The PWM block is used to generate up to three PWM signals on three dedicated output pins. Mainly they are used to drive display backlight circuits. All the PWM outputs can be enabled on demand. In addition the functionality is gates with power sequencer state as for this the high frequency oscillator is needed in order to provide the 6 MHz clock needed to generate the signal.

#### 21.2 Functional Description

Each of the PWM outputs is able to generate output frequencies from ~23.44 KHz down to ~183Hz in 128 steps.

• f= (6MHz/256) / (FREQ+1)

The duty cycle can be selected between 1/256 to 256/256 (always high).

## 21.3 PWM Output Signals

There are 3 PWM output signals (PWM[2:0]) on DA6021

| Name     | I/O | Voltage<br>Level | Pin<br>Mode | Pin Level | Internal<br>pu/pd |
|----------|-----|------------------|-------------|-----------|-------------------|
| PWM[2:0] | Ó   | 1.8V             | CMOS        | Low       | no                |

Table 111: PWM Output Signals

#### 21.4 PWM Registers

| Register Name PWM1CFG1                                                                  |     |               | Address                 | 0x4B<br>Page 1 | Read/Write |     |     |
|-----------------------------------------------------------------------------------------|-----|---------------|-------------------------|----------------|------------|-----|-----|
|                                                                                         |     |               |                         | Reset Value    | 0x00       |     |     |
| MSB                                                                                     |     |               |                         |                |            |     | LSB |
| R/W                                                                                     | R/W | R/W           | R/W                     | R/W            | R/W        | R/W | R/W |
| ENA                                                                                     |     | FREQ          |                         |                |            |     |     |
| FREQ[6:0]<br>0<br>1<br>1<br>126<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127 |     |               |                         | 256            |            |     |     |
| ENA                                                                                     |     | <b>0</b><br>1 | PWM1 disal<br>PWM1 enab | ble<br>ble     |            |     |     |

**Data Sheet** 



| Register Name     |     | PWM2CFG1                        | PWM2CFG1                                                  |             | 0x4C<br>Page 1 | Read/Write |     |  |
|-------------------|-----|---------------------------------|-----------------------------------------------------------|-------------|----------------|------------|-----|--|
|                   |     |                                 |                                                           | Reset Value | 0x00           |            |     |  |
| MSB               |     |                                 |                                                           |             |                |            | LSB |  |
| R/W               | R/W | R/W                             | R/W                                                       | R/W         | R/W            | R/W        | R/W |  |
| ENA               |     | FREQ                            |                                                           |             |                |            |     |  |
| FREQ[6:0]         |     | <b>0</b><br>1<br><br>126<br>127 | f0 = 6MHz/2<br>f=f0<br>f=f0/2<br><br>f=f0/127<br>f=f0/128 | 256         |                |            |     |  |
| ENA <b>0</b><br>1 |     |                                 | PWM1 disal<br>PWM1 enab                                   | ble<br>ble  |                |            |     |  |

| Register Name PWM3CFG1 |     |                                 | Address                                                   | 0x4D<br>Page 1 | Read/Write |     |     |  |
|------------------------|-----|---------------------------------|-----------------------------------------------------------|----------------|------------|-----|-----|--|
|                        |     |                                 |                                                           | Reset Value    | 0x00       |     |     |  |
| MSB                    |     |                                 |                                                           |                |            |     | LSB |  |
| R/W                    | R/W | R/W                             | R/W                                                       | R/W            | R/W        | R/W | R/W |  |
| ENA                    |     | FREQ                            |                                                           |                |            |     |     |  |
| FREQ[6:0]              |     | <b>0</b><br>1<br><br>126<br>127 | f0 = 6MHz/2<br>f=f0<br>f=f0/2<br><br>f=f0/127<br>f=f0/128 | 56             |            |     |     |  |
| ENA <b>0</b><br>1      |     |                                 | PWM1 disal<br>PWM1 enab                                   | ole<br>ble     |            |     |     |  |

| Register Name <b>PWM1CFG0</b>                                                                    |             |  | Address | 0x4E<br>Page 1 | Read/Write     |     |     |
|--------------------------------------------------------------------------------------------------|-------------|--|---------|----------------|----------------|-----|-----|
|                                                                                                  |             |  |         | Reset Value    | 0x00           |     |     |
| MSB                                                                                              |             |  |         |                |                |     | LSB |
| R/W                                                                                              | R/W R/W R/W |  |         | R/W            | R/W            | R/W | R/W |
|                                                                                                  |             |  | D       | UTY            |                |     |     |
| DUTY[7:0] 0 High for 1/256 PWM p 1 High for 2/256 PWM p 254 High for 255/256 PWM 255 Always high |             |  |         |                | d<br>d<br>riod |     |     |



| Register Name                                                                                                                                             | egister Name PWM2CFG0 |     | Address     | 0x4F<br>Page 1 | Read/Write     |     |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|-------------|----------------|----------------|-----|-----|
|                                                                                                                                                           |                       |     |             | Reset Value    | 0x00           |     |     |
| MSB                                                                                                                                                       |                       |     |             |                |                |     | LSB |
| R/W                                                                                                                                                       | R/W                   | R/W | R/W         | R/W            | R/W            | R/W | R/W |
|                                                                                                                                                           |                       |     | D           | UTY            |                |     |     |
| DUTY[7:0]         0         High for 1/256 PWM period           1         High for 2/256 PWM period               254         High for 255/256 PWM period |                       |     |             |                | d<br>d<br>riod |     |     |
|                                                                                                                                                           |                       | 255 | Always high | 1              |                |     |     |

| Register Name <b>PWM3CFG0</b>                                                                             |             |  | Address | 0x50<br>Page 1 | Read/Write |     |     |
|-----------------------------------------------------------------------------------------------------------|-------------|--|---------|----------------|------------|-----|-----|
|                                                                                                           |             |  |         |                | 0x00       |     |     |
| MSB                                                                                                       |             |  |         |                |            |     | LSB |
| R/W                                                                                                       | R/W R/W R/W |  |         | R/W            | R/W        | R/W | R/W |
|                                                                                                           |             |  | D       | UTY            |            |     |     |
| DUTY[7:0]0High for 1/256 PWM period1High for 2/256 PWM period254High for 255/256 PWM period255Always high |             |  |         |                |            |     |     |



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

## 22. Panel Control

#### 22.1 Overview

The DA6021 provides two pins for display panel control, BACKLIGHT\_EN to enable the display backlight circuit and PANEL\_EN to enable the display panel electronics. The buffers driving these pins are slew-rate controlled push-pull output buffers similar to the GPIOs, each capable of high-voltage (3.3V) operation.

#### 22.2 Functional Description

This registers are directly driving the BACKLIGHT\_EN and PANEL\_EN pins of DA6021. SoC has complete control on this.

| Register Name BACKLIGHT |    | _EN | Address      | 0x51<br>Page 1 | Read/Write |     |            |
|-------------------------|----|-----|--------------|----------------|------------|-----|------------|
|                         |    |     |              | Reset Value    | 0x00       |     |            |
| MSB                     |    |     |              |                |            | LSB |            |
| R                       | R  | R   | R            | R              | R          | R   | R/W        |
|                         |    |     | Reserved     |                |            |     | BACKLIGHT_ |
|                         |    |     |              |                |            |     | EN         |
| BACKLIGHT_              | EN | 0   | Backlight of | f              |            |     |            |
|                         |    | 1   | Backlight or | า              |            |     |            |

| Register Name F |   | PANEL_EN      |                       | Address    |           | 0x52<br>Page 1 |   | Rea | id/Write |              |
|-----------------|---|---------------|-----------------------|------------|-----------|----------------|---|-----|----------|--------------|
|                 |   |               |                       | Res<br>Val | set<br>ue | 0x0            | 0 |     |          |              |
| MSB             |   |               |                       |            |           |                |   |     |          | LSB          |
| R               | R | R             | R                     |            | R         |                | R |     | R        | R/W          |
|                 |   |               | reserve               | d          |           |                |   |     |          | PANEL<br>_EN |
| PANEL_EN        |   | <b>0</b><br>1 | Panel off<br>Panel on |            |           |                |   |     |          |              |



## 23. Debug Ports

There are 2 debug ports foreseen, one for the SVID and another one for the I2C interface

#### 23.1 SVID Debug port

The intent is to disable PMIC SVID buffers connected to the SOC/CPU when in debug mode and redirect communication to an external bus master using a secondary set of pins. This will enable external control of the PMIC interface without SOC/CPU bus contention. In addition, the debug channel enables a point to point bus topology with the external bus master, thereby providing clean signal integrity. The DEBUG\_CS signal is used to disable SOC SVID transmission during debug. This will ensure the SOC does not hang awaiting PMIC SVID responses.

A diagram, truth table, and brief write up are provided below.



Figure 74: SVID Debug Port Bus Diagram

|            | External Chanr | nel 0 (Debug) |            | External Channel 1 (SOC) |           |             |
|------------|----------------|---------------|------------|--------------------------|-----------|-------------|
| DEBUG_CS   | DEBUG_SVID     | DEBUG_SVID    | DEBUG_SVID | SVID_CLK                 | SVID_DATA | SVID_ALERT# |
|            | _CLK           | _DATA         | _ALERT#    |                          |           |             |
| "H" (VSYS) | CLK            | DATA          | ALERT#     | Disabled                 | Disabled  | Disabled    |
| "L" (0V)   | Disabled       | Disabled      | Disabled   | CLK                      | DATA      | ALERT#      |

Table 112: SVID Debug Port Truth Table

**Data Sheet** 



To enable external bus master control of the PMIC SVID interface for debug purposes, DA6021 includes an internal bus switch controlled by a SVID channel select pin (DEBUG\_CS) as shown in the figure above. When DEBUG\_CS is high (tied to VSYS), DA6021 directs the internal channel to external channel 0 and disables the I/O of external channel 1. When DEBUG\_CS is low (tied to ground), DA6021 enables communication between External Channel 1 and the internal channel, with External Channel 0 I/O disabled. Both channels are compliant to the VR12/IMVP7 SVID timing and signaling protocols.

## 23.2 I2C Debug port

This addresses I2C in a way similar to the SVID. The intent is to disable DA6021 I2C buffers connected to the SOC when in debug mode and redirect communication to an external bus master using a secondary set of pins. This will enable external control of the DA6021 interface without SOC/CPU bus contention. In addition, the debug channel enables a point to point bus topology with the external bus master, thereby providing clean signal integrity.



Figure 75: I2C Debug Port Bus Diagram

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

A diagram, truth table, and brief write up are provided below.

|            | External Channel 0 (I | Debug)         | External Channel 1 (SOC) |          |  |
|------------|-----------------------|----------------|--------------------------|----------|--|
| DEBUG_CS   | DEBUG_I2C_CLK         | DEBUG_I2C_DATA | I2C_CLK                  | I2C_DATA |  |
| "H" (VSYS) | CLK                   | DATA           | Disabled                 | Disabled |  |
| "L" (0V)   | Disabled              | Disabled       | CLK                      | DATA     |  |

Table 113: I2C Debug Port Truth Table

To enable external bus master control of DA6021 I2C interface for debug purposes, DA6021 includes an internal bus switch controlled by an I2C channel select pin (DEBUG\_CS) as shown in the figure above. When DEBUG\_CS is tied to VSYS, DA6021 directs the internal channel to external channel 0 and disables the I/O of external channel 1. When DEBUG\_CS is tied to ground, DA6021 enables communication between External Channel 1 and the internal channel, with External Channel 0 I/O disabled. The debug port supports clock frequencies in the range 400kHz - 3.4Mhz.



#### **Company Confidential**

## 24. Register Map

|                    |              |                  |                  |                  | Page 0           |                 |                    |                  |                 |
|--------------------|--------------|------------------|------------------|------------------|------------------|-----------------|--------------------|------------------|-----------------|
| Register name      | Reg<br>addr  | MSB              |                  |                  |                  |                 |                    |                  | LSB             |
| Internal           | 0x00<br>xDA  |                  | •                | •                |                  | •               |                    |                  |                 |
| SRCWAKECFG         | 0xDB         |                  |                  |                  |                  |                 | ADPWAKE<br>FN      | USBWAKEEN        | BATWAKEEN       |
| PWRSEQCFG          | 0xDC         |                  |                  |                  | USBSDPCF         | VCCAPWRO        | SUSPWRDN           | DT               | PWROK           |
| Internal registers | 0xE2<br>0xFF |                  |                  |                  | 0                | nero            | nonor o            | I                |                 |
|                    | 0AI I        |                  |                  |                  | Page 1           |                 |                    |                  |                 |
| Register name      | Reg          | MSB              |                  |                  |                  |                 |                    |                  | LSB             |
|                    | addr         |                  |                  |                  |                  |                 |                    |                  |                 |
| ProductID          | 0x00         |                  |                  |                  |                  | ProductID       |                    |                  |                 |
| IROLVL1            | 0x02         |                  | HDMI             | GPIO             | CHRG             | ADC             | BCU                | THRM             | PSDL            |
| PWRSRCIRO          | 0x03         |                  | mbiin            | 0110             | cinto            | 1.00            | BATDET             | DCDET            | VBUSDET         |
| THERMIRQ0          | 0x04         | PMICALRT1        | SYS2ALRT1        | SYS1ALRT1        | SYS0ALRT1        | PMICALRT<br>0   | SYS2ALRT0          | SYS1ALRT0        | SYS0ALRT0       |
| THERMIRQ1          | 0x05         |                  | •                | •                |                  | PMICCRIT        | SYS2CRIT           | SYS1CRIT         | SYS0CRIT        |
| THERMIRQ2          | 0x06         |                  |                  | BAT1CRIT         | BAT0CRIT         | BAT1ALRT<br>1   | BAT0ALRT<br>1      | BAT1ALRT0        | BAT0ALRT0       |
| BCUIRQ             | 0x07         |                  |                  |                  |                  | •               | VCRIT              | VWARNB           | VWARNB          |
| ADCIRQ0            | 0x08         | SYSTHERM2        | SYSTHERM1        | SYSTHERM0        | BPTHERM1         | BPTHERM0        | PMICTEMP           | BATID            | VBAT            |
| ADCIRQ1            | 0x09         |                  |                  | VSYS             | IVDDQ            | IV1P05S         | IV1P0A             | IVNN             | IVCC            |
| CHRG_IRQ           | 0x0A         |                  | 1                | 1                | T                | F               | r                  | r                | CHRG_IRG        |
| GPIO0IRQ           | 0x0B         | GPIO0P7_IR<br>Q  | GPIO0P6_IR<br>Q  | GPIO0P5_IR<br>Q  | GPIO0P4_IR<br>Q  | GPIO0P3_I<br>RQ | GPIO0P2_IR<br>Q    | GPIO0P1_IRQ      | GPIO0P0_IRQ     |
| GPI01IRQ           | 0x0C         | GPIO1P7_IR<br>Q  | GPIO1P6_IR<br>Q  | GPIO1P5_IR<br>Q  | GPIO1P4_IR<br>Q  | GPIO1P3_I<br>RQ | GPIO1P2_IR<br>Q    | GPIO1P1_IRQ      | GPIO1P0_IRQ     |
| VHDMI_IRQ          | 0x0D         |                  |                  | •                |                  | 1               | 1                  | P                | VHDMI_IRQ       |
| MIRQLVL1           | 0x0E         |                  | MHDMI            | GPIO             | CHRG             | ADC             | BCU                | THRM             | PSDL            |
| MPWRSRCIRQS0       | 0x0F         |                  |                  |                  |                  |                 | MBATDET_<br>S0     | MDCDET_S0        | MVBUSDET_S0     |
| MPWRSRCIRQSX       | 0x10         |                  | 1                | 1                | T                | F               | MBATDET            | MDCDET           | MVBUSDET        |
| MTHERMIRQ0         | 0x11         | MPMICALR<br>T1   | MSYS2ALRT<br>1   | MSYS1ALRT<br>1   | MSYS0ALRT<br>1   | MPMICAL<br>RT0  | MSYS2ALR<br>T0     | MSYS1ALRT0       | MSYS0ALRT0      |
| MTHERMIRQ1         | 0x12         |                  |                  |                  |                  | MPMICCRI<br>T   | MSYS2CRIT          | MSYS1CRIT        | MSYS0CRIT       |
| MTHERMIRQ2         | 0x13         |                  |                  | MBAT1CRIT        | MBAT0CRIT        | MBAT1AL<br>RT1  | MBAT0ALR<br>T1     | MBAT1ALRT0       | MBAT0ALRT0      |
| MBCUIRQ            | 0x14         |                  | _                | _                |                  |                 | MVCRIT             | MVWARNB          | MVWARNB         |
| MADCIRQ0           | 0x15         | SYSTHERM2        | SYSTHERM1        | SYSTHERM0        | BPTHERM1         | BPTHERM0        | PMICTEMP           | BATID            | VBAT            |
| MADCIRQ1           | 0x16         |                  |                  | VSYS             | IVDDQ            | IV1P05S         | IV1P0A             | IVNN             | IVCC            |
| MCHRG_IRQ_S0       | 0x17         |                  |                  |                  |                  |                 |                    |                  | MCHRG_IRG       |
| MCHRG_IRQ          | 0x18         | MCDIO0D7         | MCDIOOD6         | MCDIO0D5         | MCDIO0D4         | MCDIO0D2        | MCDIO0D2           | MCDIO0D1         | MCHRG_IRG       |
| MOFIOOIKQ50        | 0119         | IRO              | IRO              | IRO              | IRO              | IRO             | IRO                | IRO              | IRO             |
| MGPIO1IRQS0        | 0x1A         | MGPIO1P7_<br>IRQ | MGPIO1P6_<br>IRQ | MGPIO1P5_<br>IRQ | MGPIO1P4_<br>IRQ | MGPIO1P3        | MGPIO1P2_<br>IRQ   | MGPIO1P1_<br>IRQ | MGPIO1P0_<br>RQ |
|                    |              |                  |                  |                  |                  | IRQ             |                    |                  |                 |
| MGPIO0IRQSX        | 0x1B         | MGPIO1P7_<br>IRQ | MGPIO1P6_<br>IRQ | MGPIO1P5_<br>IRQ | MGPIO1P4_<br>IRQ | MGPIO1P3        | MGPIO1P2_<br>IRQ   | MGPIO1P1_<br>IRQ | MGPIO1P0_<br>RQ |
| MGPIO1IRQSX        | 0x1C         | MGPIO1P7_        | MGPIO1P6_        | MGPIO1P5_        | MGPIO1P4_        | MGPIO1P3        | MGPIO1P2_          | MGPIO1P1_        | MGPIO1P0_       |
|                    |              | IRQ              | IRQ              | IRQ              | IRQ              | IRQ             | IRQ                | IRQ              | RQ              |
| MVHDMI_IRQ         | 0x1D         |                  |                  |                  |                  |                 | CDATDET            | CDCDET           | MVHDMI_IRQ      |
| BEGLOCKO           | 0x1E         |                  |                  |                  |                  | LOWPATD         | 5BAIDEI<br>THEPMAI | VCRIT CEC        | SVBUSDE1        |
| REGLOCKO           | 0.20         |                  |                  | DUGUGOUD         | DUGUGUUD         | ET              | DOMOTELO           |                  | VREG            |
| RESETSRCO          | 0x20         |                  | RVBATRM          | RVSYSOVP         | KVSYSUVP         | RBATTEM<br>P    | RSYSTEMP           | RPMICTEMP        | KIHERMIRIP      |
| RESTSRC1           | 0x21         |                  |                  |                  |                  | WAREADD         | RFCO               | RIDBATRM         | RVCRIT          |
| WAKESRC            | 0x22         | DCBOOT           | 1                | LOWPATEC         |                  | WAKEADP         | WAKEUSB            | WAKEBAT          | WAKEBTN         |
| LOWBAIDEI0         | 0x23         | DCBOOL           | LOWD             | ATDCP            |                  | +               |                    | LOWBATSDD        |                 |
| PSDETCFG           | 0x24         |                  | LOWB             | DBIEN            | BATRMSRC         | BATRMDE         | BATDBEN            | VDCINDBEN        | VBUSDBEN        |
| PBCONFIG           | 0x26         | PBDI             | BCNT             | UIBTNDISA        | CLRUIBHT         | N               | 1                  | FCOT             | 1               |
| DDCTATE            | 0-27         | DD               | DT               | BLE              |                  |                 | DF                 | 11T              |                 |
| URSTATUS           | 0x27         | PB               | וחפ              | PBLVL<br>URI VI  |                  |                 | PE                 | SHT              |                 |
| ODDITIOD           | 0120         |                  |                  |                  |                  |                 | 01                 |                  |                 |

#### **Data Sheet**

#### Version 3.A - Final

#### 31-Jan-14



| Register name             | Reg            | MSB       |                           |           |          |          |          |             | LSB                  |
|---------------------------|----------------|-----------|---------------------------|-----------|----------|----------|----------|-------------|----------------------|
| MODEMCTRL                 | 0x29           |           |                           |           |          |          |          | MODEM_      | MODEM_               |
| PRCUP CEC                 | 024            |           | CURC DON                  | CUD ST    | CII      | CI       | [        | RSTSEQ      | OFF_ST               |
| BBCIIK_CFO                | 0X2A           |           | E_ST                      | CIIK_31   | CII      | 0I       |          | Chov        | CHEN                 |
| GPIO0P07_CTLO             | 0x2B.<br>.0x32 |           | ALT                       | DIR       | DRV      | PULL_EN  | PULL_LVL | PULL_DIR    | DOUT                 |
| GPIO0P07_CTLI             | 0x33           |           |                           |           | POL      | DEB      |          | IRQCFG      | DIN                  |
| GPIO1P07_CTL0             | 0x3A<br>0x3B.  |           | ALT                       | DIR       | DRV      | PULL_EN  | PULL_LVL | PULL_DIR    | DOU                  |
| GPIO1P07_CTLI             | .0x42<br>0x43  |           |                           |           | POL      | DEB      |          | IRQCFG      | DIN                  |
| PWM1CEG1                  | 0x4A<br>0x4B   | FNΔ       | 1                         |           |          | FR       | FO       |             |                      |
| PWM2CFG1                  | 0x4D<br>0x4C   | ENA       |                           |           |          | FR       | EQ       |             |                      |
| PWM3CFG1                  | 0x4D           | ENA       |                           |           |          | FR       | EQ       |             |                      |
| PWM1CFG0                  | 0x4E           |           |                           |           |          | Duty     |          |             |                      |
| PWM2CFG0                  | 0x4F           |           |                           |           |          | Duty     |          |             |                      |
| BACKLIGHT EN              | 0x50<br>0x51   |           |                           |           |          | Duty     |          |             | BACKLIGHT EN         |
| PANEL_EN                  | 0x51<br>0x52   |           |                           |           |          |          |          |             | PANEL_EN             |
| Reserved                  | 0x53           |           |                           |           |          |          |          |             |                      |
| V1P0A_CTRL                | 0x54<br>0x55   |           | V1P0A_VSEL                |           |          |          | NoS0iX   | V1P0A_SEL   | V1P0A_EN             |
| V1P0S_CTRL                | 0x56           |           |                           |           |          |          |          | V1P0S_SEL   | V1P0S_EN             |
| V1P0SX_CTRL               | 0x57           |           |                           |           |          |          |          | V1P0SX_SEL  | V1P0SX_EN            |
| VDDQ_VTT_CTRL             | 0x58           |           |                           |           |          |          |          | VDDQ_VTT    | VDDQ_VTT<br>FN       |
| V1P05S CTRL               | 0x59           |           | V1P05S VSEL               |           | V1P05SVS | SEL SOiX | NoS0iX   | V1P05S SEL  | V1P05S EN            |
| V1P8A_CTRL                | 0x5A           |           | V1P8A_VSEL                |           |          | _        | NoS0iX   | V1P8A_SEL   | V1P8A_EN             |
| V1P8U_CTRL                | 0x5B           |           |                           |           |          |          |          | V1P8U_SEL   | V1P8U_EN             |
| V1P8S_CTRL                | 0x5C           |           |                           |           |          |          |          | V1P8S_SEL   | V1P8S_EN             |
| V1P8SX_CTRL               | 0x5D           |           |                           |           |          |          | r        | V1P8SX_SEL  | V1P8SX_EN            |
| VREFDQ0_CTRL              | 0x5E           |           | VREFDQVSEL VRF            |           |          |          |          |             | VREFDQ_EN            |
| VDDQ_CTRL                 | 0x5F           |           | VDDQ_VSEL NoS0iX VDDQ_SEL |           |          |          |          |             | VDDQ_EN              |
| VIP25_CIRL<br>VIP2SX_CTRI | 0x60           |           |                           |           |          |          |          | VIP2SX SEI  | V1P2S_EN             |
| VSYSU CTRL                | 0x62           |           |                           |           |          |          |          | VSYSU SEL   | VSYSU EN             |
| VSYSSX_CTRL               | 0x63           | VSYSSX S  |                           |           |          |          |          | VSYSSX_SEL  | VSYSSX_EN            |
| VSYSS_CTRL                | 0x64           |           | VSYSS_SEL                 |           |          |          |          |             | VSYSS_EN             |
| V2P85S_CTRL               | 0x65           |           | V2P85S_VSEL V2P85S_SI     |           |          |          |          |             | V2P85S_EN            |
| V2P85SX_CTRL              | 0x66           |           |                           |           |          |          |          | V2P85SX_SEL | V2P85SX_EN           |
| V3P3A_CIRL<br>V3P3U_CTRL  | 0x67           |           | V3P3A_VSEL                |           |          |          |          | V3P3A_SEL   | V3P3A_EN<br>V3P3U_EN |
| V3P3S CTRL                | 0x69           |           |                           |           |          |          |          | V3P3S SEL   | V3P3S EN             |
| V5P0S_CTRL                | 0x6A           |           | V5P0S_VSEL                |           |          |          |          | V5P0S_SEL   | V5P0S_EN             |
| VHOST_CTRL                | 0x6B           |           |                           |           |          |          |          | VHOST_SEL   | VHOST_EN             |
| VBUS_CTRL                 | 0x6C           |           |                           |           |          |          |          | VBUS_SEL    | VBUS_EN              |
| VHDMI_CTRL                | 0x6D           |           |                           |           |          |          |          | VHDMI_SEL   | VHDMI_EN             |
| Reserved                  | 0x6E<br>0x71   |           |                           |           |          |          |          |             |                      |
| MANCONV0                  | 0x72           | SYSTHERM2 | SYSTHERM1                 | SYSTHERM0 | BPTHERM1 | BPTHERM0 | PMICTEMP | BATID       | VBAT                 |
| MANCONV1                  | 0x73           |           |                           | VSYS      | IVDDQ    | IV1P05S  | IV1P0A   | IVNN        | IVCC                 |
| SYS0_THRM_RSLH            | 0x74           |           |                           |           |          | OVETEMDO |          | SY          | STEMP0               |
| SYS0_IHRM_KSLIL           | 0x/5           |           |                           |           |          | SISTEMPO |          |             |                      |
| THRMRSLT5H                | 0x7E           |           |                           |           |          |          |          | SY          | STEMP5               |
| THRMRSLT5L                | 0x7F           |           |                           |           |          | SYSTEMP5 |          |             |                      |
| VBATRSLTH                 | 0x80           |           |                           |           |          |          |          |             | VBAT                 |
| VBATRSLTL                 | 0x81           | VBAT      |                           |           |          |          |          |             |                      |
| BATIDRSLTH                | 0x82           | BATID     |                           |           |          |          |          |             |                      |
| BATIDRSLTL                | 0x83           |           |                           |           |          | BATID    |          |             | WCC                  |
| IVCCRSLTL                 | 0x84<br>0x85   | IVCC      |                           |           |          |          |          |             |                      |
| IVNNRSLTH                 | 0x86           | IVNN      |                           |           |          |          |          |             |                      |
| IVNNRSLTL                 | 0x87           | IVNN      |                           |           |          |          |          |             |                      |
| IV1P0ARSLTH               | 0x88           | IV1P0A    |                           |           |          |          |          |             |                      |
| IV1P0ARSLTL               | 0x89           | IV1P0A    |                           |           |          |          |          |             |                      |
| IV1P05SRSLTH              | 0x8A           |           | IV1P05S                   |           |          |          |          |             |                      |
| IV IP05SRSLTL             | 0x8B           | IV1P05S   |                           |           |          |          |          |             |                      |
| IVDDQRSLTI                | 0x8D           |           |                           |           |          | IVDDO    |          | 1 1         | עעעי                 |
| THRMMONCTL0               | 0x8E           |           | SYSFRQS                   | BATFRO    | s        | SYSFRQA  |          | BATFRQA     | THRMEN               |
| THRMMONCTL1               | 0c8F           |           |                           |           | •<br>    | <u> </u> | P        | MICFRQS     | PMICFRQA             |
| TS_ENABLE                 | 0x90           |           |                           | PMICEN    | BAT1EN   | BAT0EN   | SYS2EN   | SYS1EN      | SYS0EN               |

#### **Data Sheet**

Version 3.A - Final

#### 31-Jan-14



## HIGH INTEL

#### al

| IGHLY INTE          |             |       | TED POWER MANAGEMENT IC FOR Company Confid |                         |                |                |                 |            |            |  |
|---------------------|-------------|-------|--------------------------------------------|-------------------------|----------------|----------------|-----------------|------------|------------|--|
|                     | 111 2       | 20001 | NUCLUC                                     |                         |                |                |                 |            |            |  |
| Register name       | Reg<br>addr | MSB   |                                            |                         |                |                |                 |            | LSB        |  |
| TS CRIT ENABLE      | 0x91        |       | •                                          | PMICEN                  | BAT1EN         | BAT0EN         | SYS2EN          | SYS1EN     | SYS0EN     |  |
| TS_A0_STATUS        | 0x92        |       |                                            | PMIC_A0_ST              | BAT1_A0_S<br>T | BAT0_A0_<br>ST | SYS2_A0_S<br>T  | SYS1_A0_ST | SYS0_A0_ST |  |
| TS_A1_STATUS        | 0x93        |       |                                            | PMIC_A0_ST              | BAT1_A0_S<br>T | BAT0_A0_<br>ST | SYS2_A0_S<br>T  | SYS1_A0_ST | SYS0_A0_ST |  |
| SYS0_THRMALRT0<br>H | 0x94        | A0PEN | A0EN                                       |                         | ALERT0         | _HYST          |                 | ALE        | RT0MSB     |  |
| SYS0_THRMALRT0L     | 0x95        |       |                                            |                         |                | ALERTOLSB      |                 |            |            |  |
| SYS0_THRMALRT1<br>H | 0x96        |       | A1EN                                       |                         | ALERT1         | _HYST          |                 | ALE        | RT1MSB     |  |
| SYS0_THRMALRT1L     | 0x97        |       |                                            |                         |                | ALERT1LSB      |                 |            |            |  |
| SYS0THERMCRIT       | 0x98        |       |                                            |                         |                | TCRIT          |                 |            |            |  |
| SYS1THERMAL0        | 0x99        | A0PEN | A0EN                                       |                         | ALERT0         | HYST           |                 | ALE        | RT0MSB     |  |
| SYS1THERMAL1        | 0x9A        |       |                                            |                         |                | ALERTOLSB      |                 |            |            |  |
| SYS1THERMAL2        | 0x9B        |       | A1EN                                       |                         | ALERT1         | _HYST          |                 | ALE        | RT1MSB     |  |
| SYS1THERMAL3        | 0x9C        |       |                                            |                         |                | ALERT1LSB      |                 |            |            |  |
| SYS1THERMCRIT       | 0x9D        |       |                                            |                         |                | TCRIT          |                 |            |            |  |
| SYS2THERMAL0        | 0x9E        | A0PEN | A0EN                                       |                         | ALERT0         | _HYST          |                 | ALE        | RT0MSB     |  |
| SYS2THERMAL1        | 0x9F        |       | •                                          |                         |                | ALERTOLSB      |                 |            |            |  |
| SYS2THERMAL2        | 0xA0        |       | A1EN                                       |                         | ALERT1         | _HYST          |                 | ALE        | RT1MSB     |  |
| SYS2THERMAL3        | 0xA1        |       |                                            | •                       |                | ALERT1LSB      |                 |            |            |  |
| SYS2THERMCRIT       | 0xA2        |       |                                            |                         |                | TCRIT          |                 |            |            |  |
| BAT0THERMAL0        | 0xA3        | A0PEN | A0EN                                       |                         | ALERT0         | _HYST          |                 | ALE        | RT0MSB     |  |
| BAT0THERMAL1        | 0xA4        |       | •                                          |                         |                | ALERTOLSB      |                 |            |            |  |
| BAT0THERMAL2        | 0xA5        |       | A1EN                                       |                         | ALERT1         | _HYST          |                 | ALERT1MSB  |            |  |
| BAT0THERMAL3        | 0xA6        |       |                                            |                         |                | ALERT1LSB      |                 |            |            |  |
| BAT0THERMCRITH      | 0xA7        |       |                                            |                         |                | TCRIT[8:1]     |                 |            |            |  |
| BAT0THERMCRITL      | 0xA8        |       |                                            |                         |                | TCRIT[9:2]     |                 |            |            |  |
| BAT1THERMAL0        | 0xA9        | A0PEN | A0EN                                       |                         | ALERT0         | HYST           |                 | ALE        | RT0MSB     |  |
| BAT1THERMAL1        | 0xAA        |       |                                            |                         |                | ALERTOLSB      |                 |            |            |  |
| BAT1THERMAL2        | 0xAB        |       | A1EN                                       |                         | ALERT1         | _HYST          |                 | ALE        | RT1MSB     |  |
| BAT1THERMAL3        | 0xAC        |       |                                            | ALERT1LSB               |                |                |                 |            |            |  |
| BAT1THERMCRITH      | 0xAD        |       | TCRIT                                      |                         |                |                |                 |            | CRIT       |  |
| BAT1THERMCRITL      | 0xAE        |       | TCRIT                                      |                         |                |                |                 |            |            |  |
| PMICTHERMAL0        | 0xAF        | A0PEN | A0PEN A0EN ALERT0_HYST ALERT0MSB           |                         |                |                |                 |            | RT0MSB     |  |
| PMICTHERMAL1        | 0xB0        |       | ALERTOLSB                                  |                         |                |                |                 |            |            |  |
| PMICTHERMAL2        | 0xB1        |       | A1EN                                       | ALERT1_HYST ALERT1MSB   |                |                |                 |            | RT1MSB     |  |
| PMICTHERMAL3        | 0xB2        |       |                                            |                         |                | ALERT1LSB      |                 |            |            |  |
| PMICTHERMCRIT       | 0xB3        | TCRIT |                                            |                         |                |                |                 |            |            |  |
| VWARNA_CFG          | 0xB4        |       | VWAR                                       | VARNA_DEB VWARNA_<br>FN |                |                |                 | VWARNA     |            |  |
| VWARNB_CFG          | 0xB5        |       | VWAR                                       | NB_DEB                  |                | VWARNB_<br>EN  |                 | VWARNB     |            |  |
| VCRIT_CFG           | 0xB6        |       | VCRIT_D                                    | EB                      | VCRITSDWNEN    | VCRIT_EN       |                 | VCRIT      |            |  |
| DISA_BEH            | 0xB7        |       |                                            |                         |                |                | DISA_STIC<br>KY | DISA_POL   | DISA_EN    |  |

Table 114: DA6021 Register Map

BAT1ST

PMICST

VREFDQVSEL

DISB\_STIC

KY

DISCRIT\_ST

ICKY

PROCHOT\_ BST

SVCRIT

SDISB

SYS2ST

SDISA

BAT0ST

DISB\_POL

DISCRIT\_POL

PROCHOT\_B\_VW

B\_EN

SVWARNA SCRIT

SYS1ST

VREFDQ\_SEL

DISB\_BEH

DISCRIT\_BEH

PROCHOT\_BEH

BCUTRIP\_ST

BCUOUT\_ST

TS\_CRIT\_ST

reserved

VREFDQ1\_CTRL

reserved

0xB8

0xB9

0xBA

0xBB

0xBC

0xBD

0xBE. .0xC5

0xC6

0xC7.

.0xFF

DISB\_EN

DISCRIT\_EN

PROCHOT\_B\_VWB\_E

N SVWARNB

SPROCHOT\_B

SYS0ST

VREFDQ\_EN



#### **Company Confidential**

## 25. Package Information

#### 25.1 DA6021 Package Details

#### 25.1.1 Pin Description, Pin Out

Below is the pin description list of DA6021. In the type column the following abbreviations have been used

- PS, VSS Power Supply
- DI, DO, DIO Digital Input, Output, Input/Output
- AI, AO, AIO
   Analog Input, Output, Input/Output
- OD Open-Drain Output

#### 25.1.2 Ball Order

| Ball | Name       | Туре | Description                         |
|------|------------|------|-------------------------------------|
| A1   | VSYS41     | PS   | system power supply                 |
| A2   | VSYS43     | PS   | system power supply                 |
| A3   | VNN_IN2A   | PS   | VNN buck regulator supply voltage   |
| A4   | VNN_IN2B   | PS   | VNN buck regulator supply voltage   |
| A5   | VNN_IN3A   | PS   | VNN buck regulator supply voltage   |
| A6   | VNN_IN3B   | PS   | VNN buck regulator supply voltage   |
| A7   | VNN_IN4A   | PS   | VNN buck regulator supply voltage   |
| A8   | VNN_IN4B   | PS   | VNN buck regulator supply voltage   |
| A9   | VSYS_4     | PS   | System power supply                 |
| A10  | V1P8A_INA  | PS   | V1P8A buck regulator supply voltage |
| A11  | V1P8A_INB  | PS   | V1P8A buck regulator supply voltage |
| A12  | VDDQ_IN1A  | PS   | VDDQ buck regulator supply voltage  |
| A13  | VDDQ_IN1B  | PS   | VDDQ buck regulator supply voltage  |
| A14  | VDDQ_IN2A  | PS   | VDDQ buck regulator supply voltage  |
| A15  | VDDQ_IN2B  | PS   | VDDQ buck regulator supply voltage  |
| A16  | V2P85S_INA | PS   | V2P85S buck boost supply voltage    |
| A17  | V2P85S_INB | PS   | V2P85S buck boost supply voltage    |
| A18  | V2P85S_A   | AO   | V2P85S output voltage               |
| A19  | V2P85S_B   | AO   | V2P85S output voltage               |
| A20  | VCCAPWROK  | DO   | VCCAPWROK output signal             |
| A21  | V1P2SX_IN  | AI   | V1P2SX input supply                 |
| A22  | V2P85SX_IN | PS   | V2P85SX input supply                |
| A23  | V1P2S      | AO   | V1P2S output voltage                |
| A24  | VSYS33     | PS   | system power supply                 |
| A25  | VSYS32     | PS   | system power supply                 |
| B1   | VSYS42     | PS   | system power supply                 |
| B2   | VNN_LX2A   | AO   | VNN buck LX node phase 2            |
| B3   | VNN_LX2B   | AO   | VNN buck LX node phase 2            |

#### **Data Sheet**

## **DA6021**



**Company Confidential** 

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| B4  | VNN_LX3A    | AO  | VNN buck LX node phase 3          |
|-----|-------------|-----|-----------------------------------|
| B5  | VNN_LX3B    | AO  | VNN buck LX node phase 3          |
| B6  | VNN_LX4A    | AO  | VNN buck LX node phase 4          |
| B7  | VNN_LX4B    | AO  | VNN buck LX node phase 4          |
| B8  | DGND1       | VSS | Ground                            |
| B9  | V1P8S_IN    | AI  | V1P8S input supply                |
| B10 | V1P8A_LXA   | AO  | V1P8A buck LX node                |
| B11 | V1P8A_LXB   | AO  | V1P8A buck LX node                |
| B12 | VDDQ_LX1A   | AO  | VDDQ buck LX node phase 1         |
| B13 | VDDQ_LX1B   | AO  | VDDQ buck LX node phase 1         |
| B14 | VDDQ_LX2A   | AO  | VDDQ buck LX node phase 2         |
| B15 | VDDQ_LX2B   | AO  | VDDQ buck LX node phase 2         |
| B16 | V2P85S_LX1A | AO  | buck boost V2P85S LX node 1       |
| B17 | V2P85S_LX1B | AO  | buck boost V2P85S LX node 1       |
| B18 | V2P85S_LX2A | AO  | buck boost V2P85S LX node 2       |
| B19 | V2P85S_LX2B | AO  | buck boost V2P85S LX node 2       |
| B20 | DGND11      | VSS | Ground                            |
| B21 | V1P2SX      | AO  | V1P2SX output voltage             |
| B22 | V2P85SX     | AO  | V2P85SX output voltage            |
| B23 | DGND12      | VSS | Ground                            |
| B24 | DGND13      | VSS | Ground                            |
| B25 | VSYS31      | PS  | system power supply               |
| C1  | VNN_IN1B    | PS  | VNN buck regulator supply voltage |
| C2  | VNN_LX1B    | AO  | VNN buck LX node phase 1          |
| C3  | VNN_GND1A   | VSS | Ground                            |
| C4  | VNN_GND2A   | VSS | Ground                            |
| C5  | VNN_GND3A   | VSS | Ground                            |
| C6  | VNN_GND4A   | VSS | Ground                            |
| C7  | DGND3       | VSS | Ground                            |
| C8  | DGND4       | VSS | Ground                            |
| C9  | V1P8S       | AO  | V1P8S output voltage              |
| C10 | V1P8A_GNDA  | VSS | Ground                            |
| C11 | V1P8A_GNDB  | VSS | Ground                            |
| C12 | VDDQ_GND1A  | VSS | Ground                            |
| C13 | VDDQ_GND1B  | VSS | Ground                            |
| C14 | VDDQ_GND2A  | VSS | Ground                            |
| C15 | VDDQ_GND2B  | VSS | Ground                            |
| C16 | V2P85S_GNDA | VSS | Ground                            |
| C17 | V2P85S_GNDB | VSS | Ground                            |
| C18 | IRQ         | DO  | interrupt output signal           |
| C19 | PWM1        | AO  | PWM1 output signal                |
| C20 | PWM0        | AO  | PWM0 output signal                |
| C21 | PWM2        | AO  | PWM2 output signal                |
| C22 | PWM_GND     | VSS | Ground                            |

#### **Data Sheet**

## DA6021

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| C23 | V3P3A_GNDA       | VSS  | Ground                                |
|-----|------------------|------|---------------------------------------|
| C24 | V3P3A_LX1A       | AO   | buck boost V3P3A LX node 1            |
| C25 | V3P3A_INC        | PS   | V3P3A buck boost supply voltage       |
| D1  | VNN_IN1A         | PS   | VNN buck regulator supply voltage     |
| D2  | VNN_LX1A         | AO   | VNN buck LX node phase 1              |
| D3  | VNN_GND1B        | PS   | Ground                                |
| D4  | VNN_GND2B        | PS   | Ground                                |
| D5  | VNN_GND3B        | PS   | Ground                                |
| D6  | VNN_GND4B        | PS   | Ground                                |
| D7  | GPIO0_VDD        | VSS  | Ground                                |
| D8  | V1P2A            | AO   | V1P2A output voltage                  |
| D9  | V1P8SX           | AO   | V1P8SX output voltage                 |
| D10 | V1P8U_FB         | AI   | V1P8U sense line                      |
| D11 | V1P8U_EN_B       | AO   | V1P8U external FET control            |
| D12 | V1P8A_FBP        | AI   | buck V1P8A sense line positive        |
| D13 | V1P8A_FBN        | AI   | buck V1P8A sense line negative        |
| D14 | VDDQ_FBP         | AI   | buck VDDQ sense line positive         |
| D15 | VDDQ_FBN         | AI   | buck VDDQ sense line negative         |
| D16 | V2P85S_FBN       | AI   | buck boost V2P85S sense line positive |
| D17 | V2P85S_FBP       | AI   | buck boost V2P85S sense line negative |
| D18 | CHGDET_B         | DI   | USB charger detection input signal    |
| D19 | VHOST_EN         | DO   | VHOST enable signal                   |
| D20 | VBUS_EN          | DO   | VBUS enable output signal             |
| D21 | PWM_VDD          | AI   | PWM input supply                      |
| D22 | V3P3A_FBN        | AI   | buck boost V3P3A sense line negative  |
| D23 | V3P3A_GNDB       | VSS  | Ground                                |
| D24 | V3P3A_LX1B       | AO   | buck boost V3P3A LX node 1            |
| D25 | V3P3A_INB        | PS   | V3P3A buck boost supply voltage       |
| E1  | DGND14           | VSS  | Ground                                |
| E2  | DGND15           | VSS  | Ground                                |
| E3  | GPIO0_GND        | VSS  | Ground                                |
| E4  | VNN_FBP          | AI   | buck VNN sense line positive          |
| E5  | GPIO0P4          | ADIO | low voltage GPIO 4                    |
| E6  | GPIO0P3          | ADIO | low voltage GPIO 3                    |
| E7  | GPIO0P2          | ADIO | low voltage GPIO 2                    |
| E8  | GPIO0P1_BATIDOUT | ADIO | low voltage GPIO 1                    |
| E9  | GPIO0P0_BATIDIN  | ADIO | low voltage GPIO 0                    |
| E10 | SUSPWRDNACK      | DI   | SUSPWRDNACK input signal              |
| E11 | SLP_S4_B         | DI   | SLP_S4_B input signal                 |
| E12 | SLP_S0IX_B       | DI   | SLP_S0iX_B input signal               |
| E13 | SLP_S3_B         | DI   | SLP_S3_B input signal                 |
| E14 | SDMMC3_PWR_EN_B  | DI   | SDMMC-card power enable               |
| E15 | SDMMC3_1P8_EN    | DI   | SDMMC-card power select               |
| E16 | PWRBTN_B         | DO   | Power button signal towards SoC       |

#### **Data Sheet**

#### Version 3.A - Final





## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| E17 | PLTRST_B           | DI   | platform reset signal                      |
|-----|--------------------|------|--------------------------------------------|
| E18 | DRAMPWROK          | DO   | DRAMPWROK output signal                    |
| E19 | MODEM_OFF_B        | DO   | Modem off output signal                    |
| E20 | CHGRINT_B          |      | Interrupt input signal of external charger |
| E21 | THERMTRIP_B        |      | THERMTRIP_B output signal                  |
| E22 | V3P3A_FBP          | AI   | buck boost V3P3A sense line positive       |
| E23 | V3P3A_GNDC         | VSS  | Ground                                     |
| E24 | V3P3A_LX1C         | AO   | buck boost V3P3A LX node 1                 |
| E25 | V3P3A_INA          | PS   | V3P3A buck boost supply voltage            |
| F1  | SVID_DIO           | DIO  | SVID data signal                           |
| F2  | I2C_DATA           | DIO  | I2C data signal                            |
| F3  | DEBUG_SVID_DIO     | DIO  | debug SVID data signal                     |
| F4  | GPIO0P7            | ADIO | low voltage GPIO 7                         |
| F5  | GPIO0P5            | ADIO | low voltage GPIO 5                         |
| F6  | DGND18             | VSS  | Ground                                     |
| F7  | DGND19             | VSS  | Ground                                     |
| F8  | DGND20             | VSS  | Ground                                     |
| F9  | DGND21             | VSS  | Ground                                     |
| F10 | DGND22             | VSS  | Ground                                     |
| F11 | DGND23             | VSS  | Ground                                     |
| F12 | DGND24             | VSS  | Ground                                     |
| F13 | DGND25             | VSS  | Ground                                     |
| F14 | DGND26             | VSS  | Ground                                     |
| F15 | DGND27             | VSS  | Ground                                     |
| F16 | DGND28             | VSS  | Ground                                     |
| F17 | DGND29             | VSS  | Ground                                     |
| F18 | DGND30             | VSS  | Ground                                     |
| F19 | DGND31             | VSS  | Ground                                     |
| F20 | DGND32             | VSS  | Ground                                     |
| F21 | DGND33             | VSS  | Ground                                     |
| F22 | V3P3S_FB           | AI   | V3P3S sense signal                         |
| F23 | DGND8              | VSS  | Ground                                     |
| F24 | V3P3A_LX2A         | AO   | buck boost V3P3A LX node 2                 |
| F25 | V3P3A_C            | AO   | buck boost V3P3A output voltage            |
| G1  | SVID_CLK           | DI   | SVID clock signal                          |
| G2  | I2C_CLK            | DI   | I2C clock signal                           |
| G3  | DEBUG_SVID_CLK     | DI   | debug SVID clock signal                    |
| G4  | DEBUG_SVID_ALERT_B | DO   | debug SVID alert signal                    |
| G5  | GPIO0P6            | ADIO | low voltage GPIO 6                         |
| G6  | DGND35             | VSS  | Ground                                     |
| G7  | DGND36             | VSS  | Ground                                     |
| G8  | DGND37             | VSS  | Ground                                     |
| G9  | DGND38             | VSS  | Ground                                     |
| G10 | DGND39             | VSS  | Ground                                     |

**Data Sheet** 

## DA6021

## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| G11 | DGND40         | VSS  | Ground                            |
|-----|----------------|------|-----------------------------------|
| G12 | DGND41         | VSS  | Ground                            |
| G13 | DGND42         | VSS  | Ground                            |
| G14 | DGND43         | VSS  | Ground                            |
| G15 | DGND44         | VSS  | Ground                            |
| G16 | DGND45         | VSS  | Ground                            |
| G17 | DGND46         | VSS  | Ground                            |
| G18 | DGND47         | VSS  | Ground                            |
| G19 | DGND48         | VSS  | Ground                            |
| G20 | DGND49         | VSS  | Ground                            |
| G21 | VREFDQ1        | AO   | VREFDQ1 output voltage            |
| G22 | V3P3S_EN_B     | AO   | V3P3S external FET control signal |
| G23 | DGND9          | VSS  | Ground                            |
| G24 | V3P3A_LX2B     | AO   | buck boost V3P3A LX node 2        |
| G25 | V3P3A_B        | AO   | buck boost V3P3A output voltage   |
| H1  | SVID_ALERT_B   | DO   | SVID alert signal                 |
| H2  | DEBUG_CS       | DI   | debug interface selection signal  |
| H3  | DEBUG_I2C_CLK  | DI   | debug I2C clock signal            |
| H4  | DEBUG_I2C_DATA | DIO  | debug I2C data signal             |
| H5  | GPIO1P6        | ADIO | high voltage GPIO 6               |
| H6  | DGND51         | VSS  | Ground                            |
| H7  | DGND52         | VSS  | Ground                            |
| H8  | DGND53         | VSS  | Ground                            |
| H9  | DGND54         | VSS  | Ground                            |
| H10 | DGND55         | VSS  | Ground                            |
| H11 | DGND56         | VSS  | Ground                            |
| H12 | DGND57         | VSS  | Ground                            |
| H13 | DGND58         | VSS  | Ground                            |
| H14 | DGND59         | VSS  | Ground                            |
| H15 | DGND60         | VSS  | Ground                            |
| H16 | DGND61         | VSS  | Ground                            |
| H17 | DGND62         | VSS  | Ground                            |
| H18 | DGND63         | VSS  | Ground                            |
| H19 | DGND64         | VSS  | Ground                            |
| H20 | DGND65         | VSS  | Ground                            |
| H21 | VREFDQ0        | AO   | VREFDQ0 output voltage            |
| H22 | V3P3U_FB       | AI   |                                   |
| H23 | DGND10         | VSS  | Ground                            |
| H24 | V3P3A_LX2C     | AO   | buck boost V3P3A LX node 2        |
| H25 | V3P3A_A        | AO   | buck boost V3P3A output voltage   |
| J1  | DGND16         | VSS  | Ground                            |
| J2  | DGND17         | VSS  | Ground                            |
| J3  | VCC_GND1A      | VSS  | Ground                            |
| J4  | GPIO1P7        | ADIO | high voltage GPIO 7               |

#### **Data Sheet**

#### Version 3.A - Final



| J5  | GPIO1P5         | ADIO | high voltage GPIO 5                           |
|-----|-----------------|------|-----------------------------------------------|
| J6  | GPIO1P4         | ADIO | high voltage GPIO 4                           |
| J7  | GPIO1P3         | ADIO | high voltage GPIO 3                           |
| J8  | GPIO1P2         | ADIO | high voltage GPIO 2                           |
| J9  | GPIO1P1         | ADIO | high voltage GPIO 1                           |
| J10 | GPIO1P0_UIBTN_B | ADIO | high voltage GPIO 0                           |
| J11 | PROCHOT_B       | DO   | DA6021 high temperature indication            |
| J12 | VREFT           | AO   | Reference thermistor output voltage           |
| J13 | VREFB           | AO   | Reference voltage battery ID measurement      |
| J14 | PWRBTNIN_B      | AI   | power detection input signal                  |
| J15 | VDCIN_SENSE     | AI   | DC input voltage detection                    |
| J16 | ILIM1           | DO   | charger current control signal 1              |
| J17 | ILIMO           | DO   | charger current control signal 0              |
| J18 | ULPI_VBUS_EN    | DI   | Input signal controlling VBUS_EN signal       |
| J19 | RTC_POR         |      | RTC power on reset indication                 |
| J20 | RSMRST_B        | DO   | Resume reset output signal                    |
| J21 | COREPWROK       | DO   | COREPWROK output signal                       |
| J22 | V3P3U_EN_B      | AO   | V3P3U external FET control signal             |
| J23 | V1P8A           | AO   | V1P8A output supply                           |
| J24 | BACKLIGHT_EN    | DO   | backlight enable signal                       |
| J25 | VSDIO_VIN       | AI   | VSDIO input power                             |
| K1  | VCC_IN1A        | PS   | VCC buck regulator supply voltage             |
| K2  | VCC_LX1A        | AO   | VCC buck LX node phase 1                      |
| K3  | VCC_GND1B       | VSS  | Ground                                        |
| K4  | VCC_FBN         | AI   | VCC buck sense line negative                  |
| K5  | VCC_FBP         | AI   | VCC buck sense line positive                  |
| K6  | GPIO1_GND       | VSS  | Ground                                        |
| K7  | GPIO1_VDD       | ADIO | high voltage GPIO input supply                |
| K8  | V1P05S_FBN      | AI   | V1P05S buck sense line negative               |
| K9  | V1P05S_FBP      | AI   | V1P05S buck sense line positive               |
| K10 | VDDQ_VTT_R      | AO   | VDDQ_VTT reference output voltage             |
| K11 | VLP             | AO   | low power regulator output voltage            |
| K12 | SYSTHERM0       | AI   | system thermistor 0 input                     |
| K13 | VBUS_SENSE      | AI   | VBUS_SENSE input voltage detection            |
| K14 | SYSTHERM2       | AI   | system thermistor 2 input                     |
| K15 | BPTHERM0        | AI   | battery pack 0 thermistor input               |
| K16 | BPTHERM1        | AI   | battery pack 1 thermistor input               |
| K17 | V5P0S_FBN       | AI   | V5P0S buck boost sense line negative          |
| K18 | V5P0S_FBP       | AI   | V5P0S buck boost sense line positive          |
| K19 | V1P0A_FBN       | AI   | V1P0A buck sense line negative                |
| K20 | V1P0A_FBP       | AI   | V1P0A buck sense line positive                |
| K21 | BATLOW_B        | DO   | Low battery detection output signal           |
| K22 | ACPRESENT       | AI   | Indication of availability of external supply |
| K23 | PANEL_EN        | DO   | LCD panel enable signal                       |

#### **Data Sheet**

Version 3.A - Final





## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR Company Confidential

INTEL® ATOM™ Z3000 PROCESSOR

| K24 | VUSBPHY      | AO  | VUSBPHY output voltage             |
|-----|--------------|-----|------------------------------------|
| K25 | VSDIO        | AO  | VSDIO output voltage               |
| L1  | VCC_IN1B     | PS  | VCC buck regulator supply voltage  |
| L2  | VCC_LX1B     | AO  | VCC buck LX node phase 1           |
| L3  | VCC_GND2A    | VSS | Ground                             |
| L4  | VCC_GND2B    | VSS | Ground                             |
| L5  | VCC_GND3A    | VSS | Ground                             |
| L6  | VCC_GND3B    | VSS | Ground                             |
| L7  | VCC_GND4A    | VSS | Ground                             |
| L8  | VCC_GND4B    | VSS | Ground                             |
| L9  | V1P05S_GND   | VSS | Ground                             |
| L10 | VDDQ_VTT_GND | VSS | Ground                             |
| L11 | VLP_GND      | VSS | Ground                             |
| L12 | SYSTHERM1    | AI  | system thermistor 1 input          |
| L13 | V1P0SX_FB    | AI  | V1P0SX sense line                  |
| L14 | VBAT_SENSE   | AI  | battery voltage sense input signal |
| L15 | VREF0P9      | AO  | 0.9V reference output voltage      |
| L16 | VHDMI        | AO  | VHDMI output voltage               |
| L17 | V5P0S_GNDA   | VSS | Ground                             |
| L18 | V5P0S_GNDB   | VSS | Ground                             |
| L19 | V1P0A_GNDA   | VSS | Ground                             |
| L20 | V1P0A_GNDB   | VSS | Ground                             |
| L21 | BATID        | DIO | battery ID port                    |
| L22 | VSYSU_FB     | AI  | VSYSU sense line                   |
| L23 | VSYS_SX_FB   | AI  | VSYS_SX sense line                 |
| L24 | VSYSU_EN_B   | AO  | VSYSU external FET control line    |
| L25 | VSYS_SX_EN_B | AO  | VSYS_SX external FET control line  |
| M1  | VSYS11       | PS  | system power supply                |
| M2  | VSYS13       | PS  | system power supply                |
| M3  | VCC_LX2A     | AO  | VCC buck LX node phase 2           |
| M4  | VCC_LX2B     | AO  | VCC buck LX node phase 2           |
| M5  | VCC_LX3A     | AO  | VCC buck LX node phase 3           |
| M6  | VCC_LX3B     | AO  | VCC buck LX node phase 3           |
| M7  | VCC_LX4A     | AO  | VCC buck LX node phase 4           |
| M8  | VCC_LX4B     | AO  | VCC buck LX node phase 4           |
| M9  | V1P05S_LX    | AO  | buck V1P05S LX node                |
| M10 | VSYS_3       | PS  | system power supply                |
| M11 | VDDQ_VTT     | AO  | VDDQ_VTT output voltage            |
| M12 | VSYS_2       | PS  | system power supply                |
| M13 | V1P0S_FB     | AI  | V1P0S sense line                   |
| M14 | V1P0SX_EN    | AO  | V1P0SX external FET control line   |
| M15 | VREF12_GND   | VSS | Ground                             |
| M16 | PMICTEST     | DI  | test signal                        |
| M17 | V5P0S_LXA    | AO  | V5P0S buck boost LX node 1         |

#### **Data Sheet**
# **DA6021**

M18 M19 M20 M21 M22 M23 M24 M25 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22



**Company Confidential** 

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| V5P0S_LXB   | AO | V5P0S buck boost LX node 1        |
|-------------|----|-----------------------------------|
| V1P0A_LXA   | AO | V5P0S buck boost LX node 2        |
| V1P0A_LXB   | AO | V5P0S buck boost LX node 2        |
| SDWN_B      | DO | Shut down warning output signal   |
| BCUDISA     | DO | system voltage in warning zone A  |
| I2CM_SCL    | DO | EEPROM clock signal               |
| VBATBKUP    |    | coin cell battery supply          |
| VSYS23      | PS | system power supply               |
| VSYS12      | PS | system power supply               |
| VSYS14      | PS | system power supply               |
| VCC_IN2A    | PS | VCC buck regulator supply voltage |
| VCC_IN2B    | PS | VCC buck regulator supply voltage |
| VCC_IN3A    | PS | VCC buck regulator supply voltage |
| VCC_IN3B    | PS | VCC buck regulator supply voltage |
| VCC_IN4A    | PS | VCC buck regulator supply voltage |
| VCC_IN4B    | PS | VCC buck regulator supply voltage |
| V1P05S_IN   | PS | buck V1P05S input supply          |
| VSYS_S      | PS | system power supply               |
| VDDQ_VTT_IN | AI | VDDQ_VTT input supply             |
| VSYS_1      | PS | system power supply               |
| V1P0S_EN    | AO | V1P0S external FET control signal |
| IREF12      |    | bandgap current reference output  |
| VREF12      | AO | bandgap voltage reference output  |
| VHDMI_IN    | AI | VHDMI supply voltage              |
| V5P0S_A     | AO | V5P0S buck boost output voltage   |
| V5P0S_B     | AO | V5P0S buck boost output voltage   |
| V1P0A_INA   | PS | buck V1P0A input supply           |
| V1P0A_INB   | PS | buck V1P0A input supply           |
| BCUDISB     | DO | system voltage in warning zone B  |
| BCUDISCRIT  | DO | system voltage in critical range  |

Table 115: DA6021 Ball Order

EEPROM data signal

system power supply

system power supply

DI

PS

PS

N23

N24

N25

I2CM SDA

VSYS21

VSYS22

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 25.2 DA6021 325 Pin FCBGA Package

Map of ball allocations as seen from above the package.

| 25 | V SYS32       | VSYS31       | V3P3A_INC        | V3P3A_INB      | V3P3A_INA       | V3P3A_C        | V3P3A_B                | V3P3A_A            | VIN_0ID2V       | VSDIO       | VSYS_SX_E<br>N_B | VSYS23      | VSYS22         |
|----|---------------|--------------|------------------|----------------|-----------------|----------------|------------------------|--------------------|-----------------|-------------|------------------|-------------|----------------|
| 24 | NSYS 33       | DGND13       | V3P3A_LX1<br>A   | V3P3A_LX1<br>B | V3P3A_LX1<br>C  | V3P3A_LX2<br>A | V3P3A_LX2<br>B         | V3P3A_LX2<br>C     | BACKLIGHT<br>EN | VUSBPHY     | VSYS_U_EN<br>_B  | VBATBKUP    | VSYS 21        |
| 23 | V1P2S         | DGND12       | V3P3A_GN<br>DA   | V3P3A_GN<br>DB | V3P3A_GN<br>DC  | DGND8          | DGND9                  | DGND10             | V1P8A           | PANEL_EN    | VSYS_SX_FB       | I2CM_CLK    | I2CM_DAT<br>A  |
| z  | V 2P 855X_IN  | V 2P855X     | PWM_GND          | V3P3A_FBN      | V3P3A_FBP       | V3P35_FB       | V3P35_EN               | V3P3U_FB           | V3P3U_EN_<br>B  | ACPRESEN    | VSYS_U_FB        | BCUDISA     | BCUDISCRI<br>T |
| 21 | V1P2SX_IN     | V1P2SX       | PWM2             | DUM_VDD        | THERMTRI<br>P_B | DGND33         | VREFDQ1                | VREFDQ0            | CORE PWRO<br>K  | BATLOW_B    | BATID            | SDWN_B      | BCUDISB        |
| 20 | VCCAPWRO<br>K | DGND11       | PW M0            | VBUS_EN        | CHGRINT_B       | DGND32         | DGND49                 | DGND65             | RSMRST_B        | VIPOA_FBP   | V1P0A_GND<br>B   | VIPOA_LXB   | VIPOA_INB      |
| 19 | V 2P855_B     | /2P855_LX2B  | PWM1             | VHOST_EN       | ADDEM_OF<br>F_B | DGND31         | DGND48                 | DGND64             | RTC_POR         | VIPOA_FBN   | 'IPOA_GNDA       | V1P0A_LXA   | V1P0A_INA      |
| 18 | V 2P855_A     | 2P855_LX2A   | ß                | CHGDET_B       | RAMPWRO I<br>K  | DEUD30         | DGND47                 | DGND63             | LPI_VBUS_<br>EN | V5 POS_FBP  | SPOS_GNDB        | V5 POS_LXB  | V5P0S_B        |
| 17 | 2P855_INB     | 2P855_LX1B V | 2P855_GND<br>B   | 2P855_FBP 0    | PLTRST_B        | DGND29         | DGND46                 | DGND62             | ILIMO           | /5P05_FBN   | 5P05_GNDA V      | VSPOS_LXA   | V5P05_A        |
| 16 | 2P855_INA V   | 2P855_LX1A V | 2P855_GND V<br>A | 2P855_FBN V    | WRBTN_B         | DGN D28        | DGN D45                | DGN D61            | ILIM1           | PTHERM1     | MDHV             | MICTEST     | NI_IMOH/       |
| 15 | DDQ_IN2B V    | DDQ_LX2B_V   | DDQ_GND2_V       | DDQ_FBN V      | MMC3_1P8        | DGND27         | DGND44                 | DGND60             | DCIN_SENS<br>E  | PTHERM0 B   | V RE FOP9        | REF12_GND   | VREF12         |
| 14 | DDQ_IN2A V    | DDQ_LX2A     | DDQ_GND2_V       | 0DQ_FBP        | R_EN_B          | DGND26         | DGND43                 | DGND59             |                 | STHERM2 B   | AT_SENSE         | 'IPOSX_EN V | IREF12         |
| 13 | DDQ_IN1B V    | DDQ_LX1B V   | DDQ_GND1_V<br>B  | 1P84_FBN       | SLP_S3_B        | DGND25         | DGND42                 | DGND58             | VREFB           | BUS_SENSE S | /1POSX_FB VI     | V1P05_FB    | V1POS_EN       |
| 12 |               |              | DDQ_GND1 V<br>A  | /1P8A_FBP      | SUP_SOIX_B      | DGN D24        | DGN D41                | DGN D57            | VREFT           | YSTHERMO VI | YSTHERM1         | VSYS_2      | VSYS_1         |
| 11 | V1P8A_INB     | V1P8A_LXB    | TP84_GNDB        | /1P8U_EN_B     | SLP_S4_B        | DGN D23        | DGN D40                | DGN D56            | PROCHOT_B       | dly         | VLP_GND          | VDDQ_VTT    | DDQ_VTT_IN     |
| 10 | V1P84_INA     | V1P8A_LXA    | 1P84_GNDA        | V1P8U_FB       | SUSPWRDNA<br>CK | DGND22         | DGND39                 | DGND55             | BTN_B           | /DDQ_VTT_R  |                  | vsvs_3      | vsys_s v       |
| 6  | VSYS_4        | V1P85_IN     | V1P85            | V1P8SX         | SPIO0P0_BA      | DGND21         | DGND38                 | DGND54             | GPI01P1         | V1P055_FBP  | V1P055_GND       | V1P055_LX   | V1P055_IN      |
| 8  | VNN_IN4B      | DGN D1       | DGN D4           | V1P2A          | TIDOUT_BA       | DGND20         | DGND37                 | DGND53             | GPI01P2         | V1P055_FBN  | VCC_GND4B        | VCC_LX4B    | VCC_IN4B       |
| 7  | VNN_IN4A      | VNN_LX4B     | DGN D3           | GPIO0_VDD      | GPI00P2         | DGN D19        | DGN D36                | DGN D52            | GPI01P3         | GPI01_VDD   | VCC_GN D4A       | VCC_LX4A    | VCC_IN4A       |
| 9  | VNN_IN3B      | VNN_LX4A     | VNN_GND4A        | VNN_GND4B      | GPI00P3         | DGND18         | DGND35                 | DGND51             | GPI01P4         | GPI01_GND   | VCC_GND3B        | VCC_LX3B    | VCC_IN 3B      |
| S  | VNN_IN3A      | VNN_LX3B     | /NN_GND3A        | /NN_GND3B      | GPI00P4         | GPIO0P5        | GPI00P6                | GPI01P6            | GPI01P5         | VCC_FBP     | VCC_GND3A        | VCC_LX3A    | VCC_IN3A       |
| 4  | VNN_IN2B      | VNN_LX3A     | /NN_GND2A        | /NN_GND2B      | VNN_FBP         | GPIO0P7        | DEBUG_SVID<br>_ALERT_B | DEBUG_I2C_D<br>ATA | GPI01P7         | VCC_FBN     | VCC_GND2B        | VCC_LX2B    | VCC_IN2B       |
| в  | VNN_IN2A      | VNN_LX2B     | VNN_GND1A        | VNN_GND1B      | GPIO0_GND       | DEBUG_SVID     |                        | DEBUG_I2C_C        | VCC_GND1A       | VCC_GND1B   | VCC_GND2A        | VCC_LX2A    | VCC_IN2A       |
| 2  | VSYS43        | VNN_LX2A     | VNN_LX1B         | VNN_LX1A       | DGN D15         | I2C_DATA       | 12C_CLK                | DEBUG_CS           | DGN D17         | VCC_LX1A    | VCC_LX1B         | VSYS13      | VSYS14         |
| 1  | VSYS41        | VSY S42      | VNN_INIB         | VNN_NNA        | DGND14          | SVID_DIO       | SVID_CLK               | SVID_ALERT_B       | DGND16          | VCC_IN 1A   | VCC_IN1B         | VSYS11      | VSYS12         |
|    | ۲             | 8            | U                | ٥              | ш               |                | U                      | т                  | _               | ¥           | _                | Σ           | z              |

**Data Sheet** 



## HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

# 25.3 Component Marking

Every component will be marked according to the following:

- Product code DA6021, as referred to in the relevant purchase order.
- Dialog logo.
- Date of manufacture, in a four digit code of the form WWYY (e.g. 3504) or other codes as agreed upon.
- An identification index on the case to identify pin one.

# 25.4 Package Outline





# DA6021

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

| <b>C</b>   | Dimen    | sion i | n mm  | Dimension in inch |       |       |  |  |  |
|------------|----------|--------|-------|-------------------|-------|-------|--|--|--|
| Symbol     | MIN      | NOM    | MAX   | MIN               | NOM   | MAX   |  |  |  |
| Α          | 0.89     | 0.99   | 1.09  | 0.035             | 0.039 | 0.043 |  |  |  |
| A1         | 0.11     | 0.16   | 0.21  | 0.004             | 0.006 | 0.008 |  |  |  |
| A2         | 0.78     | 0.83   | 0.88  | 0.031             | 0.033 | 0.035 |  |  |  |
| c 0.27 0   |          | 0.30   | 0.33  | 0.011             | 0.012 | 0.013 |  |  |  |
| D          | 10.93    | 11.00  | 11.07 | 0.430             | 0.433 | 0.436 |  |  |  |
| E          | 5.93     | 6.00   | 6.07  | 0.233             | 0.236 | 0.239 |  |  |  |
| D1         |          | 9.60   |       |                   | 0.378 |       |  |  |  |
| E1         |          | 4.80   |       |                   | 0.189 |       |  |  |  |
| D2         |          | 9.60   |       |                   | 0.378 |       |  |  |  |
| <b>E</b> 2 | 2 3.82   |        |       |                   | 0.150 |       |  |  |  |
| е          | 0.40     |        |       |                   | 0.016 |       |  |  |  |
| Ь          | 0.20     | 0.25   | 0.30  | 0.008             | 0.010 | 0.012 |  |  |  |
| aaa        |          | 0.07   |       | 0.003             |       |       |  |  |  |
| bbb        |          | 0.10   | 0.004 |                   |       |       |  |  |  |
| ddd        |          | 0.08   | 0.003 |                   |       |       |  |  |  |
| eee        |          | 0.10   | 0.004 |                   |       |       |  |  |  |
| fff        | fff 0.05 |        |       |                   |       | 0.002 |  |  |  |
| MD/ME      |          | 25/13  |       | 25/13             |       |       |  |  |  |

Figure 76: Package Outline Drawing and Dimensions

# 25.5 Soldering Profile

A PCBA reflow profile depends on the thermal mass of the entire populated board. The actual temperature used in the reflow oven is a function of:

- Solder paste types
- Board density
- Component location
- Component mass
- Board finish

Referring to IPC/JEDEC J-STD-20D.a the figure and table below show the recommended reflow profile condition for 3Sn/37Pb and lead free solder.



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

### **Company Confidential**

| $T_{p}$ $T_{p}$ $T_{r}$ $T_{r$ | T <sub>c</sub> - T <sub>c</sub> - 5°C<br>- T <sub>c</sub> - 5°C |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Profile Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pb-Free Assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| <b>Preheat/Soak</b><br>Temperature Min (T <sub>smin</sub> )<br>Temperature Max (T <sub>smax</sub> )<br>Time (t <sub>s</sub> ) from (T <sub>smin</sub> to T <sub>smax</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150 °C<br>200 °C<br>60-120 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Ramp-up rate ( $T_L$ to $T_p$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 °C/second max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Liquidous temperature (T <sub>L</sub> )<br>Time (t <sub>L</sub> ) maintained above T <sub>L</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 217 °C<br>60-150 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Peak package body temperature (T <sub>p</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For users T <sub>p</sub> must not exceed the<br>Classification temp in Table 4-2.<br>For suppliers T <sub>p</sub> must equal or exceed<br>the Classification temp in Table 4-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Time $(t_p)^*$ within 5 °C of the specified classification temperature $(T_c)$ , see Figure 5-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30* seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Ramp-down rate $(T_p \text{ to } T_L)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 °C/second max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

Table 116: Soldering Profile

# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR



**Company Confidential** 

# Appendix A: BOM

| Voltage rail  | # | Value  | Tol  | Min Voltage | Rmax | Package | Comment                           |
|---------------|---|--------|------|-------------|------|---------|-----------------------------------|
| VCC           | 4 | 4.7µF  | ±20% | 10V         |      | 0603    | Supply voltage filter capacitors  |
|               | 6 | 47µF   | ±20% | 2.5V        |      | 0805    | Output stabilization capacitors   |
|               | 4 | 0.47µH | ±30% |             | 38mΩ | 1008    | e.g. Taiyo Yuden MAMK2520TR47M    |
| VNN           | 4 | 4.7µF  | ±20% | 10V         |      | 0603    | Supply voltage filter capacitors  |
|               | 3 | 47µF   | ±20% | 2.5V        |      | 0805    | Output stabilization capacitors   |
|               | 4 | 0.47µH | ±30% |             | 38mΩ | 1008    | e.g. MAMK2520TR47M                |
| V1P0A         | 1 | 4.7µF  | ±20% | 10V         |      | 0603    | Supply voltage filter capacitors  |
|               | 2 | 47µF   | ±20% | 2.5V        |      | 0805    | Output stabilization capacitors   |
|               | 1 | 0.47µH | ±30% |             | 38mΩ | 1008    | e.g. MAMK2520TR47M                |
| V1P05S        | 1 | 4.7µF  | ±20% | 10V         |      | 0603    | Supply voltage filter capacitor   |
|               | 1 | 47µF   | ±20% | 2.5V        |      | 0805    | Output stabilization capacitors   |
|               | 1 | 0.47µH | ±30% |             | 38mΩ | 1008    | e.g. MAMK2520TR47M                |
| V1P8A         | 1 | 4.7µF  | ±20% | 10V         |      | 0603    | Supply voltage filter capacitor   |
| -             | 1 | 47uF   | +20% | 2.5V        |      | 0805    | Output stabilization capacitors   |
|               | 1 | 0.47uH | ±30% |             | 38mΩ | 1008    | e.g. MAMK2520TR47M                |
| VDDQ          | 2 | 4.7uF  | +20% | 10V         |      | 0603    | Supply voltage filter capacitors  |
|               | 2 | 47uF   | +20% | 2.5V        |      | 0805    | Output stabilization capacitors   |
|               | 2 | 0.47uH | +30% |             | 38mO | 1008    | e.g. MAMK2520TR47M                |
| V3P3A         | 1 | 4.7uF  | +20% | 10V         |      | 0603    | Supply voltage filter capacitors  |
|               | 3 | 47uF   | +20% | 6.3V        |      | 0805    | Output stabilization capacitors   |
|               | 2 | 1uH    | +30% | 0.01        | 38mO | 1008    | e.g. MAMK2520T1R0M                |
|               |   |        |      |             |      |         | or 1x 0.47µH with some efficiency |
|               |   |        |      |             |      |         | performance degradation           |
| V2P85S        | 1 | 4.7µF  | ±20% | 10V         |      | 0603    | Supply voltage filter capacitor   |
|               | 1 | 47µF   | ±20% | 6.3V        |      | 0805    | Output stabilization capacitor    |
|               | 1 | 0.47uH | ±30% |             | 38mΩ | 1008    | e.g. MAMK2520TR47M                |
| V5P0S         | 2 | 10µF   | +20% | 16V         |      | 0603    | Supply voltage filter capacitors  |
|               | 2 | 47uF   | +20% | 6.3V        |      | 0805    | Output stabilization capacitors   |
|               | 1 | 0.47µH | ±30% |             | 38mΩ | 1008    | e.g. MAMK2520TR47M                |
| VDDQ VTT IN   | 1 | 100nF  | ±10% | 6.3V        |      | 0201    | Supply voltage filter capacitor   |
| VDDQ VTT      | 1 | 10µF   | ±20% | 4V          |      | 0603    | Output stabilization capacitor    |
| VDDQ VTT R    | 1 | 1uF    | ±20% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| V1P2S         | 1 | 1uF    | +20% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| V1P2A         | 1 | 1uF    | ±20% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| VREFDQ0       | 1 | 1uF    | ±20% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| VREFDQ1       | 1 | 1uF    | ±20% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| VLP           | 1 | 2.2µF  | ±10% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| VREF0P9       | 1 | 2.2µF  | ±10% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| VREF12        | 1 | 2.2µF  | ±10% | 6.3V        |      | 0201    | Output stabilization capacitor    |
| IREF12        | 1 | 200kΩ  | ±1%  |             |      | 01005   |                                   |
| VSYS 1        | 1 | 100nF  | ±10% | 10V         |      | 0201    | Supply voltage filter capacitor   |
| VSYS 2        | 1 | 100nF  | ±10% | 10V         |      | 0201    | Supply voltage filter capacitor   |
| VSYS 3        | 1 | 100nF  | +10% | 10V         |      | 0201    | Supply voltage filter capacitor   |
| VSYS 8 9 10   | 1 | 100nF  | ±10% | 10V         |      | 0201    | Supply voltage filter capacitor   |
| VSYS 11 12 13 | 1 | 100nF  | ±10% | 101/        |      | 0201    | Supply voltage filter capacitor   |
|               | 1 | 1uF    | +20% | 6.3V        |      | 0201    | Supply voltage filter capacitor   |
| V1P8A         | 1 | 1uF    | +20% | 6.3V        |      | 0201    | Output stabilization capacitor    |
|               | 1 | 100nF  | +10% | 101/        |      | 0201    | Supply voltage filter capacitor   |
|               | 1 | 100nF  | +10% | 101/        |      | 0201    | Supply voltage filter capacitor   |
|               |   |        | /    |             | 1    |         |                                   |

#### **Data Sheet**



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

|              |   |       |      | n Voltage |      | ackage |                                 |
|--------------|---|-------|------|-----------|------|--------|---------------------------------|
| Voltage rail | # | Value | Tol  | Min       | Rmax | Č      | Comment                         |
| V1P8S_IN     | 1 | 100nF | ±10% | 10V       |      | 0201   | Supply voltage filter capacitor |
| VHDMI_IN     | 1 | 100nF | ±10% | 10V       |      | 0201   | Supply voltage filter capacitor |
| VSDIO_IN     | 1 | 100nF | ±10% | 10V       |      | 0201   | Supply voltage filter capacitor |
| V1P05S_FB    | 1 | 1µ    | ±20% | 6.3V      |      | 0201   |                                 |
| VSDIO        | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| VUSBPHY      | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| V1P2SX       | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| V1P8S        | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| V1P8SX       | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| V2P85SSX     | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| VHDMI        | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| VUSBPHY      | 1 | 100nF | ±10% | 10V       |      | 0201   | Output stabilization capacitor  |
| VBATBKUP     | 1 | 10µF  | ±20% | 6.3V      |      | 0201   | Output stabilization capacitor  |
| PWRBTNIN_B   | 0 | 100nF | ±10% | 10V       |      | 0201   | Optional                        |
| SYSTHERM0    | 0 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |
| SYSTHERM1    | 0 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |
| SYSTHERM2    | 0 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |
| BPTHERM0     | 0 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |
| BPTHERM0     | 0 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |
| BATID        | 0 | 330pF | ±5%  | 25V       |      | 0201   | optional                        |
| VBUS_SENSE   | 1 | 10nF  | ±20% | 25V       |      | 0201   | Optional                        |
| VBAT_SENSE   | 0 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |
| VDCIN_SENSE  | 1 | 10nF  | ±20% | 10V       |      | 0201   | optional                        |

Table 117: DA6021 BOM Proposal

**Data Sheet** 



# HIGHLY INTEGRATED POWER MANAGEMENT IC FOR INTEL® ATOM™ Z3000 PROCESSOR

### **Status Definitions**

| Version    | Data Sheet Status | Product Status | Definition                                                                                                                                                                                                                                                             |
|------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. <n></n> | Target            | Development    | This data sheet contains the design specifications for product development.<br>Specifications may be changed in any manner without notice.                                                                                                                             |
| 2. <n></n> | Preliminary       | Qualification  | This data sheet contains the specifications and preliminary characterisation data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.                                                             |
| 3. <n></n> | Final             | Production     | This data sheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via Customer Product Notifications. |
| 4. <n></n> | Obsolete          | Archived       | This data sheet contains the specifications for discontinued products. The information is provided for reference only.                                                                                                                                                 |

#### Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor GmbH. All rights reserved.

#### **RoHS Compliance**

Dialog Semiconductor complies to Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 concerning Restriction of Hazardous Substances (RoHS). Dialog Semiconductor's statement on RoHS can be found on the customer portal <a href="https://support.diasemi.com/">https://support.diasemi.com/</a>. RoHS certificates from our suppliers are available on request.

## **Contacting Dialog Semiconductor**

Germany Headquarters Dialog Semiconductor GmbH Phone: +49 7021 805-0

United Kingdom Dialog Semiconductor (UK) Ltd Phone: +44 1793 757700

The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 88 22

Email: enquiry@diasemi.com

#### **Data Sheet**

North America Dialog Semiconductor Inc. Phone: +1 408 727 3200

Japan Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan Dialog Semiconductor Taiwan Phone: +886 226 580 388

Web site: www.dialog-semiconductor.com Singapore

Dialog Semiconductor Singapore Phone: +65 64845419

China Dialog Semiconductor China Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 569 2301

© 2014 Dialog Semiconductor GmbH

224 of 224

Version 3.A - Final

31-Jan-14