Surface Mount **Digital Step Attenuator**

DAT-31R5A+ Series

50Ω 0 to 31.5 dB, 0.5 dB Step DC to 4.0 GHz

The Big Deal

- Wideband, operates up to 4 GHz
- Immune to latchup
- High IP3, 52 dBm

CASE STYLE: DG983-2

Product Overview

The DAT-31R5A+ series of 50Ω digital step attenuators provides adjustable attenuation from 0 to 31.5 dB in 0.5 dB steps. The control is a 6-bit serial/parallel interface, and the attenuators operate with either a single positive or dual (positive and negative) supply voltage. DAT-31R5A+ series models are produced by a unique CMOS process on silicon, offering the performance of GaAs with the advantages of conventional CMOS devices.

Feature	Advantages
Wideband operation, specified from DC to 4.0 GHz	Can be used in multiple applications such as communications, satellite and defense, reducing part count.
Serial or parallel interface	Models available with serial or parallel interface mode to suit customer demand.
Good VSWR, 1.2:1 typ.	Eases interfacing with adjacent components and results in low amplitude ripple.
Single positive supply models: (Model suffixes: -SP+ and -PP+) +2.3 to +3.6V+	Use of single positive supply simplifies power supply design. An internal negative voltage generator supplies the desired negative voltage. Single positive supply results in excellent spurious performance, -140 dBm typical.
Dual supply models: (Model suffixes: -SN+ and -PN+) +2.7 to +3.6V (Positive) and -3.6 to -3.2V (Negative)	Dual supply provides spurious-free operation. It also allows fast switching up to 1 MHz (vs. 25 kHz for single supply).
Useable over a wide range of supply voltages, +2.3/2.7 to 5.2V	Wide range fo positive operating voltages allows the DAT-31R5A+ Series of models to be used in a wide range of applications. See Application Note AN-70-006 for operation above +3.6V
Footprint compatible to DAT-31R5-XX+ Series (XX=SN/SP/PN/PP)	Can fit into existing footprint and provide wideband performance, to 4 GHz instead of 2.4 GHz.
Safe attenuation transitions	The DAT-31R5A-XX+ series is designed to prevent any momentary positive 'spikes' in power during attenuation transitions

Kev Features

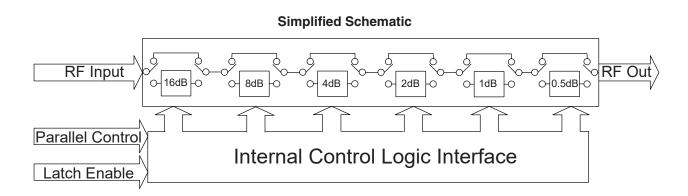
Digital Step Attenuator 50Ω DC-4000 MHz

31.5 dB, 0.5 dB Step 6 Bit, Parallel Control Interface, Dual Supply Voltage

Product Features

- Immune to latch up
- Excellent accuracy, 0.1 dB Typ
- Parallel control interface
- Fast switching control frequency, up to 1 MHz typ.
- Low Insertion Loss
- High IP3, +52 dBm Typ
- Very low DC power consumption
- Excellent return loss, 20 dB Typ
- Small size 4.0 x 4.0 mm

DAT-31R5A-PN+ CASE STYLE: DG983-2


+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Typical Applications

- Base Station Infrastructure
- Portable Wireless
- CATV & DBS
- MMDS & Wireless LAN
- Wireless Local Loop
- UNII & Hiper LAN
- Power amplifier distortion canceling loops

General Description

The DAT-31R5A-PN+ is a 50 Ω RF digital step attenuator that offers an attenuation range of 31.5 dB in 0.5 dB steps. The control is a 6-bit parallel interface, operating on dual supply voltage (positive & negative). The DAT-31R5A-PN+ is produced using a unique CMOS process on silicon, offering the performance of GaAs, with the advantages of conventional CMOS devices.

DAT-31R5A-PN+

RF Electrical Specifications (Note 1), DC-4000 MHz, T_{AMB}=25°C, V_{DD}=+3V, V_{SS}=-3.2V

Parameter	Freq. Range (GHz)	Min.	Тур.	Max.	Units
	DC-1	_	0.03	0.1	
Accuracy @ 0.5 dB Attenuation Setting	1-2.4	_	0.05	0.15	dB
	2.4-4	_	0.07	0.2	
	DC-1	_	0.02	0.1	
Accuracy @ 1 dB Attenuation Setting	1-2.4	—	0.05	0.15	dB
	2.4-4		0.1	0.25	
	DC-1	—	0.05	0.15	
Accuracy @ 2 dB Attenuation Setting	1-2.4	_	0.15	0.25	dB
	2.4-4		0.15	0.35	
	DC-1	_	0.07	0.2	
Accuracy @ 4 dB Attenuation Setting	1-2.4	_	0.15	0.25	dB
	2.4-4		0.23	0.5	
	DC-1	_	0.03	0.2	
Accuracy @ 8 dB Attenuation Setting	1-2.4	_	0.15	0.5	dB
	2.4-4		0.6	0.8	
	DC-1	_	0.1	0.3	dB
Accuracy @ 16 dB Attenuation Setting	1-2.4	_	0.15	0.7	
	2.4-4		1.1	1.45	
	DC-1	_	1.3	1.9	
Insertion Loss (note 2) @ all attenuator set to 0dB	1-2.4	_	1.6	2.4	dB
	2.4-4	—	2.1	3.0	
Input IP3 (note 3) (at Min. and Max. Attenuation)	DC-4	_	+52	_	dBm
Input Power @ 0.2dB Compression ^(note 3) (at Min. and Max. Attenuation)	DC-4	_	+24	_	dBm
Input Operating Power	10 kHz to 50 MHz	—	_	See Fig. 1	– dBm
mpar operating i ower	>50 MHz	—		+24	
	DC-1	—	1.2	1.5	
VSWR	1-2.4	—	1.2	1.6	:1
	2.4-4	—	1.4	1.9	

Notes:

1. Tested on Evaluation Board TB-340, See Figure 3.

Insertion loss values are de-embedded from test board Loss (test board's Insertion Loss: 0.10dB @100MHz, 0.35dB @1000MHz, 0.60dB @2400MHz, 0.75dB @4000MHz).
Input IP3 and 1dB compression degrades below 1 MHz. Input power not to exceed max operating specification for continuous operation.

DC Electrical Specifications

Parameter	Min.	Тур.	Max.	Units
VDD, Supply Voltage	2.7	3	3.6 ^(Note 4)	V
Vss, Supply Voltage	-3.6	-3.3	-3.2	V
IDD Supply Current	_	_	100	μA
Iss Supply Current	_	16	40	μA
Control Input Low	-0.3	_	+0.6	V
Control Input High	1.17	_	3.6	V
Control Current	_	_	20 ^(Note 5)	μA

4. For operation above +3.6V, see Application Note AN-70-006 5. Except, 30µA typ for C0.5, C16, PUP1 at +3.6V

Absolute Maximum Ratings(Note 6,7)

Parameter	Ratings				
Operating Temperature	-40°C to 105°C				
Storage Temperature	-65°C to 150°C				
VDD	-0.3V Min., 5.5V Max.				
Vss	-3.5V Min., 0.3V Max.				
Voltage on any control input	-0.3V Min., 3.6V Max.				
Input Power	+30dBm				
Thermal Resistance	37°C/W				
6. Permanent damage may occur if any of these limits are exceeded. 7. Operation between max operating and absolute max input power will result in reduced reliability					

Switching Specifications

Parameter	Min.	Тур.	Max.	Units
Switching Speed, 50% Control to 0.5dB of Attenuation Value	_	1.0	—	µSec
Switching Control Frequency	_	1.0	_	mHz

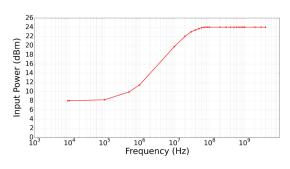
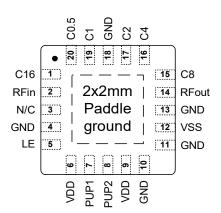
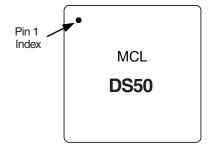


Figure 1. Max Input Operating Power vs Frequency


⊒Mini-Circuits° www.minicircuits.com P.O. Box 350166, Brooklyn, NY 11235-0003 (718) 934-4500 sales@minicircuits.com

Pin Description


Function	Pin Number	Description
C16	1	Control for Attenuation bit, 16dB (Note 3,6)
RF in	2	RF in port (Note 1)
N/C	3	Not connected (Note 4)
GND	4	Ground connection
LE	5	Latch Enable Input (Note 2)
V _{DD}	6	Positive Supply Voltage
PUP1	7	Power-up selection (Note 6)
PUP2	8	Power-up selection
V _{DD}	9	Positive Supply Voltage
GND	10	Ground connection
GND	11	Ground connection
V _{ss}	12	Negative Supply Voltage
GND	13	Ground connection
RF out	14	RF out port (Note 1)
C8	15	Control for attenuation bit, 8 dB
C4	16	Control for attenuation bit, 4 dB
C2	17	Control for attenuation bit, 2 dB
GND	18	Ground Connection
C1	19	Control for attenuation bit, 1 dB
C0.5	20	Control for attenuation bit, 0.5 dB (Note 6)
GND	Paddle	Paddle ground (Note 5)
Notos:		

DAT-31R5A-PN+

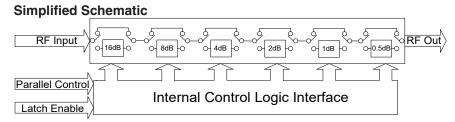
Pin Configuration (Top View)

Device Marking

Notes:

1. Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.

2. Latch Enable (LE) has an internal 2M Ω to internal positive supply voltage.


3. Place a 10K $\!\Omega$ resistor in series, as close to pin as possible to avoid freq. resonance.

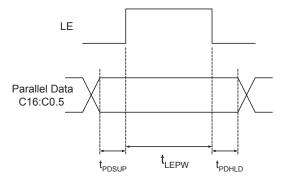
4. Place a shunt 10K Ω resistor to GND

5. The exposed solder pad on the bottom of the package (See Pin configuration) must be grounded for proper device operation.

6. This pin has an internal 200 $k\Omega$ resistor to ground.

DAT-31R5A-PN+

The DAT-31R5A-PN+ parallel interface consists of 6 control bits that select the desired attenuation state, as shown in Table 1: Truth Table


Table 1. Truth Table						
Attenuation State	C16	C8	C4	C2	C1	C0.5
Reference	0	0	0	0	0	0
0.5 (dB)	0	0	0	0	0	1
1 (dB)	0	0	0	0	1	0
2 (dB)	0	0	0	1	0	0
4 (dB)	0	0	1	0	0	0
8 (dB)	0	1	0	0	0	0
16 (dB)	1	0	0	0	0	0
31.5 (dB)	1	1	1	1	1	1
Note: Not all 64 possible combinations of C0.5 - C16 are shown in table						

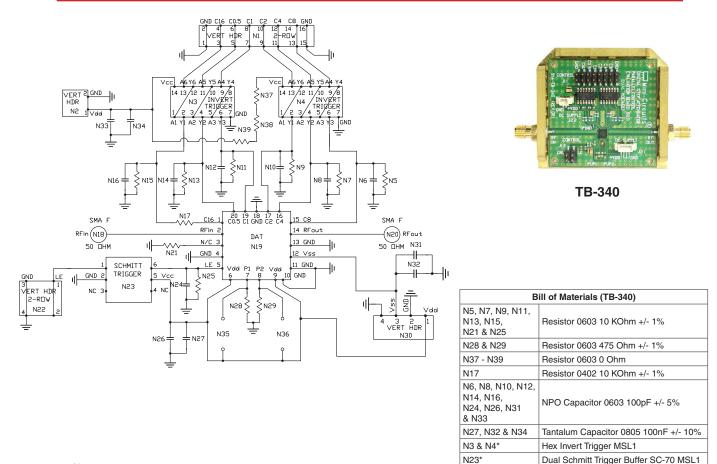
The parallel interface timing requirements are defined by Figure 2 (Parallel Interface Timing Diagram) and Table 2 (Parallel Interface AC Characteristics), and switching speed.

For latched parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Figure 2) to latch new attenuation state into device.

For direct parallel programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct mode is ideal for manual control of the device (using hardwire, switches, or jumpers).

Table 2. Parallel Interface AC Characteristics						
Symbol	Parameter	Min.	Max.	Units		
t _{LEPW}	LE minimum pulse width	10		ns		
t _{PDSUP}	Data set-up time before clock rising edge of LE	10		ns		
t _{PDHLD}	Data hold time after clock falling edge of LE	10		ns		

Power-up Control Settings


The DAT-31R5A-PN+ always assumes a specifiable attenuation setting on power-up, allowing a known attenuation state to be established before an initial parallel control word is provided.

When the attenuator powers up with LE=0, the control bits are automatically set to one of four possible values .These four values are selected by the two power-up control bits,PUP1 and PUP2 ,as shown in Table 3: (Power-Up Truth Table, Parallel Mode).

Table 3. Power-Up Truth Table, Parallel Mode						
Attenuation State	PUP1	PUP2	LE			
Reference	0	0	0			
8 (dB)	0	1	0			
16 (dB)	1	0	0			
31.5 (dB)	1	1	0			
Defined by C0.5-C16 (See Table 1-Truth Table) X (Note 1) X (Note 1) 1						
Note 1: PUP1 and PUP2 Connection may be 0, 1, GROUND, or not connect, without effect on attenuation state.						

Power-Up with LE=1 provides normal parallel operation with C0.5-C16, and PUP1 and PUP2 are not active.

DAT-31R5A-PN+

Notes

1. Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.

2. Test Board TB-340 is designed for operation for VDD=2.3 to 3.6V. For operation over 3.6V to 5.2V, See Application Note AN-70-006 3. VDD=Vdd

Fig 3. Evaluation Board Schematic, TB-340, used for characterization (DUT not soldered on TB-340)

Test Equipment

For Insertion Loss, Isolation and Return Loss:

Agilent's E5071C Network Analyzer & E3631A Power Supply. For Compression:

Agilent's N9020A Signal Analyzer, E8247C RF Generator, E3631A Power Supply & U2004A Power Sensor.

For Input IP3:

Agilent's N9020A Signal Analyzer, N5181A

Signal Generators, E3631A Power Supply, U2004A Power Sensor. For Spurs:

Agilent N5181A Signal Generator, E4440A Spectrum Analyzer. For Switching Time:

Agilent's N5181A Signal Generator, 81110A Pulse Generator, 54832B Oscilloscope, E3631A Power Supply.

For Max Control Frequency:

Agilent's N5181A Signal Generator, N9020A Signal Analyzer, E3631A Power Supply, 81110A Pulse Generator.

Measurement Conditions

For Insertion Loss, Isolation and Return Loss: VDD=+2.7/+3/+5.5V &Pin=0dBm VSS=-3.2/-3.6V

For Compression: Pin=0/+24dBm. VDD=+3V, VSS=-3V

For Input IP3: Pin=+10dBm/tone. Tone spacing: 0.1 MHz to 1 MHz RF Freq and 1 MHz to 4200 MHz RF Freq, VDD=+3V, VSS=-3V

For Spurs: RF IN at 1000MHz and -20dBm. VDD=+3V

For Switching Time:

RF Freq=501MHz/0dBm, Pulse for LE=1Hz/0/+3.4V, Delay=500ms, Width=500ms. VDD=+3V & VSS=-3V

For Max Control Frequency:

RF Freq=501MHz, 0dBm. VDD=+3V, VSS=-3V