

NOT RECOMMENDED FOR NEW DESIGN **USE DGD2003**

DGD1503

HALF-BRIDGE GATE DRIVER IN SO-8

Description

The DGD1503 is a high-voltage / high-speed gate driver capable of driving N-channel MOSFETs and IGBTs in a half-bridge configuration. High-voltage processing techniques enable the DGD1503's high side to switch to 250V in a bootstrap operation.

The DGD1503 logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with controlling devices. The driver output features high-pulse current buffers designed for minimum driver cross conduction. DGD1503 has a fixed internal deadtime of 430ns (typical).

The DGD1503 is offered in the SO-8 package and operates over an extended -40°C to +125°C temperature range.

Applications

- DC-DC Converters
- DC-AC Inverters
- **AC-DC Power Supplies**
- Motor Controls
- Class D Power Amplifiers

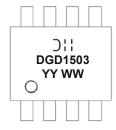
Up to 250V HO DGD1503 LIN' сом LO **Typical Configuration**

Features

- Floating High-Side Driver In Bootstrap Operation to 250V
- Drives two N-Channel MOSFETs or IGBTs in a Half-Bridge Configuration
- 290mA Source/600mA Sink Output Current Capability
- **Outputs Tolerant To Negative Transients**
- Internal Dead Time of 430ns to Protect MOSFETs
- Wide Low-Side Gate Driver Supply Voltage: 10V to 20V
- Logic Input (HIN and LIN*) 3.3V Capability
- Schmitt Triggered Logic Inputs
- Undervoltage Lockout for V_{CC} (Logic and Low Side Supply)
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.
- https://www.diodes.com/quality/product-definitions/

Mechanical Data

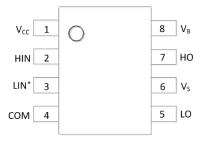
- Case: SO-8 (Type TH)
- Case Material: Molded Plastic. "Green" Molding Compound UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.075 grams (Approximate)


Ordering Information (Note 4)

Product	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DGD1503S8-13	DGD1503	13	12	2500

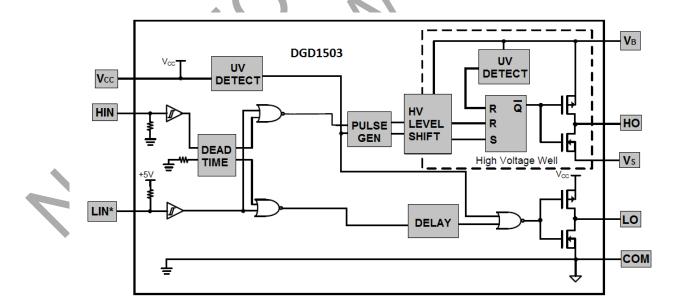
Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.


Marking Information

);; = Manufacturer's marking DGD1503 = Product Type Marking Code YY = Year (ex: 19 = 2019) WW = Week (01 - 53)

Pin Diagrams



Top view: SO-8

Pin Descriptions

Pin Number	Pin Name	Function
1	Vcc	Logic and Low Side Supply
2	HIN	Logic Input for High-Side Gate Driver Output in Phase with HO
3	LIN*	Logic input for Low-Side Gate Driver Output out of Phase with LO
4	COM	Low-Side and Logic Return
5	LO	Low-Side Gate Drive Output
6	Vs	High-Side Floating Supply Return
7	НО	High-Side Gate Drive Output
8	V_{B}	High-Side Floating Supply

Functional Block Diagram

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
High-Side Floating Supply Voltage	V _B	-0.3 to +274	V
High-Side Floating Supply Offset Voltage	Vs	V _B -24 to V _B +0.3	V
High-Side Floating Output Voltage	V _{HO}	V _S -0.3 to V _B +0.3	V
Offset Supply Voltage Transient	dV _S / dt	50	V/ns
Low-Side Fixed Supply Voltage	V _{CC}	-0.3 to +24	V
Low-Side Output Voltage	V_{LO}	-0.3 to V _{CC} +0.3	V
Logic Input Voltage (HIN and LIN*)	V _{IN}	-0.3 to V _{CC} +0.3	V

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	P _D	0.625	W
Thermal Resistance, Junction to Ambient (Note 5)	R _{0JA}	200	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (soldering, 10s)	TL	+300	°C
Storage Temperature Range	T _{STG}	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
High-Side Floating Supply Absolute Voltage	V_B	V _s + 10	V _S + 20	V
High-Side Floating Supply Offset Voltage	Vs	(Note 6)	250	V
High-Side Floating Output Voltage	V_{HO}	Vs	V_{B}	V
Low-Side Supply Voltage	Vcc	10	20	V
Low-Side Output Voltage	V_{LO}	0	V_{CC}	V
Logic Input Voltage (HIN & LIN*)	V_{IN}	0	5	V
Ambient Temperature	T_{A}	-40	+125	°C

Note: 6. Logic operation for V_S of -5V to +250V.

October 2019

© Diodes Incorporated

DC Electrical Characteristics (V_{BIAS} (V_{CC} , V_{BS}) = 15V, @ T_A = +25°C, unless otherwise specified.) (Note 7)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Logic "1" (HIN) & Logic "0" (LIN*) Input Voltage	V _{IH}	2.5	-	-	V	V _{CC} = 10V to 20V
Logic "0" (HIN) & Logic "1" (LIN*) Input Voltage	V _{IL}	_	_	0.8	V	V _{CC} = 10V to 20V
High Level Output Voltage, V _{BIAS} - V _O	V_{OH}	_	0.05	0.2	V	$I_O = 2mA$
Low Level Output Voltage, Vo	V_{OL}	_	0.02	0.1	٧	I _O = 2mA
Offset Supply Leakage Current	I _{LK}	_	-	50	μΑ	$V_B = V_S = 250V$
Quiescent V _{BS} Supply Current	I _{BSQ}	_	60	100	μΑ	$V_{IN} = 0V \text{ or } 5V$
Quiescent V _{CC} Supply Current	Iccq	_	350	500	μA	V _{IN} = 0V or 5V
Logic "1" Input Bias Current	I _{IN+}	_	3	10	μA	HIN = 5V, LIN* = 0V
Logic "0" Input Bias Current	I _{IN-}	_	-	5	μA	HIN = 0V, LIN* = 5V
V _{CC} Supply Undervoltage Positive Going Threshold	V _{CCUV+}	7.4	8.5	9.6	V	Y
V _{CC} Supply Undervoltage Negative Going Threshold	V_{CCUV}	7.1	7.8	8.8	٧	_
V _{BS} Supply Undervoltage Positive Going Threshold	V _{BSUV+}	5.5	6.5	7.5	V	-
V _{BS} Supply Undervoltage Negative Going Threshold	V_{BSUV}	5.3	6.3	7.3	V	-
Output High Short Circuit Pulsed Current	I _{O+}	130	290		mA	V _O = 0V, PW ≤ 10μs
Output Low Short Circuit Pulsed Current	I _{O-}	270	600	-	mA	V _O = 15V, PW ≤ 10µs

Note:

- 7. The V_{IN} and I_{IN} parameters are applicable to the two logic pins: HIN and LIN*. The V_O and I_O parameters are applicable to the respective output pins: HO and LO.
- 8. For optimal operation, it is recommended that the input pulses (HIN and LIN*) should have a minimum amplitude of 2.5V with a minimum pulse width of 860ns.

AC Electrical Characteristics (V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000pF, @T_A = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Turn-on Propagation Delay	t _{ON}	_	680	820	ns	$V_S = 0V$
Turn-off Propagation Delay	toff	-	150	220	ns	V _S = 250V
Delay Matching, HO & LO turn-on/turn-off	t _{DM}		_	60	ns	_
Turn-on Rise Time	t _r		70	170	ns	V _S = 0V
Turn-off Fall Time	t _f	-	35	90	ns	V _S = 0V
Deadtime: t _{DT LO-HO} & t _{DT HO-LO}	t _{DT}	300	430	550	ns	_

Timing Waveforms

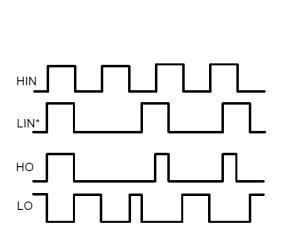


Figure 1. Input / Output Timing Diagram

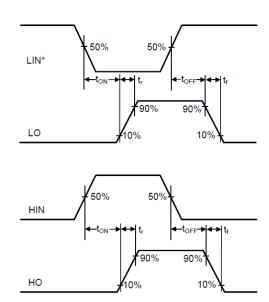


Figure 2. Switching Time Waveform Definitions

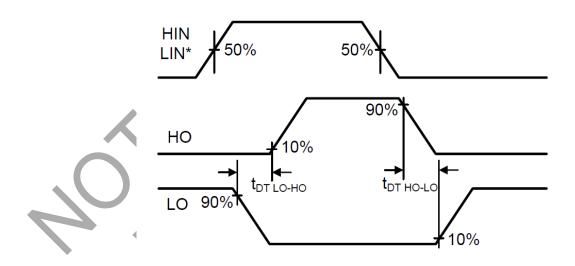


Figure 3. Deadtime Waveform Definitions

Typical Performance Characteristics (Vcc=15V, @TA = +25°C, unless otherwise specified.)

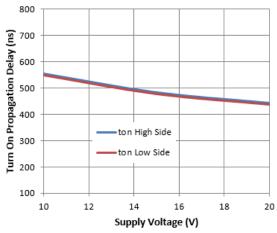


Figure 4. Turn-on Propagation Delay vs. Supply Voltage

Figure 6. Turn-off Propagation Delay vs. Supply Voltage

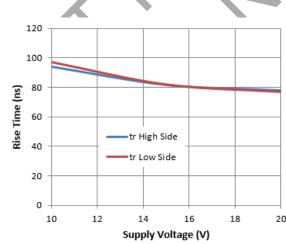


Figure 8. Rise Time vs. Supply Voltage

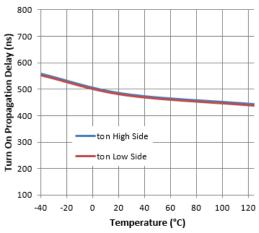


Figure 5. Turn-on Propagation Delay vs. Temperature

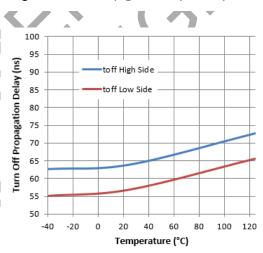


Figure 7. Turn-off Propagation Delay vs. Temperature

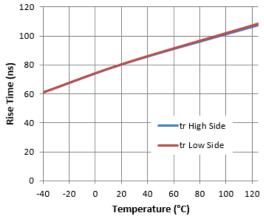


Figure 9. Rise Time vs. Temperature

Typical Performance Characteristics (continued)

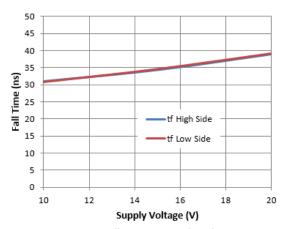


Figure 10. Fall Time vs. Supply Voltage

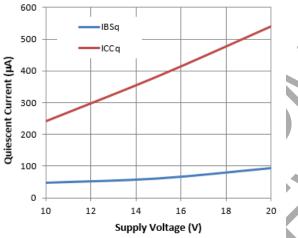


Figure 12. Quiescent Current vs. Supply Voltage

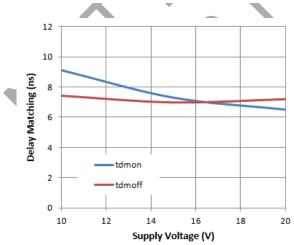


Figure 14. Delay Matching vs. Supply Voltage

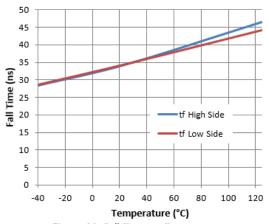


Figure 11. Fall Time vs. Temperature

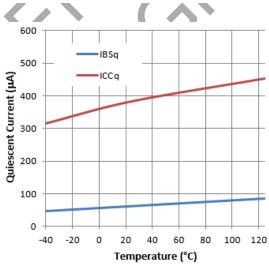


Figure 13. Quiescent Current vs. Temperature

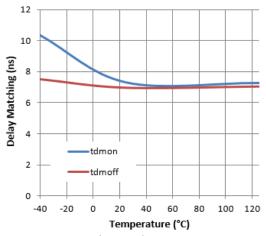


Figure 15. Delay Matching vs. Temperature

Typical Performance Characteristics (cont.)

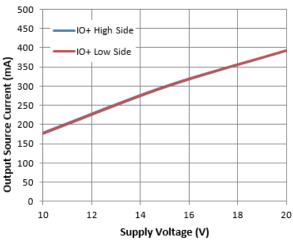


Figure 16. Output Source Current vs. Supply Voltage

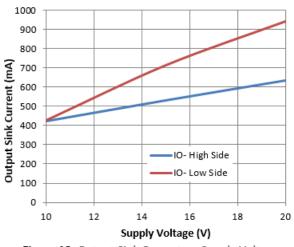


Figure 18. Output Sink Current vs. Supply Voltage

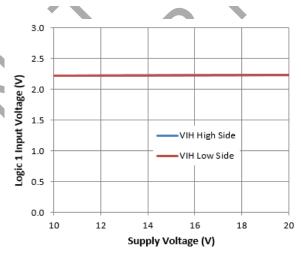


Figure 20. Logic 1 Input Voltage vs. Supply Voltage

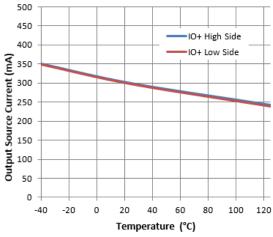


Figure 17. Output Source Current vs. Temperature

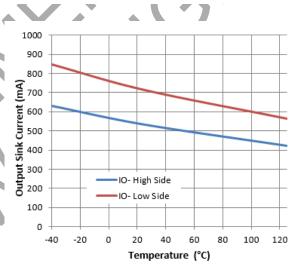


Figure 19. Output Sink Current vs. Temperature

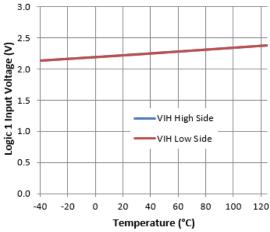


Figure 21. Logic 1 Input Voltage vs. Temperature

Typical Performance Characteristics (cont.)

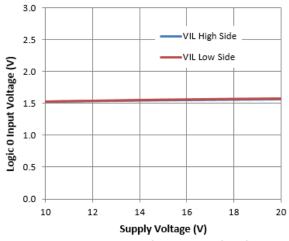


Figure 22. Logic O Input Voltage vs. Supply Voltage

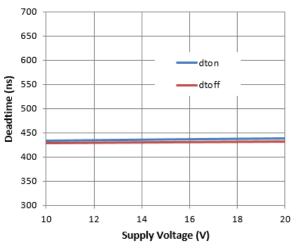


Figure 24. Deadtime vs. Supply Voltage

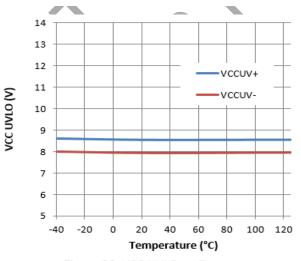


Figure 26. VCC UVLO vs. Temperature

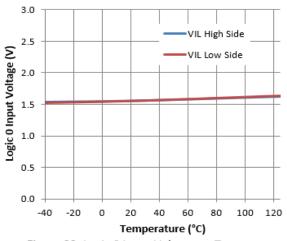


Figure 23. Logic 0 Input Voltage vs. Temperature

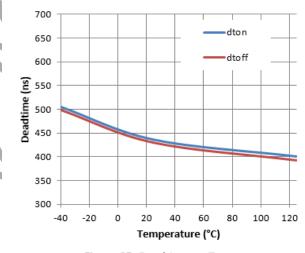
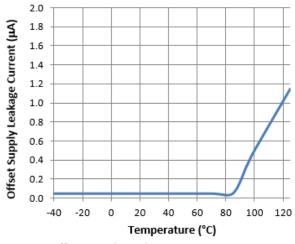
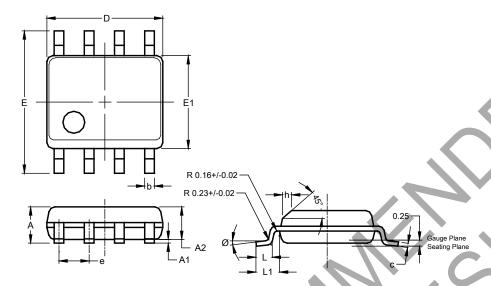


Figure 25. Deadtime vs. Temperature

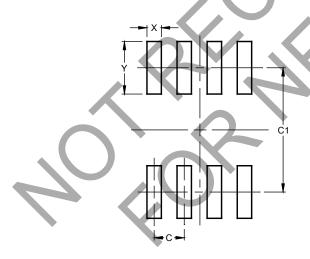



Figure 27. Offset Supply Leakage Current vs. Temperature

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SO-8 (Type TH)



SO-8 (Type TH)					
Dim	Min	Max	Тур		
Α	1.35	1.75			
A1	0.10	0.25			
A2			1.45		
b	0.35	0.51			
С	0.190	0.248			
D	4.80	5.00	4.90		
Е	5.80	6.20	6.00		
E1	3.80	4.00	3.90		
е	1	1	1.27		
h	0.25	0.50			
L	0.41	1.27			
L1			1.04		
Ø	0°	8°			
All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
С	1.27
C1	5.20
Х	0.60
Y	2.20

Note: For high-voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.