

DHG201600PA

preliminary

Sonic Fast Recovery Diode

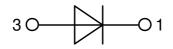
V_{RRM}	=	600 V
I _{FAV}	=	20 A
t _{rr}	=	40 ns

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DHG201600PA

Package: TO-220


RoHS compliant

• Industry standard outline

• Epoxy meets UL 94V-0

Backside: cathode

20200213b

Features / Advantages:

- Planar passivated chips
- · Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

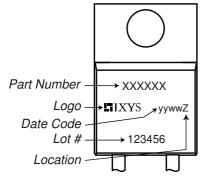
DHG20I600PA

preliminary

Fast Diode					Ratings		
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{vJ} = 25^{\circ}C$			600	V
V _{RRM}	max. repetitive reverse blocking vo	oltage	$T_{VJ} = 25^{\circ}C$			600	V
I _R	reverse current, drain current	V_{R} = 600 V	$T_{VJ} = 25^{\circ}C$			30	μA
		V_{R} = 600 V	$T_{vJ} = 125^{\circ}C$			1.5	mA
VF	forward voltage drop	I _F = 20 A	$T_{VJ} = 25^{\circ}C$			2.25	V
		I _F = 40 A				3.17	V
		I _F = 20 A	T _{vJ} = 125°C			2.21	V
		$I_{F} = 40 \text{ A}$				3.25	V
I FAV	average forward current	$T_c = 95^{\circ}C$	T _{vJ} = 150°C			20	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage		$T_{vJ} = 150^{\circ}C$			1.15	V
r _F	slope resistance } for power lo	ss calculation only				45	mΩ
\mathbf{R}_{thJC}	thermal resistance junction to case	9				0.9	K/W
R _{thCH}	thermal resistance case to heatsin	k			0.5		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			140	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine; $V_{R} = 0 V$	$T_{VJ} = 45^{\circ}C$			150	Α
C	junction capacitance	$V_{R} = 400 V f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		12		pF
I _{RM}	max. reverse recovery current		$T_{vJ} = 25 °C$		8		Α
		$I_F = 20 \text{ A}; V_R = 300 \text{ V}$	T _{vJ} = 125 °C		12		Α
t _{rr}	reverse recovery time	I _F = 20 A; V _R = 300 V -di _F /dt = 450 A/μs	$T_{VJ} = 25 °C$		40		ns
		1	T _{vJ} = 125 °C		60		ns

IXYS reserves the right to change limits, conditions and dimensions.

20200213b



DHG201600PA

preliminary

Package	• TO-220			Rating	S	
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			35	Α
T _{vj}	virtual junction temperature		-55		150	°C
T _{op}	operation temperature		-55		125	°C
T _{stg}	storage temperature		-55		150	°C
Weight				2		g
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	Ν

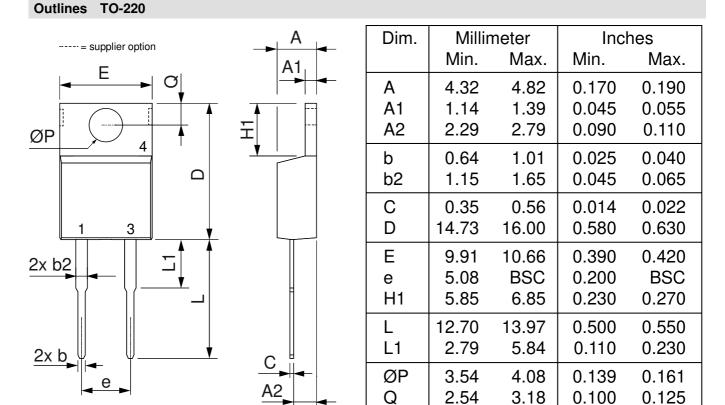
Part description

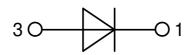
- D = Diode
- H = Sonic Fast Recovery Diode
- G = extreme fast
- 20 = Current Rating [A] I = Single Diode
- 600 = Reverse Voltage [V]
- PA = TO-220AC (2)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG201600PA	DHG201600PA	Tube	50	504941

Similar Part	Package	Voltage class
DHG201600HA	TO-247AD (2)	600

Equiva	lent Circuits for	Simulation	* on die level	$T_{VJ} = 150^{\circ}C$
		Fast Diode		
V _{0 max}	threshold voltage	1.15		V
$\mathbf{R}_{0 \max}$	slope resistance *	42		mΩ


IXYS reserves the right to change limits, conditions and dimensions.


20200213b

DHG201600PA

preliminary

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, conditions and dimensions.

20200213b