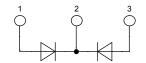


Sonic Fast Recovery Diode


High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number

DHG 40 C 600 PB

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
 Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency
- switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

DHG 40 C 600 PB

preliminary

$$V_{RRM} = 600 V$$

$$I_{FAV} = 2x 20 A$$

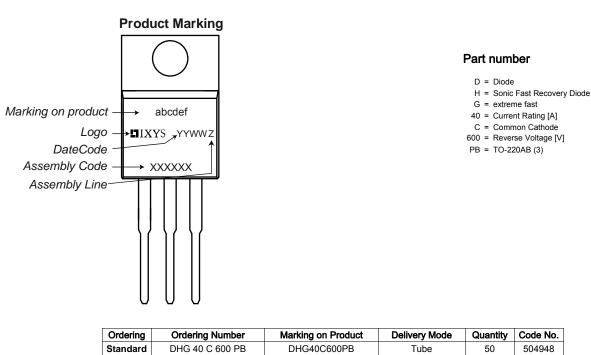
$$t_{rr} = 40 ns$$

Backside: cathode

Package:

- Housing: TO-220
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			600	V
I _R	reverse current	V _R = 600 V	$T_{VJ} = 25^{\circ}C$			25	μA
		V _R = 600 V	T _{vJ} = 125°C			1.5	mA
V _F	forward voltage	$I_{F} = 20 A$	$T_{vJ} = 25^{\circ}C$			2.25	V
		$I_F = 40 A$				3.17	V
		$I_F = 20 A$	T _{vJ} = 125°C			2.20	V
		$I_F = 40 A$				3.23	V
I _{FAV}	average forward current	rectangular d = 0.5	$T_c = 95^{\circ}C$			20	Α
V _{F0}	threshold voltage $T_{yy} = T_{yy}$		T _{vJ} = 150°C			1.12	V
r _F	slope resistance } for power loss	calculation only				49	mΩ
R _{thJC}	thermal resistance junction to case					0.90	K/W
T _{vj}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			140	W
	max. forward surge current	t = 10 ms (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			150	Α
I _{RM}	max. reverse recovery current		$T_{vJ} = 25^{\circ}C$		8		Α
		$I_F = 20 \text{ A}; V_R = 300 \text{ V}$	T _{vJ} = 125°C		12		Α
t _{rr}	reverse recovery time	$-di_F/dt = 450 \text{ A}/\mu\text{s}$	$T_{vJ} = 25^{\circ}C$		40		ns
			T _{vJ} = 125°C		60		ns
C	junction capacitance	$V_{R} = 400 V; f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		13		pF

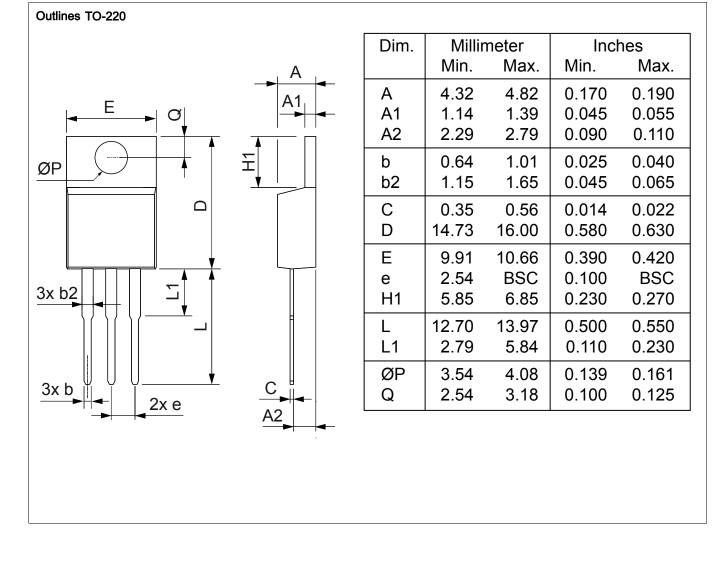

DHG 40 C 600 PB

preliminary

			Ratings			
Symbol	Definition	Conditions	min.	typ.	max. Unit	
I _{RMS}	RMS current	per terminal 1)			35 A	
R thCH	thermal resistance case to heatsink			0.50	K/W	
T _{stg}	storage temperature		-55	5	150 °C	
Weight				2	g	
M _D	mounting torque		0.4	ļ	0.6 Nm	
F _c	mounting force with clip		20)	60 N	

 $^{1)}$ I_{RMS} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a common cathode/anode configu ration with a non-isolated backside,

the current capability can be increased by connecting the backside.



andard	DHG 40 C 600 PB	DHG40C600PB	Tube	50	5049

Similar Part	Package	Voltage Class
DHG40C600HB	TO-247AD (3)	600

LIXYS

preliminary

IXYS reserves the right to change limits, conditions and dimensions.