Monitoring Relays 1-Phase True RMS AC/DC Over and Under Current Types DIC01, PIC01

CARLO GAVAZZI

DIC01

Product Description

DIC01 and PIC01 are pre-TRMS AC/DC cise over+under, over+over or under+under current and voltage (selectable by DIPswitch) monitoring relays. DIC01 can perform also DC plus/minus measurement by short circuiting pins Z3 and Y1. The devices can be connected to the MI or MP and A82 or E83 current transformers.

Both relays have two individual set levels with their own time delay. Only for DIC01 each set level can work with a single SPDT relay.

Owing to the built-in latch function, the ON-position of the relay output can be maintained. Inhibit function can be used to avoid relay operation when not desired (maintenance, transitions).

The LED's indicate the state of the alarm and the output relays.

- TRMS AC/DC over + under, over+over, under+under current and voltage monitoring relays
- DC process signal plus/minus monitoring relay (DIC01)
- Selection of measuring range by DIP-switches
- · Adjustable current and voltage on relative scale
- Adjustable hysteresis on relative scale
- Separately adjustable delay functions (0.1 to 30 s) •
- Programmable latching or inhibit at set level
- Output: 1 or 2 x 8 A SPDT relay N.D. or N.E. selectable For mounting on DIN-rail in accordance with
- DIN/EN 50 022 (DIC01) or plug-in module (PIC01) 45 mm Euronorm housing (DIC01)
- or 36 mm plug-in module (PIC01)
- LED indication for relay(s), alarm and power supply ON
- · Galvanically separated power supply

Ordering Key DIC 01 D B23 AV0

Housing —		
Function ———		1
Туре — — — — — — — — — — — — — — — — — — —		1
		1
Item number — — — — — — — — — — — — — — — — — — —		1
		1
Output		1
Power supply —		1
		1
Range		

Туре	Sele	ection
------	------	--------

Mounting	Output	Supply: 24 to 48 VAC/DC	Supply: 115/230 VAC	
DIN-rail	2xSPDT	DIC 01 D D48 AV0	DIC 01 D B23 AV0	
Plug-in	SPDT	PIC 01 C D48 AV0	PIC 01 C B23 AV0	

Input Specifications

Input			Measuring voltage ranges		
Current level	DIC01: Termina	ls Y1, Y2	Direct	Internal resis.	Max. volt.
	PIC01: Terminal	ls 6, 7	Selectable by DIP-switch		
Voltage level	DIC01: Termina	ls Y1, Y3	0.1 to 1 V AC/DC	> 10 kΩ	7 V
	PIC01: Terminal	ls 5, 7	1 to 10 V AC/DC	> 10 kΩ	20 V
DC levels (DIC01 only)	Connecting tern	ninals Z3, Y1	0.4 to 4 V _p AC	> 10 kΩ	100 V
Measuring current ranges			-1 to 1 VDC 🚺 (DIC01	> 10 kΩ	7 V
Direct	Internal resis.	Max. curr.	-10 to 10 VDC f only)	> 10 kΩ	20 V
Selectable by DIP-switch			Max. voltage for 1 s		100 V
0.5 to 5 mA AC/DC	50 Ω	35 mA			
2 to 20 mA AC/DC	50 Ω	55 mA	Note 1:		
-5 to 5 mA DC 🚶 (DIC01	50 Ω	35 mA	The input voltage cannot		
-20 to 20 mA DC 🖌 only)	50 Ω	55 mA	raise over 300 VAC/DC with		
Max. current for 1 s		100 mA	respect to ground (PIC01 only)		

Input Specifications (cont.)

CT ranges		AAC rms	Max. curr.
	ges (0.4 to 4 V _p input)		
1-ph.:	3-ph.:		
MI 5	MP 3005	0.5 to 5 A	20 AAC
MI 20	MP 3020	2 to 20 A	50 AAC
MI 100	MP 3100	10 to 100 A	
MI 500	MP 3500	50 to 500 A	750 AAC
Note 2:			
	nt transformers or under current		
measuremen			
	of the device		
(see data she			
CT ranges (co	ont.)	AAC rms	Max. curr.
	2 to 20 mA input)		
A82-10/20		2.5 to 25 A	30 AAC
A82-10/20		5 to 50 A	60 AAC
A82-10/20		10 to 100 A	120 AAC
A82-10/20 2 A82-10/20 2		25 to 250 A 50 to 500 A	300 AAC 600 AAC
		30 10 300 A	UUU AAC
E83 ranges (21 F83-20 50	to 20 mA input)	5 to 50 A	100 AAC
		5 10 50 A	TOU AAC
Contact input DIC01		Terminals Z1,	V1
PIC01		Terminals 8, 9	
Disabled		$> 10 \text{ k}\Omega$	
Enabled		< 500 Ω	
Latch disable	9	> 500 ms	

Output Specifications

1 or 2 x SPDT relays 250 VAC		
μ		
8 A @ 250 VAC		
5 A @ 24 VDC		
2.5 A @ 250 VAC		
2.5 A @ 24 VDC		
\geq 30 x 10 ⁶ operations		
≥ 10 ⁵ operations		
(at 8 A, 250 V, $\cos \varphi = 1$)		
≤ 7200 operations/h		
\geq 2 kVAC (rms)		
4 kV (1.2/50 µs)		

Supply Specifications

Power supply Rated operational voltage through terminals: A1, A2 or A3, A2 (DIC01) 2, 10 or 11, 10 (PIC01)	Overvoltage cat. III (IEC 60664, IEC 60038)		
D48:	24 to 48 VAC/DC ± 15%		
B23:	45 to 65 Hz, insulated 115/230 VAC ± 15% 45 to 65 Hz, insulated		
Dielectric voltage	DC supply AC supply		
Supply to input	2 kV 4 kV		
Supply to output	4 kV 4 kV		
Input to output	4 kV 4 kV		
Rated operational power			
AC	5 VA		
DC	3 W		

General Specifications

Power ON delay	$1 s \pm 0.5 s \text{ or } 6 s \pm 0.5 s$	Housing		
Reaction time	(input signal variation from	Dimensions	DIC01	45 x 80 x 99.5 mm
	-20% to +20% or from		PIC01	36 x 80 x 94 mm
	+20% to -20% of set value)	Material		PA66 or Noryl
Alarm ON delay	< 100 ms	Weight		Approx. 250 g
Alarm OFF delay	< 100 ms	Screw terminals		
Accuracy	(15 min warm-up time)	Tightening torque		Max. 0.5 Nm
Temperature drift	± 1000 ppm/°C	0 0 1		acc. to IEC 60947
Delay ON alarm	$\pm 10\%$ on set value ± 50 ms	Product standard		EN 60255-6
Repeatability	± 0.5% on full-scale	Approvals		UL, CSA
Indication for		CE Marking		L.V. Directive 2006/95/EC
Power supply ON	LED, green	CE maning		EMC Directive 2004/108/EC
Alarm ON	LED, red (flashing 2 Hz	EMC		
Output standard ON	during delay time)	Immunity		According to EN 60255-26
Output relay ON	1 or 2 x LED(s), yellow			According to EN 61000-6-2
Environment	(EN 60529)	Emissions		According to EN 60255-26
Degree of protection	IP 20			According to EN 61000-6-3
Pollution degree	3 (DIC01), 2 (PIC01)			3
Operating temperature	-20 to 60°C, R.H. < 95%			
Storage temperature	-30 to 80°C, R.H. < 95%			

Mode of Operation

DIC01 and PIC01 monitor both AC and DC current and voltage. DIC01 can also monitor positive and negative DC voltage connecting terminals Y1 and Z3.

Example 1

(no contact input under+over voltage - 2 x SPDT N.D. relays (1 x SPDT for PIC01) - TRMS)

DIC01: One relay operates when the voltage drops below the under voltage set point for more than the respective delay time. It releases when the voltage exceeds the set level plus the set hysteresis. The other relay operates when the voltage exceeds the over voltage set point for more than the respective delay time. It releases when the voltage drops below the set level minus hysteresis.

PIC01: The relay operates when the voltage drops below the under voltage set level for more than the respective set delay time or when it exceeds the over voltage set level for more than the relative set delay time. The relay releases when the voltage exceeds the under voltage set level plus hysteresis and it drops below the over voltage set level minus hysteresis (the hysteresis is the same for both set levels).

Example 2

(latch enable active under+under current - 2 x SPDT relays (1 x SPDT for PIC01) - TRMS)

DIC01: Each relay operates and latches when the current drops below the respective set level for more than the respective delay time. Provided that the current has exceeded the respective set level plus hysteresis, each relay releases when the contact input's connection is interrupted.

PIC01: The relay operates when the current drops below the higher set level for more than the respective delay time. Provided that the current has exceeded the higher set level plus hysteresis the relay releases when the contact input's connections is interrupted.

Note

Different delay times can be used for appropriate reaction according to the set points.

Example 3

(inhibit enable active over+over current with MI CT - DPDT relay (SPDT for PIC01) - TRMS) Provided that the contact

input's connection is interrupted, the relay operates when the current flowing in the MI CT exceeds the lower set level for more than the respective delay time. It releases when the current drops below the lower set level minus hysteresis or when the contact input's pins are connected.

Example 4

(inhibit enable active over+over current with A82-10 CT - DPDT relay (1 x SPDT for PIC01) - TRMS Provided that the contact input's connection is interrupted, the relay operates when the current flowing in the A82-10 CT exceeds the lower set level for more than its delay time. It releases when the current drops below the lower set level minus hysteresis or when the contact input's pins are connected.

CARLO GAVAZZI

Example 5 (DIC01 only)

(no contact input under+over voltage - 2 x SPDT N.D. relays plus/minus DC

One relay operates when the voltage drops below the under voltage set point for more than the respective delay time. It releases when the voltage exceeds the set level plus the set hysteresis. The other relay operates when the voltage exceeds the over voltage set point for more than the respective delay time. It releases when the voltage drops below the set level minus hysteresis.

In this case the spare front label has to be placed on the device for proper level adjustment.

Note

When the inhibit contact is opened, if the input signal is already in alarm position, the delay time needs to elapse before relay(s) activation.

Function/Range/Level and Time Delay Setting

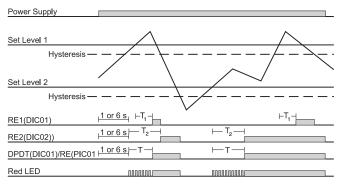
Adjust the input range setting the DIP switches 1 and 2 of the main black selector as shown below.

Select the desired function setting the DIP switches 3 to 6 of the black selector and 1, 2 of the small red selector as shown below. .. .

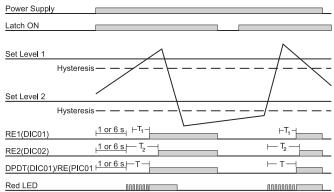
Selection of level, time delay and hysteresis:

Upper knob:

Setting of hysteresis on relative scale: 0 to 30% on set value.

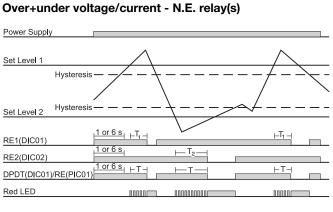

Centre knobs: Current level setting on relative scale: 10 to 110% on full scale.

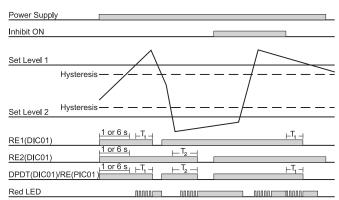
Lower knobs: Setting of delay on alarm time on absolute scale (0.1 to 30 s).

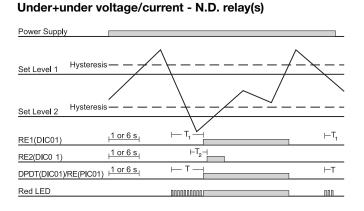

	ring range (de					
		SW1	ON	ON	OFF	
Connect	Input term.	SW2	OFF	ON	ON	
None	DIC01: Y1,Y2 PIC01: 5,7		0.5 to 5 mA AC/DC	2 to 20 mA AC/DC	None	
Y1 to Z3	DIC01: Y1,Y2		-5 to +5 mA DC	-20 to +20 mA DC	None	
None	DIC01: Y1,Y3 PIC01: 6,7		0.1 to 1V AC/DC	4 V _p	1 to 10 V AC/DC	
Y1 to Z3	DIC01: Y1,Y3		-1 to +1 V DC	None	-10 to +10 V DC	
Relay(s	Relay(s) working mode					
OFF: No	ormally Energ	ized	(NE)			
Power	ON delay					
	s ± 0.5 s					
	t input					
Set Poi	nt 1 (SP1) mo	onito	ring functio	on		
	None Y1 to Z3 None Y1 to Z3 Y1 to Z3 Y1 to Z3 ON: No OFF: No OFF: No OFF: No OFF: 1 ON: 6 OFF: 1 ON: 6 OFF: 1 Set Poi ON: 0	None DIC01: Y1,Y2 PIC01: 5,7 Y1 to Z3 DIC01: Y1,Y2 None DIC01: Y1,Y3 PIC01: 6,7 Y1 to Z3 DIC01: Y1,Y3 Y1 to Z3 DIC01: Y1,Y3 ON: Normally De-en OFF: Normally De-en OFF: Normally Energ Power ON delay ON: 6 s ± 0.5 s OFF: 1 s ± 0.5 s OFF: 1 s ± 0.5 s Contact input ON: Latch function OFF: Inhibit function OFF: ONT 1 (SP1) mo ON: Over current or	None DIC01: Y1,Y2 PIC01: 5,7 Y1 to Z3 DIC01: Y1,Y2 None DIC01: Y1,Y3 PIC01: 6,7 Y1 to Z3 DIC01: Y1,Y3 PIC01: 6,7 Y1 to Z3 Y1 to Z3 DIC01: Y1,Y3 Relay(s) working mode ON: Normally De-energiz OFF: Normally Energized of Power ON delay ON: 6 s ± 0.5 s OFF: 1 s ± 0.5 s Contact input ON: Latch function enable OFF: Inhibit function enable ON: Latch function enable ON: OVer current or volta	NoneDIC01: Y1,Y2 PIC01: 5,70.5 to 5 mA AC/DCY1 to Z3DIC01: Y1,Y2 DIC01: Y1,Y2-5 to +5 mA DCNoneDIC01: Y1,Y3 PIC01: 6,70.1 to 1V AC/DCY1 to Z3DIC01: Y1,Y3 PIC01: 6,7-1 to +1 V DCY1 to Z3DIC01: Y1,Y3 DIC01: Y1,Y3-1 to +1 V DCRelay(s) working mode ON: Normally De-energized (ND) OFF: Normally Energized (NE)Power ON delay ON:6 s \pm 0.5 s OFF: 1 s \pm 0.5 sContact input OFF: Inhibit function enable	NoneDIC01: Y1,Y2 PIC01: 5,70.5 to 5 mA AC/DC2 to 20 mA AC/DCY1 to Z3DIC01: Y1,Y2 PIC01: 6,7-5 to +5 M DC-20 to +20 mA DCNoneDIC01: Y1,Y3 PIC01: 6,70.1 to 1V AC/DC4 VpY1 to Z3DIC01: Y1,Y3 PIC01: 6,7-1 to +1 V DCNoneY1 to Z3DIC01: Y1,Y3 PIC01: 6,7-1 to +1 PIC01: 6,7NoneY1 to Z3DIC01: Y1,Y3 PIC01: 6,7-1 to +1 PIC01: 6,7NoneON: Normally De-energized (ND) OFF: Normally Energized (NE)-1 to +1 PIC01: 6,7NonePower ON delay ON: 6 s \pm 0.5 s-1 to +1 ON: 1 s \pm 0.5 s-1 to +1 PIC01: 6,7ON: Latch function enable OFF: Inhibit function enable-1 to +1 PIC01: 6,7-1 to +1 PIC01: 6,7Set Point 1 (SP1) monitoring function ON: Over current or voltage-1 to +1 PIC01: 6,7-1 to +1 PIC01: 6,7<	

Operation Diagrams

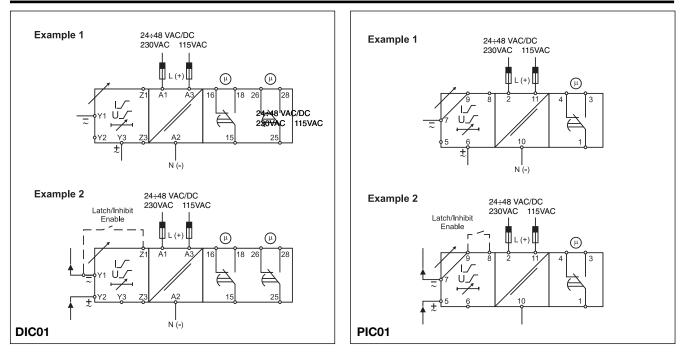
Over+over voltage/current - N.D. relay(s)




Over+over voltage/current - Latch - N.D. relay(s)


CARLO GAVAZZI

Operation Diagrams (cont.)



Over+under voltage/current - Inhibit - N.E. relay(s)

Wiring Diagrams

