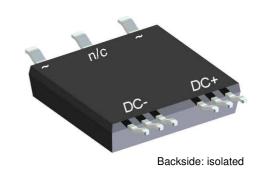
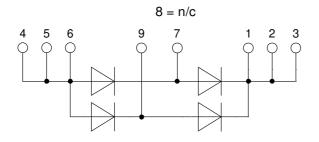


DLA100B1200LB


High Efficiency Standard Rectifier 1~ Rectifier VRRM = 1200 V IDAV = 124 A IFSM = 400 A

1~ Rectifier Bridge

Part number


DLA100B1200LB

Marking on Product: DLA100B1200LB

20190212b

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very low forward voltage drop
- Improved thermal behaviour

Applications:

• Diode Bridge for main rectification

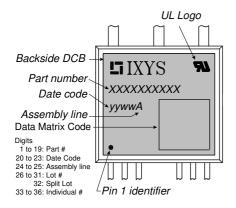
Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.


DLA100B1200LB

Rectifier			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V _{RRM}	max. repetitive reverse blocking voltage		$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	$V_{R} = 1200 V$	$T_{VJ} = 25^{\circ}C$			10	μA
		$V_{R} = 1200 V$	$T_{vJ} = 150^{\circ}C$			0.1	mA
V _F	forward voltage drop	I _F = 50 A	$T_{vJ} = 25^{\circ}C$			1.23	V
		I _F = 100 A				1.45	V
		$I_{\rm F} = 50 {\rm A}$	$T_{vJ} = 150 ^{\circ}\text{C}$			1.15	V
		$I_{F} = 100 \text{ A}$				1.44	V
DAV	bridge output current	T _c = 135°C	$T_{vJ} = 175 ^{\circ}C$			124	Α
		180° sine					1
V _{F0}	threshold voltage		T _{vJ} = 175°C			0.75	V
r _F	slope resistance } for power	loss calculation only				4.2	mΩ
R _{thJC}	thermal resistance junction to ca	ase				1	K/W
R _{thCH}	thermal resistance case to heatsink				0.40		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			150	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			400	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			430	Α
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			340	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			365	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			800	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			770	A²s
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150 ^{\circ}\text{C}$			580	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			555	A²s
C	junction capacitance	$V_{B} = 400 \text{ V}; \text{ f} = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		13		pF

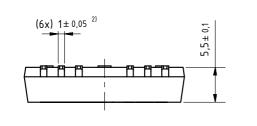
20190212b

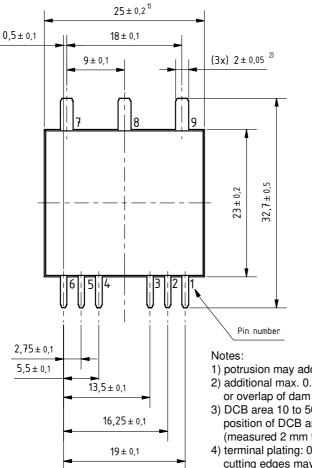
Package SMPD					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
	RMS current	per terminal				100	Α	
T _{vj}	virtual junction temperature			-55		175	°C	
T _{op}	operation temperature			-55		150	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	Ν	
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	1.6			mm	
d _{Spb/Apb}			terminal to backside	4.0			mm	
V	<i>isolation voltage</i> t = 1 second t = 1 minute	t = 1 second		3000			V	
		50/60 Hz, RMS; liso∟ ≤ 1 mA	2500			V		

Part description

- L = Low Voltage Standard Rectifier
- A = (up to 1200V)
- 100 = Current Rating [A]
- $B = 1 \sim \text{Rectifier Bridge}$
- 1200 = Reverse Voltage [V]
- LB = SMPD-B

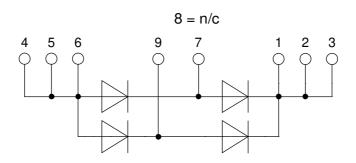
Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DLA100B1200LB-TUB	DLA100B1200LB	Tube	20	517180
Alternative	DLA100B1200LB-TRR	DLA100B1200LB	Tape & Reel	200	517187


Equiva	alent Circuits for	Simulation	* on die level	$T_{vJ} = 175 ^{\circ}C$
)R	Rectifier		
V _{0 max}	threshold voltage	0.51		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	1.3		mΩ


20190212b

DLA100B1200LB

Outlines SMPD



A (8 : 1) $0^{+0.15}$ 2° 2° 2° 2° 1° 4 ± 0.05 0.55 ± 0.1 0.55 ± 0.1 0.55 ± 0.1

1) potrusion may add 0.2 mm max. on each side

- 2) additional max. 0.05 mm per side by punching misalignement or overlap of dam bar or bending compression
- DCB area 10 to 50 μm convex; position of DCB area in relation to plastic rim: ±25 μm (measured 2 mm from Cu rim)
- 4) terminal plating: 0.2 1 μm Ni + 10 25 μm Sn (gal v.) cutting edges may be partially free of plating

IXYS reserves the right to change limits, conditions and dimensions.