

PART OBSOLETE – NO ALTERNATE PART

DM1231-02SO

2-CHANNEL LOW CAPACITANCE ESD PROTECTION ARRAY

Product Summary

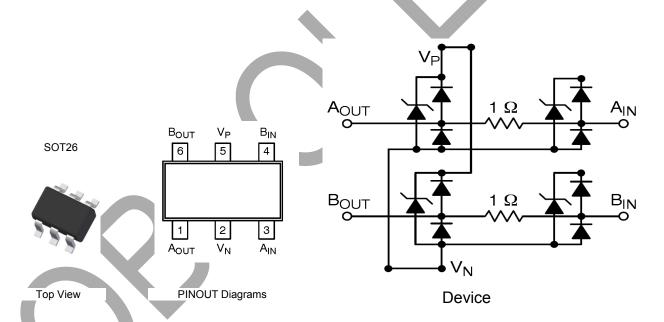
V _{F (Typ)}	V _{P (Typ)}	C _{OUT (Typ)}
0.8V	5V	1.5pF

Description

DM1231-02SO is a high-performance device suitable for protecting two high-speed channels. This product is assembled in SOT26 package. It has high ESD surge capability and low capacitance.

Applications

Typically Used for High Speed Ports such as:


- USB 2.0
- IEEE1394
- HDMI
- Laptop and Personal Computers
- Flat Panel Displays
- Video Graphics Displays
- SIM Ports

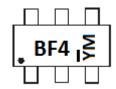
Features

- Contact discharge per IEC61000-4-2 standard: ±12 kV (OUT Pins), ±4 kV(IN Pins)
- Withstands over 1000 ESD Strikes
- 1.5pF Typical Capacitance from OUT to V_N
- Two channels of ESD Protection
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Mechanical Data

- Case: SOT26
- Case Material: Molded Plastic, "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020 (Lead Free Plating).
 Solderable per MIL-STD-202, Method 208 63
- Weight: 0.016 grams (Approximate)

Ordering Information (Note 4)


Product	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DM1231-02SO-7	Standard	BF4	7	8	3000/Tape & Reel

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

BF4= Product Type Marking Code YM = Date Code Marking Y = Year (ex: D = 2016) M = Month (ex: 9 = September) Note: "—" represents internal code

Date Code Key

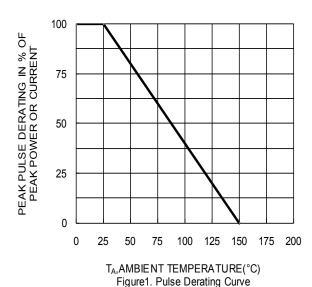
Year	20	15	20	16	20	17	20	18	20	19	20	20
Code	()	[)	Е		F			3	_	1
					<u>.</u>							
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D

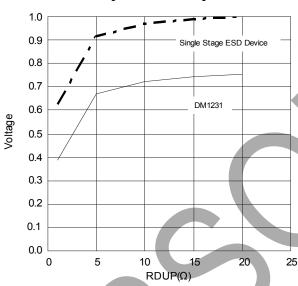
Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Value	Unit
Operating Supply Voltage (VP)	6	V
Diode Forward Current(A _{OUT} /B _{OUT} Side)	8	mA
Continuous Current through Signal Pins (IN to OUT) 1,000 hours	125	mA
ESD Protection – Contact Discharge (Note5)	±12	kV
LOD Totection - Contact Discharge (Notes)	±4	kV

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation Typical (Note 6)	PD	300	mW
Thermal Resistance, Junction to Ambient Typical (Note 6)	R _{θJA}	417	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C


Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Тур	Max	Unit	Test Conditions
Operating Supply Voltage	VP		5	5.5	V	_
Reverse Current (Note 7)	I _R	7	_	1	μA	$V_P = 5V$, V_P to V_N
Diode Forward Voltage	V _F	0.6	0.8	0.95	V	I _F = 8mA, Top Diode
Diode Forward Voltage	VF	0.6	0.8	0.95	V	I _F = 8mA, Bottom Diode
Residual ESD Peak Current on RDUP(Resistance of Device Under Protection)	I _{RES}	_	2.3	_	Α	IEC 61000-4-2 contact mode 8kV, RDUP = 5Ω
Channel Clamping Voltage (Note 8)	V _{CL_Positive}	1	+9	-	V	I _{PP} =1A, tp = 8/20μs
Chairier Clamping Voltage (Note 8)	V _{CL_Negative}	l	-1.4	l	V	Zap at OUT, Measure at IN
Dynamic Resistance	R _{DYN_Positive}	l	0.4	l	Ω	I _{PP} =1A, tp = 8/20μs
Dynamic Resistance	R _{DYN_Negative}		0.3		Ω	Zap at OUT, Measure at IN
Channel Input Capacitance(Note 9)	Соит	_	1.5	_	pF	$f = 1MHz$, $V_P = 5V$, $V_{OSC} = 2.5V$, $V_{OSC} = 30mV$
Channel to Channel Capacitance Match	ΔC_{OUT}	_	0.02	_	pF	$f = 1MHz$, $V_P = 5V$, $V_{OSC} = 2.5V$, $V_{OSC} = 30mV$
Series Resistance	Rs		1	_	Ω	_
Channel to Channel Resistance Match	ΔR_{S}		±10	±30	mΩ	

Notes:

- 5. Standard test condition is IEC61000-4-2 level 4 test circuit with each (AOUT/BOUT) pin subjected to \pm 12kV contact discharge for 1000 pulses. Discharges are timed at 1 second intervals and all 1000 strikes are completed in one continuous test run.
- 6. Device mounted on FR-4 PCB pad layout (2oz copper) as shown on Diodes, Inc. suggested pad layout, which can be found on our website at http://www.diodes.com/package-outlines.html.
- 7. Short duration pulse test used to minimize self-heating effect.
- 8. Clamping voltage value is based on an $8x20\mu s$ peak pulse current (I_{pp}) waveform.
- 9. Capacitance measured from V_{OUT} to V_N with V_{IN} floating.

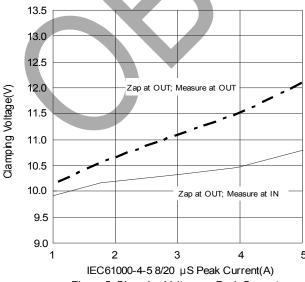
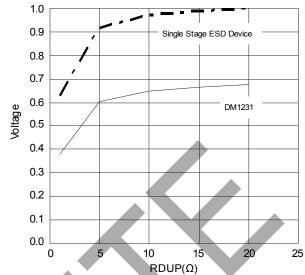
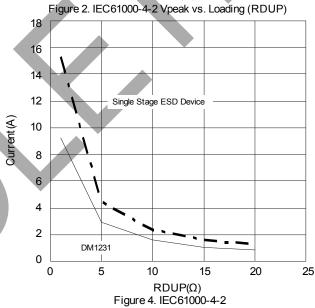




Figure 5. Clamping Voltage vs.Peak Current

 I_{RES} (Residual ESD Peak Current) vs. Loading (RDUP)

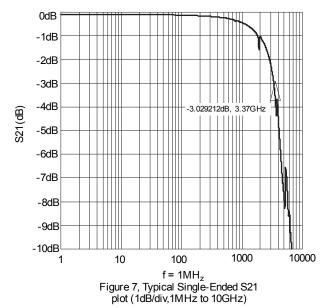
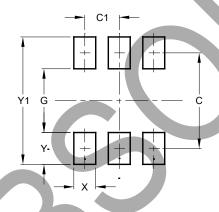



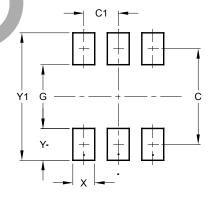
Figure 6. Capacitance vs. Bias Voltage



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT26 (SC74R)



Dimensions	Value (in mm)
С	2.40
C1	0.95
G	1.60
Х	0.55
Υ	0.80
Y1	3.20

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT26 (SC74R)

Dimensions	Value (in mm)
С	2.40
C1	0.95
G	1.60
Х	0.55
Υ	0.80
Y1	3.20