

SINGLE CHANNEL SMART LOAD SWITCH

Description

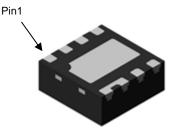
The DML3008LFDS load switch provides a component and areareducing solution for efficient power domain switching. In addition to integrated control functionality with ultra-low on-resistance, this device offers system safeguards and monitoring via fault protection and power good signaling. This cost effective solution is ideal for power management and hot-swap applications requiring low power consumption in a small footprint.

Applications

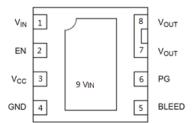
- Portable Electronics and Systems
- Notebook and Tablet Computers
- Telecom, Networking, Medical, and Industrial Equipment
- Set-Top Boxes, Servers, and Gateways
- Hot-Swap Devices and Peripheral Ports

Features and Benefits

- Advanced Controller with ChargePump
- Integrated N-Channel MOSFET with Ultra Low R_{ON}
- Input Voltage Range 0.5V to 20V
- Internal Slew rate controller
- Power Good Signal
- Thermal Shutdown
- Extremely Low Standby Current
- Load Bleed (Quick Discharge)
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/


Mechanical Data

- Package: V-DFN2020-8
- Package Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish NiPdAu over Copper Leadframe. Solderable per MIL-STD-202, Method 208
- Weight: 0.011 grams (Approximate)


V-DFN2020-8 (Type N)

Top View

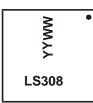
Bottom View

Top View

Ordering Information (Note 4)

Part Number	Packago	Packing		
Part Number	Package	Qty.	Carrier	
DML3008LFDS-7	V-DFN2020-8 (Type N)	3,000	Tape & Reel	

Notes:


- $1.\ No\ purposely\ added\ lead.\ Fully\ EU\ Directive\ 2002/95/EC\ (RoHS),\ 2011/65/EU\ (RoHS\ 2)\ \&\ 2015/863/EU\ (RoHS\ 3)\ compliant.$
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds
- $4. For packaging details, go to our website at \ https://www.diodes.com/design/support/packaging/diodes-packaging/. \\$

Marking Information

Site 1:

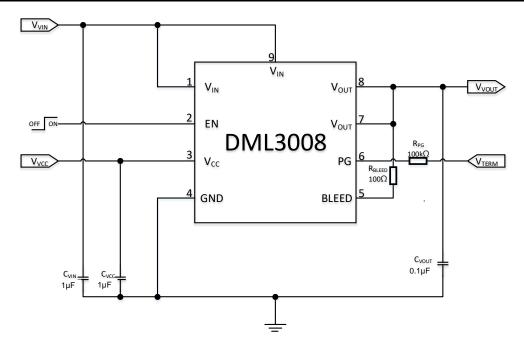
V-DFN2020-8 (Type N)

LS308 = Product Type Marking Code YYWW = Date Code Marking YY = Last Two Digits of Year (ex: 21 = 2021) WW = Week Code (01 to 53)

Site 2:

V-DFN2020-8 (Type N)

LS308 = Product Type Marking Code YWX = Date Code Marking Y = Year (ex: 1 = 2021) W = Week (ex: a = Week 27; z Represents Week 52 and 53) X = Internal Code (ex: U = Monday)

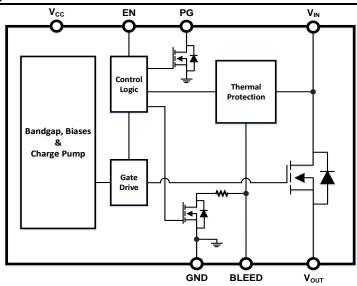

Date Code Key

Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Code	0	1	2	3	4	5	6	7	8	9	0	1

Week	1-26	27-52	53
Code	A-Z	a-z	z

Internal Code	Sun	Mon	Tue	Wed	Thu	Fri	Sat
Code	Т	U	V	W	Χ	Υ	Z

Typical Application Circuit



Pin Description

Pin Number	Pin Name	Pin Function
1, 9	V _{IN}	Drain of internal MOSFET(0.5V to 20V), Pin 1 must be connected to Pin 9
2	EN	Active-high digital input used to turn on the MOSFET, this pin has an internal pull down resistor to GND
3	Vcc	Supply voltage to controller (3.0V to 5.5V)
4	GND	Controller ground
5	BLEED	Load bleed connection, must be tied to V _{OUT} through a resistor ≤ 100MΩ
6	PG	Active–high, open–drain output that indicates when the gate of the MOSFET is fully charged, external pull up resistor ≥1kΩ to an external voltage source required; tie to GND if not used.
7, 8	Vout	Source of internal MOSFET connected to load

Functional Block Diagram

Absolute Maximum Rating

Parameter	Rating
V _{IN} , BLEED, V _{OUT} to GND	-0.3V to 24V
EN, Vcc, PG to GND	-0.3V to 6V
IMAX	10.5A
Storage Temperature (Ts)	-65°C to +150°C
ESD Capability, Human Body Model	2kV
ESD Capability, Charge Device Model	500V

Recommended Operating Ranges

Parameter	Rating
Supply Voltage (V _{CC})	3V to 5.5V
Input Voltage (V _{IN})	0.5V to 20V
Ambient Temperature (T _A)	-40°C to +85°C
Junction Temperature (TJ)	-40°C to +125°C
Package Thermal Resistance (θις)	5.3°C/W
Package Thermal Resistance (θ _{JA})	40°C/W

Electrical Characteristics (TA = +25°C, V_{VCC} = 3.3V, V_{VIN} = 5V = V_{TERM} , C_{VIN} = 1 μ F, C_{VOUT} = 0.1 μ F, C_{VCC} = 1 μ F, C_{SR} = 1nF, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input Voltage	_	0.5	_	20	V
Vcc	Supply Voltage	_	3.0	_	5.5	V
	V. Burnaria Carrata Carrant	VEN = VCC = 3V, VIN = 12V	_	150	250	μΑ
IDYN	Vcc Dynamic Supply Current	VEN = VCC = 5.5V, VIN = 1.8V	_	190	350	μA
	V Charteleura Campala Campant	Vcc = 3V, Ven = 0V	_	0.1	1	μΑ
I _{STBY}	V _{CC} Shutdown Supply Current	Vcc = 5.5V, V _{EN} = 0V	_	0.1	2	μA
VENH	EN High Level Voltage	Vcc = 3V to 5.5V	2.0	_	_	V
VENL	EN Low Level Voltage	Vcc = 3V to 5.5V	_	_	0.8	V
_	Bleed Resistance	Vcc = 3V, Ven = 0V	90	120	150	Ω
R _{BLEED}	Bleed Resistance	Vcc = 5.5V, Ven = 0V	70	100	130	Ω
	Dianal Dia Lankana Commant (Nata 5)	V _{CC} = V _{EN} = 3V, V _{IN} = 1.8V	_	0.3	_	μΑ
IBLEED	Bleed Pin Leakage Current (Note 5)	V _{CC} = V _{EN} = 3V, V _{IN} = 20V	_	0.5	_	μΑ
Vpgl	PG Output Low Voltage	Vcc = 3V; Isink = 5mA	_	_	0.2	V
I _{PG}	PG Output Leakage Current	V _{CC} = 3V; V _{TERM} = 3.3V	_	_	100	nA
Switching D	Device		•	•	•	
		$V_{CC} = 3.3V, V_{IN} = 1.8V$	_	9	12.5	mΩ
		$V_{CC} = 3.3V, V_{IN} = 5V$		9	12.5	mΩ
Ron	Switch On-State Resistance	$V_{CC} = 3.3V$, $V_{IN} = 12V$	_	9	12.5	mΩ
KON	Switch On-State Resistance	Vcc = 5V, ViN = 1.8V	_	7.5	10.5	mΩ
		Vcc = 5V, Vin = 5V	_	7.5	10.5	mΩ
		Vcc = 5V, V _{IN} = 12V	_	7.5	10.5	mΩ
I _{LEAK}	Input Shutdown Supply Current	VEN = 0V, VIN = 24V	_	_	20	μA
R _{PDEN}	EN Pull Down Resistance	_	50	100	150	kΩ
Fault Protect	ction					
T _{OTP}	Thermal Shutdown Threshold	V _{CC} = 3V to 5.5V	_	145	_	°C
Тотрнуѕ	Thermal Shutdown Hysteresis	Vcc = 3V to 5.5V	_	20	_	°C
Vuvlo	Vcc Lockout Threshold	_	2.3	2.55	2.8	V
Vuvlohys	V _{CC} Lockout Hysteresis	_	_	200	_	mV

Notes: 5. Guaranteed by design. Not subject to production testing.

Switching Characteristics ($T_A = +25^{\circ}C$, $V_{TERM} = V_{VCC} = 5V$, $R_{PG} = 100k\Omega$, $R_{VOUT} = 10\Omega$, $C_{VIN} = 1\mu F$, $C_{VOUT} = 0.1\mu F$, $C_{VCC} = 1\mu F$, $R_{BLEED} = 100\Omega$, unless otherwise specified.)

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
V _{IN} = 1.8V		·					
	Output Turn On Dalay times	Vcc = 3.3V	_	200	_		
tond	Output Turn-On Delay time	V _{CC} = 5V	_	130	_		
	Output Turn Off Delay time	V _{CC} = 3.3V	_	0.5	_	μs	
toffd	Output Turn-Off Delay time	Vcc = 5V	_	0.5	_		
4	Power Good Turn-On Time	Vcc = 3.3V	_	0.4	_	mo	
tpgon	Power Good Turn-On Time	V _{CC} = 5V	_	0.35	_	ms	
.	Develop On ad Trans. Off Trans.	Vcc = 3.3V	_	20	_		
tpgoff	Power Good Turn-Off Time	Vcc = 5V	_	15	_	ns	
SR	Output Clay Bata	Vcc = 3.3V	_	17	_	Is\ //o	
SK	Output Slew Rate	Vcc = 5V	_	17	_	kV/s	
V _{IN} = 12V							
t a	Output Turn-On Delay time	Vcc = 3.3V	_	170	_		
tond	Output Turn-On Delay time	Vcc = 5V	_	110	_		
4	Output Turn Off Delay time	Vcc = 3.3V	_	0.6	_	μs	
toffd	Output Turn-Off Delay time	$V_{CC} = 5V$	_	0.55	_		
	Power Good Turn-On Time	Vcc = 3.3V	_	0.6	_		
tpgon	Power Good Turn-On Time	Vcc = 5V	_	0.5	_	ms	
tpgoff Power Good T	Power Good Turn-Off Time	V _{CC} = 3.3V	_	20	_	no	
	Power Good ruin-Off Time	Vcc = 5V	_	15	_	ns	
CD	Output Slave Bata	Vcc = 3.3V	_	43	_	14/1/0	
SR Outp	Output Slew Rate	Vcc = 5V	_	43	_	kV/s	

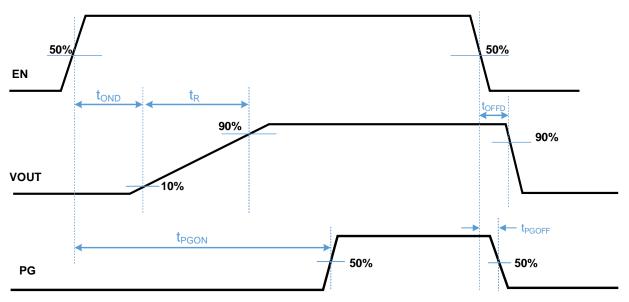
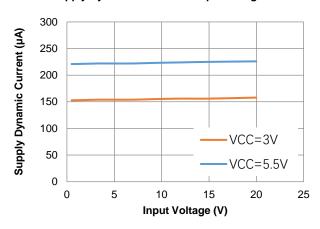
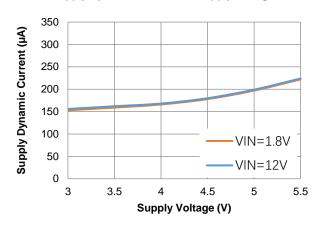
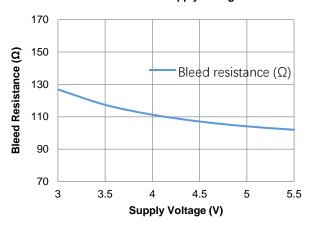
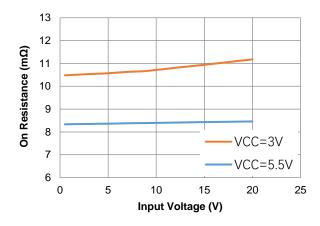



Figure 1 Timing Diagram

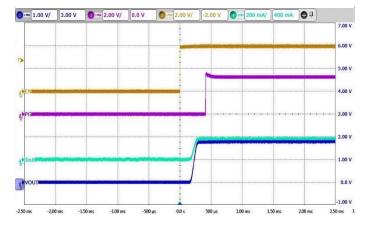


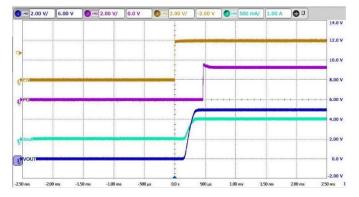
Performance Characteristics


Supply Dynamic Current vs. Input voltage

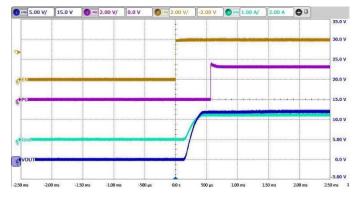

Supply Dynamic Current vs. Supply Voltage

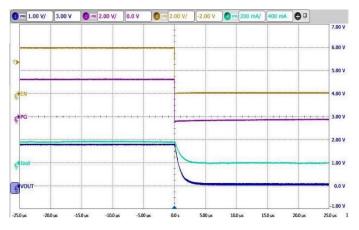
Bleed Resistance vs. Supply Voltage

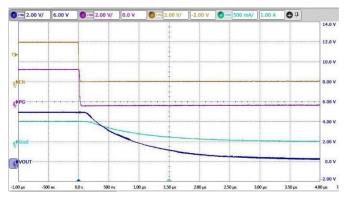

On Resistance vs. Input Voltage

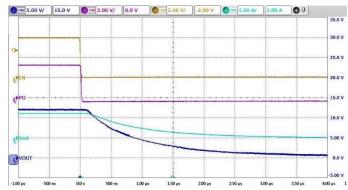


Performance Characteristics

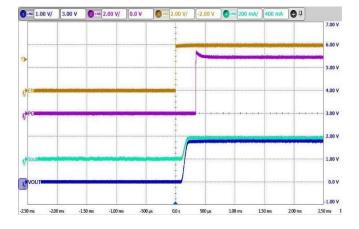

 $\label{eq:total_constraints} Turn~On~Response $$V_{IN} = 1.8V,~V_{CC} = 3.3V,~V_{EN} = 0V~to~3.3V,~R_L = 10\Omega$$

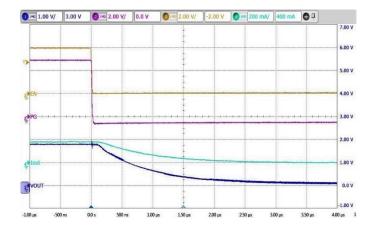

 $Turn \ On \ Response$ $V_{IN} = 5V, \ V_{CC} = 3.3V, \ V_{EN} = 0V \ to \ 3.3V, \ R_L = 10\Omega$


 $Turn~On~Response \\ V_{IN} = 12V,~V_{CC} = 3.3V,~V_{EN} = 0V~to~3.3V,~R_L = 10\Omega$

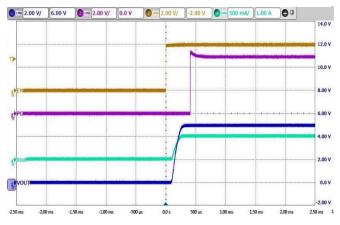

 $Turn~Off~Response \\ V_{IN} = 1.8V,~V_{CC} = 3.3V,~V_{EN} = 0V~to~3.3V,~R_L = 10\Omega$

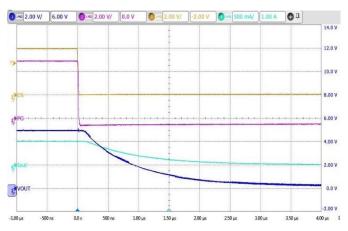
 $\label{eq:Vin} Turn~Off~Response \\ V_{IN} = 5V,~V_{CC} = 3.3V,~V_{EN} = 0V~to~3.3V,~R_L = 10\Omega$

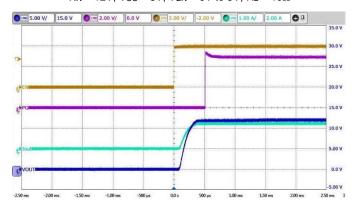

 $\label{eq:Vin} Turn~Off~Response $$V_{IN}=12V,~V_{CC}=3.3V,~V_{EN}=0V~to~3.3V,~R_L=10\Omega$$

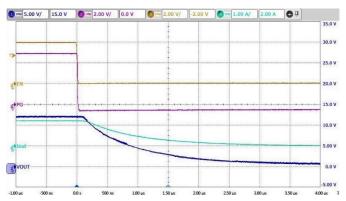


Performance Characteristics


 $\label{eq:total_problem} Turn~On~Response \\ V_{IN} = 1.8V,~V_{CC} = 5V,~V_{EN} = 0V~to~5V,~R_L = 10\Omega$


Turn Off Response $V_{IN} = 1.8V$, $V_{CC} = 5V$, $V_{EN} = 0V$ to 5V, $R_L = 10\Omega$


 $\label{eq:Vin} Turn~On~Response \\ V_{IN} = 5V,~V_{CC} = 5V,~V_{EN} = 0V~to~5V,~R_L = 10\Omega$


 $\label{eq:Vin} Turn~Off~Response \\ V_{IN} = 5V,~V_{CC} = 5V,~V_{EN} = 0V~to~5V,~R_L = 10\Omega$

 $\label{eq:total_control} Turn~On~Response $$V_{IN} = 12V,~V_{CC} = 5V,~V_{EN} = 0V~to~5V,~R_L = 10\Omega$$

 $Turn \ Off \ Response$ $V_{IN} = 12V, \ V_{CC} = 5V, \ V_{EN} = 0V \ to \ 5V, \ R_L = 10\Omega$

Application Information

General Description

The DML3008LFDS is a single channel load switch with a controlled adjustable turn-on and integrated PG indicator in an 8-pin DFN20x20 package. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.5V to 24V and can support a maximum continuous current of 10A. The wide input voltage range and high current capability enable the device to be used across multiple designs and end equipment. $11m\Omega$ on-resistance minimizes the voltage drop across the load switch and power loss from the load switch.

Integrated PG indicator notifies the system about the status of the load switch to facilitate seamless power sequencing. During shutdown, the device has very low leakage current, thereby reducing unnecessary leakages for downstream modules during standby. The DML3008LFDS also embedded 100Ω on-chip resistor on BLEED pin for quick discharge of the output when switch is disabled.

Enable Control

The DML3008LFDS device allows for enabling the MOSFET in an active-high configuration. When the VCC supply pin has an adequate voltage applied and the EN pin is at logic high level, the MOSFET will be enabled. Similarly, when the EN pin is at logic low level, the MOSFET will be disabled. An internal pull down resistor to ground on the EN pin ensures that the MOSFET will be disabled when not being driven.

Power Sequencing

The DML3008LFDS device functions with any power sequence, but the output turn-on delay performance can vary from what is specified. To archive the specified performance that we recommended power sequences is:

- 1. Vcc → Vin → Ven
- 2. VIN → VCC → VEN

Load Bleed (Quick Discharge)

The DML3008LFDS device has an internal bleed discharge device, which is used to bleed the charge off of the load to ground after the MOSFET is disabled. The bleed discharge device is enabled whenever the MOSFET is disabled. The MOSFET and the bleed device are never concurrently active.

The BLEED pin must be connected to V_{OUT} either directly or through an external resistor, R_{EXT} . R_{EXT} should not exceed 100M Ω and can be used to increase the total bleed resistance.

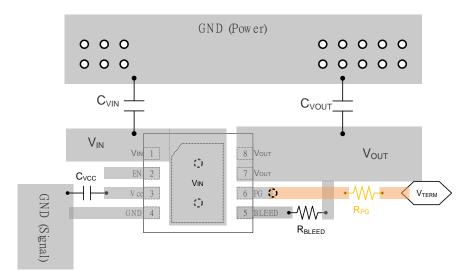
Care must be taken to ensure that the power dissipated across R_{BLEED} is kept at safe level. The maximum continuous power that can be dissipates across R_{BLEED} is 0.4W. R_{EXT} can be used to decrease the amount of power dissipated across R_{BLEED}.

Power Good

The DML3008LFDS device has a power good output (PG) that can be used to indicate when the gate of the MOSFET is driven high and the switch is on with the on-resistance close to its final value (full load ready). The PG pin is an active-high, open-drain output that requires an external pull-up resistor, R_{PG} , greater than or equal to $1k\Omega$ to an external voltage source, V_{TERM} , compatible with input levels of those devices connected to this pin.

The power good output can be used as the enable signal for other active-high devices in the system. This allows for guaranteed by design power sequencing and reduces the number of enable signals needed from the system controller. If the power good feature is not used in the application, the PG pin should be tied to GND.

Application Information (continued)

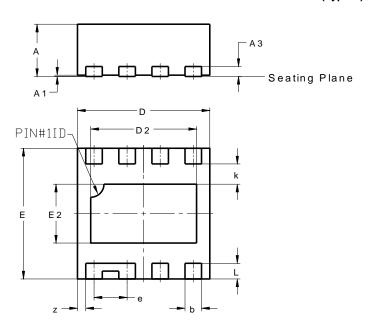

Thermal Shutdown

The DML3008LFDS device has equipped thermal shutdown protection for internal or externally generated excessive temperatures. This circuitry is disabled when EN is not active to reduce standby current. When an over-temperature condition is detected, the MOSFET is immediately turned off and the load bleed is active.

The part comes out of thermal shutdown when the junction temperature decreases to a safe operating temperature as dictated by the thermal hysteresis. Upon exiting a thermal shutdown state, and if EN remains active, the MOSFET will be turned on in a controlled fashion with the normal output turn-on delay and slew rate.

PCB Layout Consideration

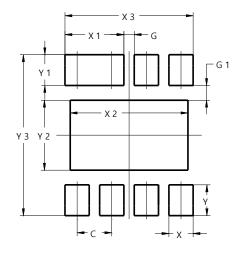
- 1. Place the input/output capacitors Cvin and Cvout as close as possible to the Vin and Vout pins.
- 2. The power traces which are VIN trace, VOUT trace and GND trace should be short, wide and directly for minimize parasitic inductance.
- 3. Place feedback resistance RBLEED as close as possible to BLEED pin.
- 4. Place Cvcc capacitor near the device pin.
- 5. Connect the signal ground to the GND pin, and keep a single connection from GND pin to the power ground behind the input or output capacitors.
- 6. For better power dissipation, via holes are recommended to connect the exposed pad's landing area to a large copper polygon on the other side of the printed circuit board. The copper polygons and exposed pad shall connect to V_{IN} pin on the printed circuit board.



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

V-DFN2020-8 (Type N)



V-DFN2020-8						
	(Type N)					
Dim	Dim Min Max Typ					
Α	0.75	0.85	0.80			
A1	0.00	0.05	0.02			
A3			0.152			
b	0.20	0.30	0.25			
D	1.95	2.05	2.00			
D2	1.50	1.70	1.60			
E	1.95	2.05	2.00			
E2	0.80	1.00	0.90			
е			0.50			
k			0.31			
L	0.19	0.29	0.24			
Z			0.125			
All	All Dimensions in mm					

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

V-DFN2020-8 (Type N)

Dimensions	Value (in mm)
С	0.500
G	0.150
G1	0.210
X	0.350
X1	0.850
X2	1.700
Х3	1.850
Y	0.440
Y1	0.440
Y2	1.000
Y3	2.300