

DMN61D8LVTQ

Product Summary

BV _{DSS}	R _{DS(ON)} max	I _D max T _A = +25°C
601/	1.8Ω @ V _{GS} = 5V	620m
000	2.4Ω @ V _{GS} = 3V	AUIOSO

Description and Applications

DMN61D8LVTQ provides a single component solution for switching inductive loads such as relays, solenoids, and small DC motors in automotive applications, without the need of a freewheeling diode. DMN61D8LVTQ accepts logic level inputs, thus allowing it to be driven by logic gates, inverters and microcontrollers. It is ideally suited for door, window and antenna relay coils.

INTEGRATED RELAY AND INDUCTIVE LOAD DRIVER

Features and Benefits

- Provides a reliable and robust interface between sensitive logic and DC relay coils
- Replaces 3 to 4 discrete components enabling PCB footprint to be reduced
- Internal active clamp removes the need for external zener diode
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- PPAP Capable (Note 4)

Mechanical Data

- Case: TSOT26
- Case Material: Molded Plastic, "Green" Molding Compound; UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals Connections: See Diagram
- Terminals: Finish Matte Tin Annealed over Copper Leadframe; Solderable per MIL-STD-202, Method 208 3
- Weight: 0.013 grams (Approximate)

Equivalent Circuit

Ordering Information (Note 5)

Part Number	Case	Packaging
DMN61D8LVTQ-7	TSOT26	3,000/Tape & Reel
DMN61D8LVTQ-13	TSOT26	10,000/Tape & Reel

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. Automotive products are AEC-Q101 qualified and are PPAP capable. Refer to http://www.diodes.com/product_compliance_definitions.html.

5. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

1D8 = Product Type Marking Code YM = Date Code Marking Y = Year (ex: D = 2016) M = Month (ex: 9 = September)

Date Code Key

Notes:

246 2040												
Year	201	6	2017		2018	20	19	2020		2021	2	2022
Code	D		E		F	(G	Н				J
Month	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	Ν	D

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Units	
Drain-Source Voltage		V _{DSS}	60	V	
Gate-Source Voltage			V _{GSS}	±12	V
Continuous Drain Current (Note 7)	Drain Current (Note 7) Steady State		ID	630 500	mA
Maximum Continuous Body Diode Forward Current	(Note 7)		Is	0.5	А
Single Pulse Drain-to-Source Avalanche Energy (For Relay's Coils/Inductive Loads of 80Ω or Higher	r) (T _J Initia	l = +85°C)	EZ	200	mJ
Peak Power Dissipation, Drain-to-Source (Non repe pulse 1.0ms duration) (TJ Initial = +85°C)	РРК	20	W		
Load Dump Pulse, Drain-to-Source, $R_{SOURCE} = 0.5$ (For Relay's Coils/Inductive Loads of 80 Ω or Higher	ELD1	60	V		
Inductive Switching Transient 1, Drain-to-Source (Waveform: $R_{SOURCE} = 10\Omega$, t = 2.0ms) (For Relay's Coils/Inductive Loads of 80 Ω or Higher	ELD2	100	V		
Inductive Switching Transient 2, Drain-to-Source (Waveform: $R_{SOURCE} = 4.0\Omega$, t = 50µs) (For Relay's Coils/Inductive Loads of 80Ω or Higher	[.]) (T _J Initia	ELD3	300	V	
Reverse Battery, 10 Minutes (Drain-to-Source) (For Relay's Coils/Inductive Loads of 80Ω or more)	Rev-Bat	-14	V		
Dual Voltage Jump Start, 10 Minutes (Drain-to-Sou		Dual-Volt	28	V	
ESD Human Body Model (HBM)	ESD	4,000	V		

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Units
Total Power Dissipation (Note 6)	PD	820	mW
Thermal Resistance, Junction to Ambient (Note 6)	R _{θJA}	154	°C/W
Total Power Dissipation (Note 7)	PD	1,090	mW
Thermal Resistance, Junction to Ambient (Note 7)	R _{θJA}	116	°C/W
Operating and Storage Temperature Range	T _{J,} T _{STG}	-55 to +150	°C

Notes:

Device mounted on FR-4 PCB, with minimum recommended pad layout.
Device mounted on 1" x 1" FR-4 PCB with high coverage 2oz. copper, single sided.

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition		
OFF CHARACTERISTICS (Note 8)								
Drain-Source Breakdown Voltage	BV _{DSS}	60	_	_	V	$V_{GS} = 0V, I_D = 10mA$		
Zero Gate Voltage Drain Current	I _{DSS}	_	_	50 0.5	μA	$V_{DS} = 60V, V_{GS} = 0V$ $V_{DS} = 12V, V_{CS} = 0V$		
Gate-Source Leakage	I _{GSS}	_	_	±90 ±60	μΑ	$V_{GS} = \pm 5V, V_{DS} = 0V$ $V_{GS} = \pm 3V, V_{DS} = 0V$		
ON CHARACTERISTICS (Note 8)								
Gate Threshold Voltage	V _{GS(TH)}	1.3	_	2.0	V	$V_{DS} = V_{GS}, I_D = 1mA$		
Statio Drain Source On Registeres	D		1.1	1.8	0	$V_{GS} = 5V, I_D = 0.15A$		
Static Drain-Source On-Resistance	RDS(ON)	_	1.4	2.4	12	$V_{GS} = 3V, I_D = 0.15A$		
Forward Transfer Admittance	Y _{fs}	80	_	_	ms	V _{DS} = 12V, I _D = 0.15A		
Diode Forward Voltage	V _{SD}	_	_	1.2	V	V _{GS} = 0V, I _S = 0.15A		
DYNAMIC CHARACTERISTICS (Note 9)								
Input Capacitance	Ciss	_	12.9		pF			
Output Capacitance	Coss	_	17		pF	$V_{DS} = 12V, V_{GS} = 0V$ f = 1 0MHz		
Reverse Transfer Capacitance	Crss	—	0.84	_	pF			
Total Gate Charge	Qg	—	0.74		nC			
Gate-Source Charge	Q _{gs}	_	0.19	_	nC	$V_{GS} = 5V, V_{DS} = 12V,$		
Gate-Drain Charge	Q _{gd}	_	0.16	_	nC	1D = 13011A		
Turn-On Delay Time	t _{D(ON)}	_	131	_	ns			
Turn-On Rise Time	t _R	_	301	_	ns			
Turn-Off Delay Time	t _{D(OFF)}	_	582		ns	$v_{DD} = 1 \angle V, V_{GS} = 5V$		
Turn-Off Fall Time	t _F	_	440		ns			

 8. Short duration pulse test used to minimize self-heating effect.
9. Guaranteed by design. Not subject to product testing. Notes:

DMN61D8LVTQ

DMN61D8LVTQ

f = 1MHz

Ċ

Coss

Crss

35

40

1000

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSOT26

	TSOT26								
Dim	Min Max Typ								
Α	-	1.00	-						
A1	0.010	0.100	-						
A2	0.840	0.900	-						
D	2.800	3.000	2.900						
Е	2.800 BSC								
E1	1.500 1.700 1.60								
b	0.300 0.450 -		-						
С	0.120 0.200 -								
е	0.950 BSC								
e1	1	.900 BS	С						
L	0.30 0.50 -								
L2	0.250 BSC								
θ	0° 8° 4°								
θ1	4° 12° –								
A	All Dimensions in mm								

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

TSOT26

Dimensions	Value (in mm)
С	0.950
Х	0.700
Y	1.000
Y1	3.199

DMN61D8LVTQ Document number: DS37822 Rev. 3 - 2