

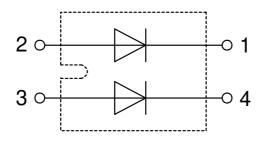
Standard Rectifier

 $V_{RRM} = 1600 V$

 $I_{\text{FAV}} = 2x \quad 60 \text{ A}$

 $V_{\rm F} = 1.22 \, \rm V$

Parallel legs


Part number

DSI2x55-16A

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage currentVery low forward voltage drop
- Improved thermal behaviour

Applications:

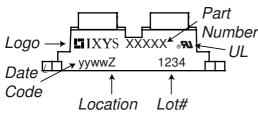
- Diode for main rectification
- For single and three phase bridge configurations

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper
- internally DCB isolated
 Advanced power cycling

Disclaimer Notice

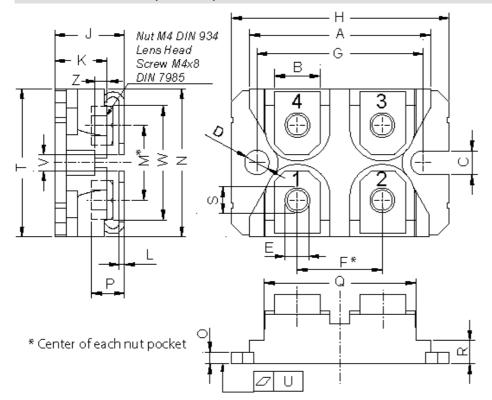
Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.



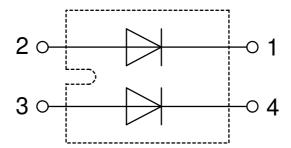
Rectifier			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1700	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			100	μΑ
		$V_R = 1600 V$	$T_{VJ} = 150$ °C			1.5	mΑ
V _F	forward voltage drop	I _F = 55 A	$T_{VJ} = 25^{\circ}C$			1.26	V
		$I_{F} = 110 \text{ A}$				1.54	٧
		I _F = 55 A	T _{VJ} = 125°C			1.22	٧
		$I_F = 110 \text{ A}$				1.58	٧
I FAV	average forward current	T _c = 95°C	T _{vJ} = 150°C			60	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.83	V
r _F	slope resistance } for power	loss calculation only				6.2	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.6	K/W
R _{thCH}	thermal resistance case to heat	sink			0.1		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			210	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			800	Α
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			865	Α
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			680	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			735	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			3.20	kA2s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			3.12	kA2s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			2.31	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			2.25	kA2s
CJ	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		25		pF

Package SOT-227B (minibloc)				Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					150	Α
T _{VJ}	virtual junction temperatur	e			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{T}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	oroonaga diatanaa an aurt	inco Latrikina diatanoa through air	terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on sun	ace striking distance through air	terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz. RMS: lisoL ≤ 1 mA		3000			٧
		t = 1 minute			2500			٧

Product Marking


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSI2x55-16A	DSI2x55-16A	Tube	10	483699

Similar Part	Package	Voltage class
DSI2x55-12A	SOT-227B (minibloc)	1200


Equiva	lent Circuits for	Simulation	* on die level	$T_{VJ} = 150$ °C
$I \rightarrow V_0$)—[R ₀]-	Rectifier		
V _{0 max}	threshold voltage	0.83		V
$R_{0 max}$	slope resistance *	4.3		$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millir	Millimeter		hes
DIIII.	min	max	min	max
Α	31.50	31.88	1.240	1.255
В	7.80	8.20	0.307	0.323
С	4.09	4.29	0.161	0.169
D	4.09	4.29	0.161	0.169
Е	4.09	4.29	0.161	0.169
F	14.91	15.11	0.587	0.595
G	30.12	30.30	1.186	1.193
Н	37.80	38.23	1.488	1.505
J	11.68	12.22	0.460	0.481
Κ	8.92	9.60	0.351	0.378
L	0.74	0.84	0.029	0.033
M	12.50	13.10	0.492	0.516
N	25.15	25.42	0.990	1.001
0	1.95	2.13	0.077	0.084
Р	4.95	6.20	0.195	0.244
Q	26.54	26.90	1.045	1.059
R	3.94	4.42	0.155	0.167
S	4.55	4.85	0.179	0.191
Т	24.59	25.25	0.968	0.994
U	-0.05	0.10	-0.002	0.004
V	3.20	5.50	0.126	0.217
W	19.81	21.08	0.780	0.830
Ζ	2.50	2.70	0.098	0.106

