ΜΑζΟΜ

RF Power MOSFET Transistor 20 W, 2 - 175 MHz, 28 V

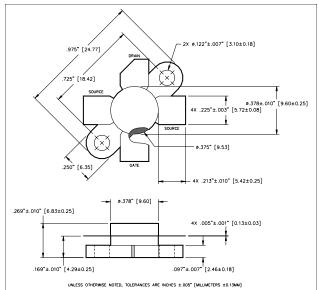
Features

- N-Channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- High saturated output power
- Lower noise figure than bipolar devices
- RoHS Compliant

ABSOLUTE MAXIMUM RATINGS AT 25° C

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DS}	65	V
Gate-Source Voltage	V_{GS}	20	V
Drain-Source Current	I _{DS}	24	А
Power Dissipation	PD	62.5	W
Junction Temperature	TJ	200	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Thermal Resistance	θ_{JC}	2.8	°C/W

TYPICAL DEVICE IMPEDANCE


F (MHz)	Z _{IN} (Ω)	Z _{LOAD} (Ω)		
30	17.5 - j13.0	16.0 - j2.5		
50	15.0 - j15.5	15.0 - j4.0		
100	8.0 - j14.0	12.0 - j6.0		
200	5.5 - j8.0	9.25 - j6.0		
V_{DD} = 28V, I_{DQ} = 100mA, P_{OUT} = 20 W				

 $Z_{\ensuremath{\mathsf{IN}}}$ is the series equivalent input impedance of the device from gate to source.

 Z_{LOAD} is the optimum series equivalent load impedance as measured from drain to ground.

ELECTRICAL CHARACTERISTICS AT 25°C

Package Outline

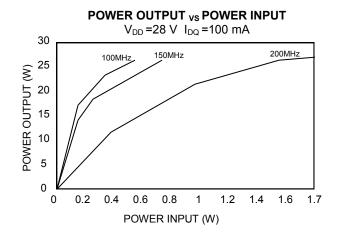
LETTER	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	24.64	24.89	.970	.980
В	18.29	18.54	.720	.730
С	20.07	20.83	.790	.820
D	9.47	9.73	.373	.383
E	6.22	6.48	.245	.255
F	5.64	5.79	.222	.228
G	2.92	3.30	.115	.130
н	2.29	2.67	.090	.105
J	4.04	4.55	.159	.179
К	6.58	7.39	.259	.291
L	.10	.15	.004	.006

Parameter	Symbol	Min	Max	Units	Test Conditions
Drain-Source Breakdown Voltage	BV _{DSS}	65	-	V	V_{GS} = 0.0 V , I_{DS} = 5.0 mA
Drain-Source Leakage Current	I _{DSS}	-	1.0	mA	$V_{\rm GS}$ = 28.0 V , $V_{\rm GS}$ = 0.0 V
Gate-Source Leakage Current	I _{GSS}	-	1.0	μA	V_{GS} = 20.0 V , V_{DS} = 0.0 V
Gate Threshold Voltage	V _{GS(TH)}	2.0	6.0	V	V _{DS} = 10.0 V , I _{DS} = 100.0 mA
Forward Transconductance	G _M	500	-	S	V_{DS} = 10.0 V , I_{DS} = 100.0 mA , ΔV_{GS} = 1.0V, 80 μs Pulse
Input Capacitance	CISS	-	45	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Output Capacitance	C _{OSS}	-	40	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Reverse Capacitance	C _{RSS}	-	8	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Power Gain	G _P	13	-	dB	V_{DD} = 28.0 V, I_{DQ} = 100 mA, P_{OUT} = 20 W F =175 MHz
Drain Efficiency	ŋ₀	60	-	%	V_{DD} = 28.0 V, I_{DQ} = 100 mA, P_{OUT} = 20 W F =175 MHz
Load Mismatch Tolerance	VSWR-T	-	30:1	-	V_{DD} = 28.0 V, $~I_{\text{DQ}}$ = 100 mA, P_{OUT} = 20 W F =175 MHz

1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

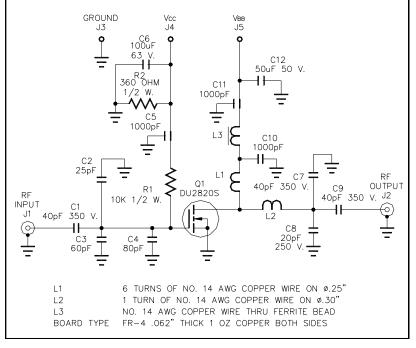
Rev. V2



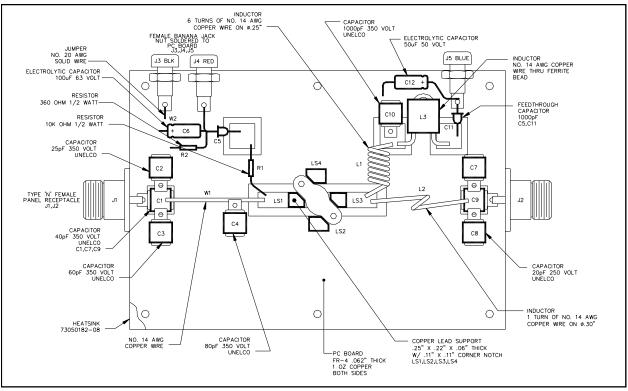
RF Power MOSFET Transistor 20 W, 2 - 175 MHz, 28 V

Rev. V2

Typical Broadband Performance Curves



M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


DU2820S

RF Power MOSFET Transistor 20 W, 2 - 175 MHz, 28 V

TEST FIXTURE SCHEMATIC

TEST FIXTURE ASSEMBLY

3

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

МАСОМ

Rev. V2