
Your innovation. Accelerated.

CUBE MXTENDTM: A STANDARD ANTENNA SOLUTION FOR MOBILE FREQUENCIES

APPLICATION NOTE CUBE mXTEND[™] (NN02-250)

CUBE mXTEND[™]: A standard antenna solution for mobile frequency bands

Ignion specializes in enabling effective mobile communications. Using Ignion technology, we design and manufacture optimized antennas to make your wireless devices more competitive. Our mission is to help our clients develop innovative products and accelerate their time to market through our expertise in antenna design, testing and manufacturing.

CUBE mXTEND[™] antenna booster NN02-250 Ignion products are protected by <u>Ignion</u> patents.

All information contained within this document is property of Ignion and is subject to change without prior notice. Information is provided "as is" and without warranties. It is prohibited to copy or reproduce this information without prior approval.

Ignion is an ISO 9001:2015 certified company. All our antennas are lead-free and RoHS compliant.

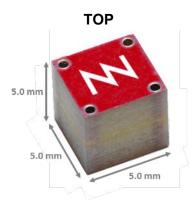

ISO 9001: 2015 Certified

TABLE OF CONTENTS

1	. AN	TENNA DESCRIPTION	4
2	. EV	ALUATION BOARDS 1 PORT (698-798 MHz)	5
	2.1.	QUICK REFERENCE GUIDE	5
	2.2.	EVALUATION BOARDS 1 PORT (698-798 MHz)	5
	2.3.	MATCHING NETWORKS	6
	2.4.	VSWR AND TOTAL EFFICIENCY FOR 1 PORT (698-798 MHz)	8
	2.5. (UFL (RADIATION PATTERNS (698-798 MHz), GAIN AND EFFICIENCY cables)	9
	2.6. (CPW	RADIATION PATTERNS (698-798 MHz), GAIN AND EFFICIENCY lines)	10
3	. EV	ALUATION BOARDS 1 PORT (824-960 MHz)	11
	3.1.	QUICK REFERENCE GUIDE	11
	3.2.	EVALUATION BOARDS 1 PORT (824-960 MHz)	11
	3.3.	MATCHING NETWORKS	12
	3.4.	VSWR and TOTAL Efficiency FOR 1 port (824-960 MHz)	14
	3.5. (UFL (RADIATION PATTERNS (824-960 MHz), GAIN AND EFFICIENCY cables)	15
	3.6. (CPW	RADIATION PATTERNS (824-960 MHz), GAIN AND EFFICIENCY lines)	16
4	. EV	ALUATION BOARDS 1 PORT (1710-2690 MHz)	17
	4.1.	QUICK REFERENCE GUIDE	17
	4.2.	EVALUATION BOARDS 1 PORT (1710-2690 MHz)	17
	4.3.	MATCHING NETWORKS	18
	4.4.	VSWR and TOTAL Efficiency 1 port (1710-2690 MHz)	19
	4.5. (UFL (RADIATION PATTERNS (1710-2690 MHz), GAIN AND EFFICIENCY cables)	20
	4.6. (CPW	RADIATION PATTERNS (1710-2690 MHz), GAIN AND EFFICIENCY lines)	21
5	. AN		22

1. ANTENNA DESCRIPTION

The CUBE mXTEND[™] antenna booster component has been specifically designed for providing multiband performance in wireless devices (in particular in mobile devices), enabling worldwide coverage by allowing operation in the communication standards GSM850, GSM900, GSM1800/DCS, GSM1900/PCS, UMTS, LTE700, LTE800, LTE850, LTE900, LTE1700, LTE1800, LTE1900, LTE2000, LTE2100, LTE2300, LTE2500, and LTE2600.

BOTTOM

Material: The CUBE mXTEND[™] antenna booster is built on glass epoxy substrate.

APPLICATIONS

- Handsets
- Smartphones
- Tablets
- Phablets
- Laptop PCs
- Netbooks
- Modules
- Routers
- eBooks

BENEFITS

- High efficiency
- Small size
- Cost-effective
- Easy-to-use (pick and place)
- Multiband behaviour (worldwide standards)
- Off-the-Shelf Standard Product (no customization is required)

The CUBE mXTEND[™] antenna booster belongs to a new generation of antenna solutions based on the Virtual Antenna[™] technology owned by Ignion. The technology is mainly focused on replacing conventional antenna solutions by miniature and standard components.

2. EVALUATION BOARDS 1 PORT (698-798 MHz)

2.1. QUICK REFERENCE GUIDE

Technical features	Evaluation Board with UFL	Evaluation Board with	
	cables	coplanar transmission lines	
Frequency Range	698 – 798 MHz		
Average Efficiency	> 45 %	> 40 %	
Peak Gain	0.2 dBi	0.1 dBi	
VSWR	< 3:1		
Radiation Pattern	Omnidirectional		
Polarization	Linear		
Weight (approx.)	.) 0.25 g		
Temperature	-40 to +125 °C		
Impedance	50 Ω		
Dimensions (L x W x H)	5.0 mm x 5.0 mm x 5.0 mm		

Table 1 – Technical features. Measures from the Evaluation Board. See Figure 1. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

2.2. EVALUATION BOARDS 1 PORT (698-798 MHz)

This section depicts two different Evaluation Boards. The first one is built with UFL cables to connect the two CUBE mXTEND[™] antenna boosters with the SMA connector. The part number is EB_NN02-250-UFL1R-700 and it is shown in the left picture of Figure 1. The second Evaluation Board is made with coplanar grounded transmission lines (traces on a PCB) to connect the two CUBE mXTEND[™] antenna boosters with the SMA connector. The part number is EB_NN02-250-CPW1R-700 and it is shown in the right picture of Figure 1.

Measure	Mm
Α	133.0
В	120.0
С	60.0
D	6.5
E	1.5

Tolerance: ±0.2 mm

Material: The Evaluation Boards are built on FR4 substrate. Thickness is 1 mm.

E: Distance between the CUBE mXTEND[™] antenna booster and the ground plane

Clearance Area: 60 mm x 6.5 mm (CxD)

Figure 1 – Evaluation Boards providing operation at LTE700, 1 port configuration.

This product is protected by at least the following <u>patent</u> PAT. US 8,203,492 and other domestic and international patents pending. Any update on new patents linked to this product will appear in <u>www.ignion.io/virtual-antenna/.</u>

Comments:

- Note that in the Evaluation Boards (Figure 1), 2 CUBE mXTEND[™] antenna boosters are placed together to provide operation at LTE700 (698 – 798 MHz). Please see Figure 13 for the recommended footprint.
- The efficiency measures (Figure 3 and Figure 4) are shown from 700 MHz due to the minimum frequency specifications of the Satimo STARGATE 32 anechoic chamber.
- Please contact <u>support@ignion.io</u> for more information related to the antenna booster matching service.

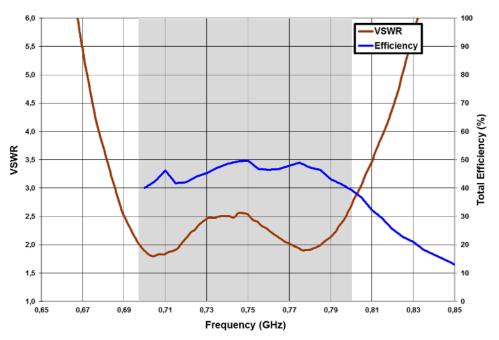
2.3. MATCHING NETWORKS

The specs of a Ignion standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the CUBE mXTEND[™] antenna booster once the design is finished and considering all elements of the system.

Please notice that different devices with different ground planes and components nearby the CUBE mXTEND[™] antenna booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). If you need assistance to design your matching network beyond this application note, please contact <u>support@ignion.io</u>, or try our free-of-charge¹ **NN Wireless Fast-Track** design service, you will get your chip antenna design including a custom matching network for your device in 24h¹. Other related to NN's range of R&D services is available at: <u>https://www.ignion.io/rdservices/</u>

¹ See terms and conditions for a free NN Wireless Fast-Track service in 24h at: <u>https://www.ignion.io/fast-track-project/</u>

	Matching network for the Evaluation Board		
with UFL cables	43 nH 6.0 pF NN02-250 2.7 nH 4.3 nH	Value Part Number 43 nH LQW18AN43NG00 2.7 nH LQW15AN2N7B80 6.0 pF GJM1555C1H6R0WB01 4.3 nH LQW15AN4N3B80	
with coplanar transmission lines	39 nH 7.0 pF 2.5 nH 3.6 nH -	Value Part Number 39 nH LQW18AN39NG80 2.5 nH LQW15AN2N5B80 7.0 pF GJM1555C1H7R0WB01 3.6 nH LQW18AN3N6C00	


Figure 2 – Matching networks for the LTE700, 1 port configuration.

2.4. VSWR AND TOTAL EFFICIENCY FOR 1 PORT (698-798 MHz)

100 6,0 VSWR Efficiency 5,5 90 80 5,0 4,5 70 Total Efficiency (%) 4,0 60 VSWR 50 3,5 40 3.0 2,5 30 2,0 20 10 1,5 1,0 0,65 0,67 0,69 0,71 0,75 0,77 0,79 0,81 0,83 0,85 0,73 Frequency (GHz)

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

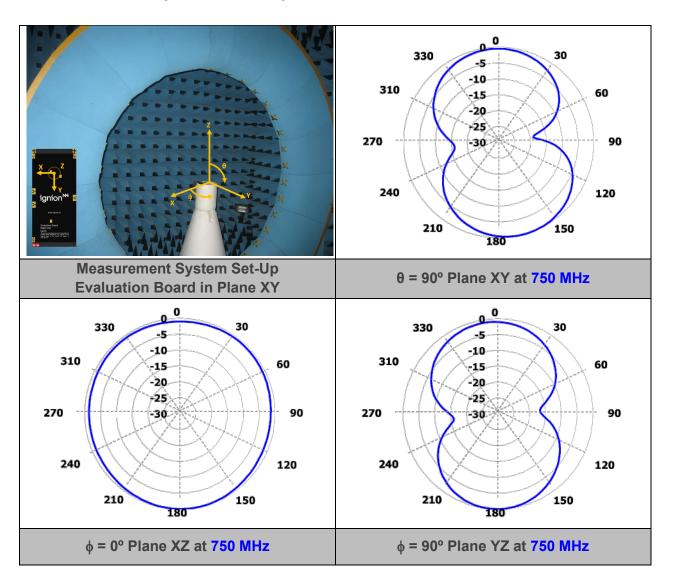
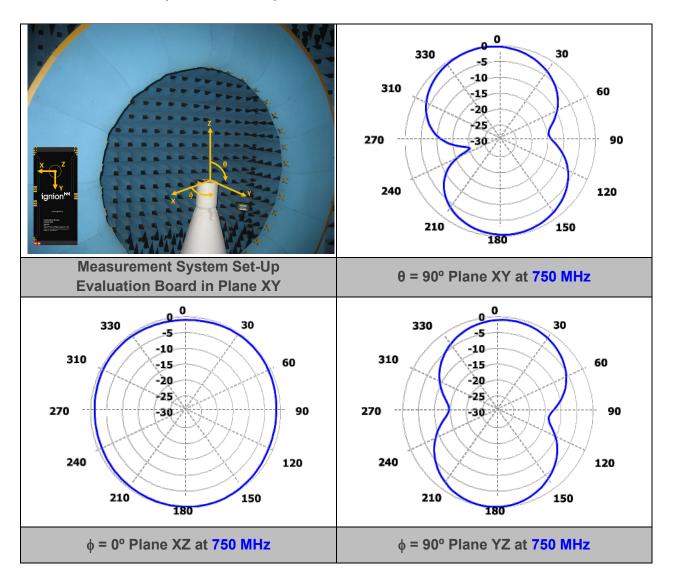

Figure 3 – VSWR and Total Efficiency for Evaluation Board with UFL cables.Part Number: EB_NN02-250-UFL1R-700.

Figure 4 – VSWR and Total Efficiency for the Evaluation Board with coplanar transmission lines. Part Number: EB_NN02-250-CPW1R-700.

Note: The Satimo STARGATE 32 anechoic chamber measures from 700 MHz.


2.5. RADIATION PATTERNS (698-798 MHz), GAIN AND EFFICIENCY (UFL cables)

	Peak Gain	0.2 dBi
Gain	Average Gain across the band	-0.5 dBi
	Gain Range across the band (min, max)	-1.8 <> 0.2 dBi
	Peak Efficiency	56.0 %
Efficiency	Average Efficiency across the band	47.6 %
	Efficiency Range across the band (min, max)	37.1 – 56.0 %

Table 2 – Antenna Gain and Total Efficiency for the Evaluation Board EB_NN02-250-UFL1R-700 within the 698 – 798 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

2.6. RADIATION PATTERNS (698-798 MHz), GAIN AND EFFICIENCY (CPW lines)

	Peak Gain	0.1 dBi
Gain	Average Gain across the band	-0.7 dBi
	Gain Range across the band (min, max)	-1.4 <> 0.1 dBi
	Peak Efficiency	49.7%
Efficiency	Average Efficiency across the band	45.7 %
	Efficiency Range across the band (min, max)	40.1 – 49.7%

Table 3 – Antenna Gain and Total Efficiency for the Evaluation Board EB_NN02-250-CPW1R-700 within the 698 – 798 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

3. EVALUATION BOARDS 1 PORT (824-960 MHz)

3.1. QUICK REFERENCE GUIDE

Technical features	Evaluation Board with UFL cables	Evaluation Board with coplanar transmission lines	
Frequency Range	824 – 9	960 MHz	
Average Efficiency	> 50 %	> 50 %	
Peak Gain	1.0 dBi	1.2 dBi	
VSWR	< 3:1		
Radiation Pattern	Omnidirectional		
Polarization	Linear		
Weight (approx.)	0.25 g		
Temperature	-40 to +125 °C		
Impedance	50 Ω		
Dimensions (L x W x H)	5.0 mm x 5.0	mm x 5.0 mm	

Table 4 – Technical features. Measures from the Evaluation Board. See Figure 5. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

3.2. EVALUATION BOARDS 1 PORT (824-960 MHz)

This section depicts two different Evaluation Boards. The first one is built with UFL cables to connect the CUBE mXTEND[™] antenna booster with the SMA connector. The part number is EB_NN02-250-UFL1R-850 and it is shown in the left picture of Figure 5. The second Evaluation Board is made with coplanar grounded transmission lines (traces on a PCB) to connect the CUBE mXTEND[™] antenna booster with the SMA connector. The part number is EB_NN02-250-CPW1R-850 and it is shown in the right picture of Figure 5.

Measure	mm
Α	133
В	120
С	60
D	6.5
E	1.5

Tolerance: ±0.2 mm

Material: The Evaluation Boards are built on FR4 substrate. Thickness is 1 mm.

E: Distance between the CUBE mXTEND[™] antenna booster and the ground plane

Clearance Area: 60 mm x 6.5 mm (CxD)

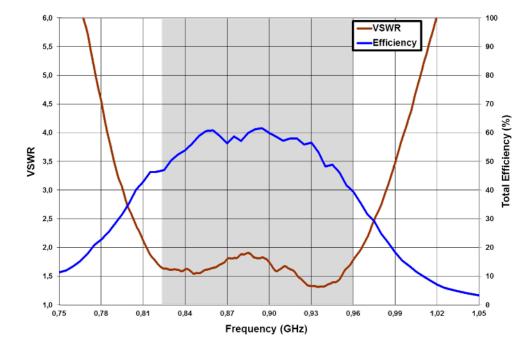
Figure 5 – Evaluation Boards providing operation at **Clearance Area:** 60 mm x 6 GSM850-GSM900, 1 port configuration.

This product is protected by at least the following <u>patent</u> PAT. US 8,203,492 and other domestic and international patents pending. Any update on new patents linked to this product will appear in <u>www.ignion.io/virtual-antenna/.</u>

3.3. MATCHING NETWORKS

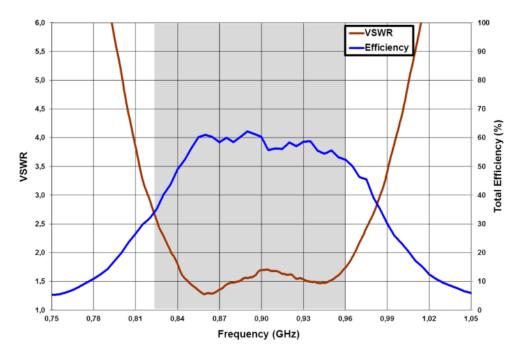
The specs of a Ignion standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the CUBE mXTEND[™] antenna booster once the design is finished and considering all elements of the system.

Please notice that different devices with different ground planes and components nearby the CUBE mXTEND[™] antenna booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). If you need assistance to design your matching network beyond this application note, please contact <u>support@ignion.io</u>, or try our free-of-charge¹ **NN Wireless Fast-Track** design service, you will get your chip antenna design including a custom matching network for your device in 24h². Other related to NN's range of R&D services is available at: <u>https://www.ignion.io/rdservices/</u>


Matching network for the Evaluation Board

² See terms and conditions for a free NN Wireless Fast-Track service in 24h at: <u>https://www.ignion.io/fast-track-project/</u>

	47 nH 6.0 pF	Value	Part Number
		47 nH	LQW18AN47NG80
with UFL		2.2 nH	LQW15AN2N2B80
cables	2.2 nH	13 pF	GJM1555C1H130FB01
		6.0 pF	GJM1555C1H6R0WB0
	<u> </u>	0.0 pi	1
	43 nH		
with	NN02-250	Value	Part Number
coplanar		43 nH	LQW18AN43NG00
transmission	2.2 nH 15 pF	2.2 nH	LQW15AN2N2B80
lines		15 pF	GJM1555C1H150FB0
11165		тэрг	1


Figure 6 – Matching networks for the GSM850-GSM900, 1 port configuration.

3.4. VSWR and TOTAL Efficiency FOR 1 port (824-960 MHz)

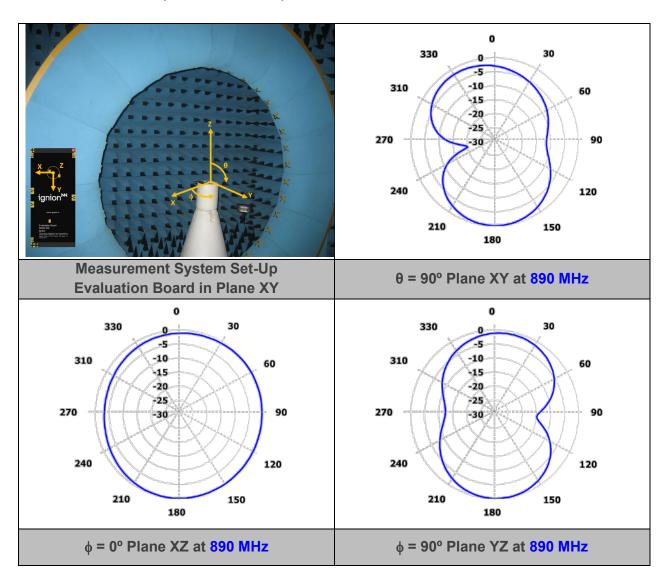
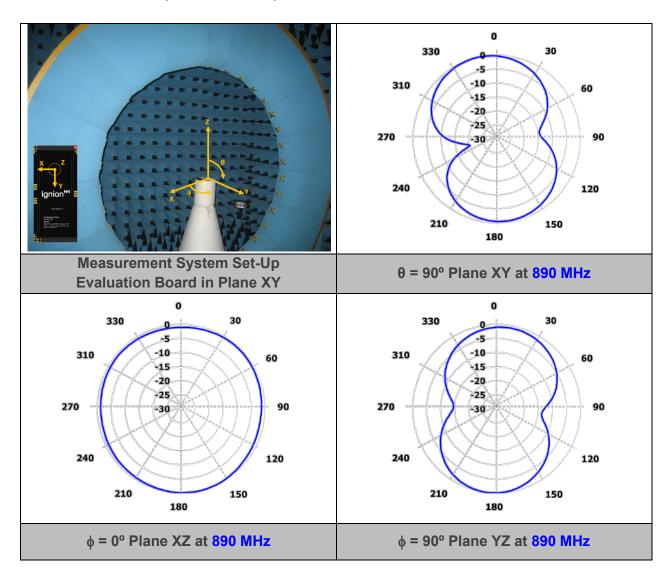

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 7 – VSWR and Total Efficiency for Evaluation Board with UFL cables.Part Number: EB_NN02-250-UFL1R-850.

Figure 8 – VSWR and Total Efficiency for the Evaluation Board with coplanar transmission lines.Part Number: EB_NN02-250-CPW1R-850.


3.5. RADIATION PATTERNS (824-960 MHz), GAIN AND EFFICIENCY (UFL cables)

	Peak Gain	1.0 dBi
Gain	Average Gain across the band	0.3 dBi
	Gain Range across the band (min, max)	-1.2 <-> 1.0 dBi
	Peak Efficiency	61.6 %
Efficiency	Average Efficiency across the band	55.2 %
	Efficiency Range across the band (min, max)	39.5 – 61.6 %

Table 5 – Antenna Gain and Total Efficiency for the Evaluation Board EB_NN02-250-UFL1R-850 within the 824 – 960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

3.6. RADIATION PATTERNS (824-960 MHz), GAIN AND EFFICIENCY (CPW lines)

	Peak Gain	1.2 dBi
Gain	Average Gain across the band	0.5 dBi
	Gain Range across the band (min, max)	-1.3 <> 1.2 dBi
	Peak Efficiency	62.2 %
Efficiency	Average Efficiency across the band	55.6 %
	Efficiency Range across the band (min, max)	34.4 – 62.2 %

Table 6 – Antenna Gain and Total Efficiency for the Evaluation Board EB_NN02-250-CPW1R-850 within the 824 – 960 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

4. EVALUATION BOARDS 1 PORT (1710-2690 MHz)

4.1. QUICK REFERENCE GUIDE

Technical features	Evaluation Board with UFL	Evaluation Board with
reclinical leatures	cables	coplanar transmission lines
Frequency Range	1710 – 2	2690 MHz
Average Efficiency	> 75 %	> 70 %
Peak Gain	3.3 dBi	2.8 dBi
VSWR	< 3:1	
Radiation Pattern	Omnidirectional	
Polarization	Linear	
Weight (approx.)	0.25 g	
Temperature	-40 to +125 °C	
Impedance	50 Ω	
Dimensions	5.0 mm x 5.0 mm x 5.0 mm	
(L x W x H)		

Table 7 – Technical features. Measures from the Evaluation Board. See pictures in Figure 9. Note that for obtaining comparable results, a ground plane length larger than 100 mm is recommended.

4.2. EVALUATION BOARDS 1 PORT (1710-2690 MHz)

This section depicts two different Evaluation Boards. The first one is built with UFL cables to connect the CUBE mXTEND[™] antenna booster with the SMA connector. The part number is EB_NN02-250-UFL1R-1700 and it is shown in the left picture of Figure 9. The second Evaluation Board is made with coplanar grounded transmission lines (traces on a PCB) to connect the CUBE mXTEND[™] antenna booster with the SMA connector. The part number is EB_NN02-250-CPW1R-1700 and it is shown in the right picture of Figure 9.

Figure 9 – Evaluation Boards providing operation at LTE1700-LTE2600, 1 port configuration.

Measure	mm	
Α	133	
В	120	
С	60	
D	6.5	
E	1.5	

Tolerance: ±0.2 mm

Material: The Evaluation Boards are built on FR4 substrate. Thickness is 1 mm.

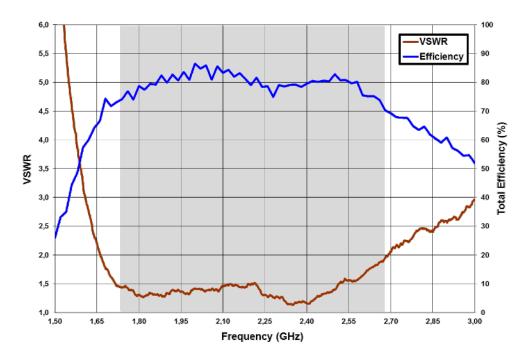
E: Distance between the CUBE $mXTEND^{TM}$ antenna booster and the ground plane

Clearance Area: 60 mm x 6.5 mm (CxD)

This product is protected by at least the following <u>patent</u> PAT. US 8,203,492 and other domestic and international patents pending. Any update on new patents linked to this product will appear in <u>www.ignion.io/virtual-antenna/.</u>

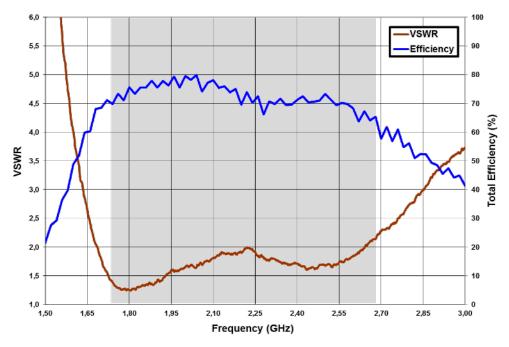
4.3. MATCHING NETWORKS

The specs of a Ignion standard product are measured in their Evaluation Board, which is an ideal case. In a real design, components nearby the antenna, LCD's, batteries, covers, connectors, etc. affect the antenna performance. This is the reason why it is highly recommended placing pads compatible with 0402 and 0603 SMD components for a matching network as close as possible to the feeding point. Do it in the ground plane area, not in the clearance area. This provides a degree of freedom to tune the CUBE mXTEND[™] antenna booster once the design is finished and considering all elements of the system.


Please notice that different devices with different ground planes and components nearby the CUBE mXTEND[™] antenna booster may need a different matching network. To ensure optimal results, the use of high Q and tight tolerance components is highly recommended (Murata components). If you need assistance to design your matching network beyond this application note, please contact <u>support@ignion.io</u>, or try our free-of-charge¹ **NN Wireless Fast-Track** design service, you will get your chip antenna design including a custom matching network for your device in 24h³. Other related to NN's range of R&D services is available at: <u>https://www.ignion.io/rdservices/</u>

	Matching network for the Evaluation Board			
with UFL cables	5.1 nH 1.3 pF 1.3 pF 3.6 nH	Value 5.1 nH 3.6 nH 1.3 pF	Part Number LQW15AN5N1B80 LQW15AN3N6B80 GJM1555C1H1R3WB0 1	
with coplanar transmission lines	5.1 nH 1.4 pF NN02-250 1 3.3 nH	Value 5.1 nH 3.3 nH 1.4 pF	Part Number LQW15AN5N1B80 LQW15AN3N3B80 GJM1555C1H1R4WB0 1	

Figure 10 – Matching networks for the LTE1700-LTE2600, 1 port configuration.


³ See terms and conditions for a free NN Wireless Fast-Track service in 24h at: <u>https://www.ignion.io/fast-track-project/</u>

4.4. VSWR and TOTAL Efficiency 1 port (1710-2690 MHz)

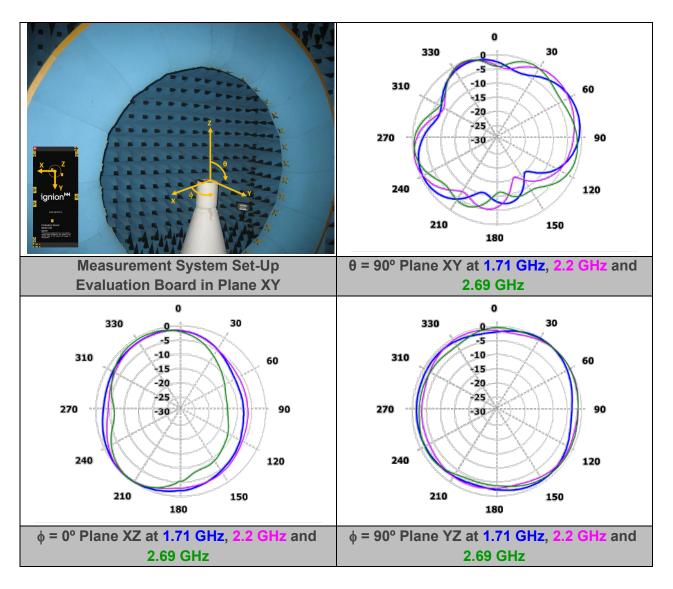
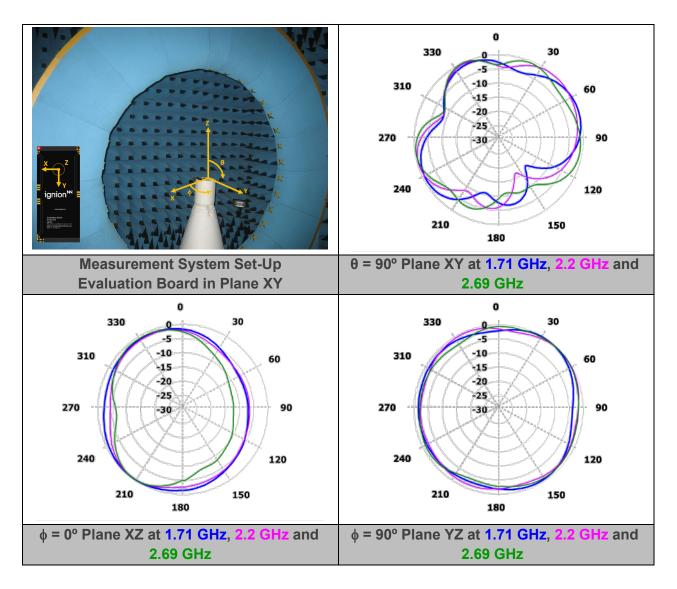

VSWR (Voltage Standing Wave Ratio) and Total Efficiency versus Frequency (GHz).

Figure 11 – VSWR and Total Efficiency for Evaluation Board with UFL cables. Part Number: EB NN02-250-UFL1R-1700.

Figure 12 – VSWR and Total Efficiency for the Evaluation Board with coplanar transmission lines.Part Number: EB_NN02-250-CPW1R-1700.


4.5. RADIATION PATTERNS (1710-2690 MHz), GAIN AND EFFICIENCY (UFL cables)

Gain	Peak Gain	3.3 dBi
	Average Gain across the band	2.6 dBi
	Gain Range across the band (min, max)	1.7 <> 3.3 dBi
Efficiency	Peak Efficiency	86.4 %
	Average Efficiency across the band	79.6 %
	Efficiency Range across the band (min, max)	69.7 - 86.4 %

Table 8 – Antenna Gain and Total Efficiency for the Evaluation Board EB_NN02-250-UFL1R-1700 within the 1710 – 2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

4.6. RADIATION PATTERNS (1710-2690 MHz), GAIN AND EFFICIENCY (CPW lines)

Gain	Peak Gain	2.8 dBi
	Average Gain across the band	2.2 dBi
	Gain Range across the band (min, max)	1.4 <> 2.8 dBi
Efficiency	Peak Efficiency	79.9 %
	Average Efficiency across the band	72.6 %
	Efficiency Range across the band (min, max)	61.7 – 79.9 %

Table 9 – Antenna Gain and Total Efficiency for the Evaluation Board EB_NN02-250-CPW1R-1700 within the 1710 – 2690 MHz range. Measures made in the Satimo STARGATE 32 anechoic chamber.

5. ANTENNA FOOTPRINT

Assuming that the CUBE mXTEND[™] antenna booster NN02-250 is placed in the clearance area of the PCB, see below the recommended footprint dimensions.

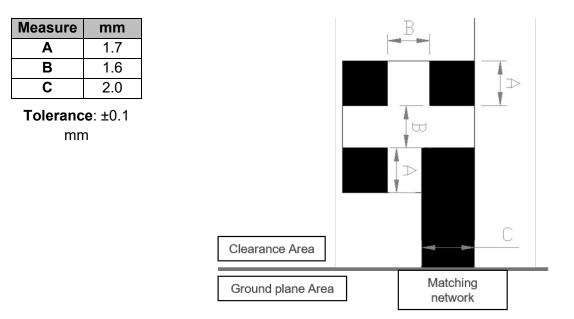


Figure 13 – Footprint dimensions for the single booster.

For additional support in the integration process, please contact support@ignion.io.