

PE64909 is a DuNE[™] technology-enhanced Digitally

variety of tuning circuit topologies with emphasis on impedance matching and aperture tuning applications.

while meeting challenging harmonic and linearity

PE64909 offers high RF power handling and ruggedness

requirements enabled by Peregrine's HaRP™ technology. The device is controlled through the widely supported 3-wire

(SPI compatible) interface. All decoding and biasing is integrated on-chip and no external bypassing or filtering

DuNE™ devices feature ease of use while delivering superior RF performance in the form of tuning accuracy, monotonicity, tuning ratio, power handling, size, and quality

factor. With built-in bias voltage generation and ESD

CMOS Control

Driver and ESD

tuning solution for demanding RF applications.

protection, DTC products provide a monolithically integrated

71-0090-01

ESD

RF-

Tunable Capacitor (DTC) based on Peregrine's UltraCMOS® technology. This highly versatile product supports a wide

Product Specification

PE64909

UltraCMOS® Digitally Tunable Capacitor (DTC) 100-3000 MHz

Features

- 3-wire (SPI compatible) serial interface with built-in bias voltage generation and ESD protection
- DuNE™ technology enhanced
- 4-bit 16-state Digitally Tunable Capacitor
- Shunt configuration $C = 0.6$ pF to 2.35 pF (3.9:1 tuning ratio) in discrete 117 fF steps
- \bullet High RF power handling (30 V_{ok} RF) and linearity
- Wide power supply range (2.3 to 4.8V) and low current consumption (typ. 140 **μ**A at 2.75V)
- High ESD tolerance of 2kV HBM on all pins
- Applications include:
	- Tunable antennas
	- Tunable matching networks
	- Tunable filter networks
	- Phase shifters

Figure 2. Package Type

10-lead 2 x 2 x 0.55 mm QFN

ESD

RF+

Serial Interface⁻

Figure 1. Functional Diagram

components are required.

Product Description

Table 1. Electrical Specifications @ 25 °C, V_{DD} = 2.75V (In shunt configuration, RF- connected to GND)

Notes: 1. Q for a Shunt DTC based on a Series RLC equivalent circuit

 $Q = X_C/R = (X-X_L)/R$, where $X = X_L+X_C$, $X_L = 2^*p^*f^*L$, $X_C = -1/(2^*p^*f^*C)$, which is equal to removing the effect of parasitic inductance L_s
2. In Shunt between 50 Ω ports. Pulsed RF input with 4620 µS period, 50% duty c

3. DC path to ground at RF– must be provided to achieve specified performance

4. State change activated on falling edge of SEN following data word

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Notes: 1. For optimal performance, recommend tying pins 1-2 and pins 8-9 together on PCB 2. For optimal performance, recommend tying pins 3, 10, and exposed ground pad together on PCB

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE64909 in the 10-lead 2x2 mm QFN package is MSL1.

Table 3. Operating Ranges

Notes: 1. Maximum Power Available from 50**Ω** Source. Pulsed RF input with 4620 μS period, 50% duty cycle, measured per 3GPP TS 45.005 measured in shunt between 50**Ω**ports, RF- connected to GND

 2. Node voltages defined per Equivalent Circuit Model Schematic (Figure 13). When DTC is used as a part of reactive network, impedance transformation may cause the internal RF voltages (V_P , V_M) to exceed Peak Operating RF Voltage even with specified RF Input Power Levels. For operation above about +20 dBm (100 mW), the complete RF circuit must be simulated using actual input power and load conditions, and internal node voltages (V_P , V_M in Figure 13) monitored to not exceed $30V_{nk}$

Table 4. Absolute Maximum Ratings

Note 1: Human Body Model (MIL-STD-883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS® device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS® devices are immune to latch-up.

Performance Plots @ 25°C and 2.75V unless otherwise specified

Figure 4. Measured Shunt C (@ 100 MHz) vs State Figure 5. Measured Shunt S₁₁ (major states)

Figure 8. Measured Shunt Q vs Frequency (major states)

Figure 9. Measured Shunt Q vs State

Figure 10. Measured Self Resonance Frequency vs State

Serial Interface Operation and Sharing

The PE64909 is controlled by a three wire SPIcompatible interface with enable active high. As shown in Figure 11, the serial master initiates the start of a telegram by driving the SEN (Serial Enable) line high. Each bit of the 8-bit telegram (MSB first in) is clocked in on the rising edge of SCL (Serial Clock), as shown in Table 5 and Figure 11. Transitions on SDA (Serial Data) are allowed on the falling edge of SCL. The DTC activates the data on the falling edge of SEN. The DTC does not count how many bits are clocked and only maintains the last 8 bits it received.

More than 1 DTC can be controlled by one interface by utilizing a dedicated enable (SEN) line for each DTC. SDA, SCL, and V_{DD} lines may be shared as shown in Figure 12. Dedicated SEN lines act as a chip select such that each DTC will only respond to serial transactions intended for them. This makes each DTC change states sequentially as they are programmed.

Alternatively, a dedicated SDA line with common SEN can be used. This allows all DTCs to change states simultaneously, but requires all DTCs to be programmed even if the state is not changed.

Notes: 1. These bits are reserved and must be written to 0 for proper operation 2. The DTC is active when low (set to 0) and in low-current stand-by mode when high (set to 1)

Table 6. Serial Interface Timing Characteristics

 $V_{DD} = 2.75V$, -40°C < T_A < +85°C, unless otherwise specified

Symbol	Parameter	Min	Max	Units
tscu	Serial clock period	38.4		ns
t_{SCLL}	SCL low time	13.2		ns
$t_{\scriptscriptstyle \rm SCLH}$	SCL high time	13.2		ns
t _R	SCL, SDA, SEN rise time		6.5	ns
tF	SCL, SDA, SEN fall time		6.5	ns
t_{FSU}	SEN rising edge to SCL rising edge	19.2		ns
t_{FHD}	SCL rising edge to SEN falling edge	19.2		ns
t_{DSU}	SDA valid to SCL rising edge	13.2		ns
t_{DHD}	SDA valid after SCL rising edge	13.2		ns
t_{FOW}	SEN falling edge to SEN rising edge	38.4		ns

Table 5. 8-Bit Serial Programming Register Map Figure 12. Recommended Bus Sharing

Equivalent Circuit Model Description

The DTC Equivalent Circuit Model includes all parasitic elements and is accurate in both Series and Shunt configurations, reflecting physical circuit behavior accurately and providing very close correlation to measured data. It can easily be used in circuit simulation programs.

For V_P and V_M max operating limits, refer to Table 3.

Figure 13. Equivalent Circuit Model Schematic

Table 7. Equivalent Circuit Model Parameters

Table 8. Equivalent Circuit Data

Series Operation

In Series configuration, the effective capacitance between $RF+$ and $RF-$ ports is represented by C_s and tuning ratio as $C_{\text{Smax}}/C_{\text{Smin}}$.

Figure 14. Effective Capacitance Diagram

Shunt Configuration (looking into RF+ when RF- is grounded) will have higher total capacitance at RF+ due to parallel combination of Cs with parasitic capacitance C_{P1} ($C_S + C_{P1}$), as demonstrated in Figure 15 and Table 9.

Figure 15. Typical Capacitance vs. State

 S_{11} and S_{21} for series configuration is illustrated in Figures 16 and 17. S_{21} includes mismatch and dissipative losses and is not indicative of tuning network loss. Equivalent Circuit Model can be used for simulation of tuning network loss.

Figure 16. Measured Series S₁₁/S₂₂ (major states)

Figure 17. Measured Series S₂₁ vs. Frequency (major states)

When the DTC is used as a part of a reactive network, impedance transformation may cause the internal RF voltages (V_P and V_M in Figure 13) to exceed peak operating RF voltage. The complete RF circuit must be simulated using actual input power and load conditions to ensure neither V_P nor V_M exceeds 30 Vpk.

Layout Recommendations

For optimal results, place a ground fill directly under the DTC package on the PCB. Layout isolation is desired between all control and RF lines. When using the DTC in a shunt configuration, it is important to make sure the RF-pin is solidly grounded to a filled ground plane. Ground traces should be as short as possible to minimize inductance. A continuous ground plane is preferred on the top layer of the PCB. When multiple DTCs are used together, the physical distance between them should be minimized and the connection should be as wide as possible to minimize series parasitic inductance.

Figure 18. Recommended Schematic of Multiple DTCs

Figure 19. Recommended Layout of Multiple DTCs

Evaluation Board

The 101-0675 Evaluation Board (EVB) was designed for accurate measurement of the DTC impedance and loss. Two configurations are available: 1 Port Shunt (J3) and 2 Port Shunt (J4, J5). Three calibration standards are provided. The open (J2) and short (J1) standards (104 ps delay) are used for performing port extensions and accounting for electrical length and transmission line loss. The Thru (J9, J10) standard can be used to estimate PCB transmission line losses for scalar de-embedding of the 2 Port Series configuration (J4, J5).

The board consists of a 4 layer stack with 2 outer layers made of Rogers $4350B$ ($\varepsilon_r = 3.48$) and 2 inner layers of FR4 $(\varepsilon_r = 4.80)$. The total thickness of this board is 62 mils (1.57 mm). The inner layers provide a ground plane for the transmission lines. Each transmission line is designed using a coplanar waveguide with ground plane (CPWG) model using a trace width of 32 mils (0.813 mm), gap of 15 mils (0.381 mm), and a metal thickness of 1.4 mils (0.051 mm).

Figure 20. Evaluation Board Layout

Figure 21. Package Drawing

10-lead 2 x 2 x 0.55 mm QFN

Figure 22. Top Marking Specifications

17-0112

Note: (PP), the package marking specific to the PE64909, is shown in the figure instead of the standard Peregrine package marking symbol (P).