Microwave Gain Equalizers

50 Ω DC to 6 GHz

CASE STYLE: MC1631-1

EQY-SERIES

The Big Deal

- Excellent Return Loss, 20dB typ.
- Wide bandwidth, DC 6 GHz
- Small Size, 2 mm x 2 mm

Product Overview

EQY series of absorptive Gain Equalizers are fabricated using highly repetitive GaAs IPD* MMIC process incorporating resistors, capacitors and inductors having negative insertion loss slope. EQYs are available with nominal attenuation slope of 1,2,3,4,5,6,8 & 10 dB. They are packaged in tiny 2 x 2 mm 8-Lead MCLP[™] package.

Key Features

Feature	Advantages
Negative Insertion Loss Slope vs. Frequency	Useful for compesating negative gain slope of amplifiers, receivers, transmitters to achieve flat gain versus frequency.
Wide range of values 1,2,3,4,5,6,8 & 10 dB	Enables circuit designer to change nominal insertion loss values without mother- board redesign making the EQY series ideal for select at test application.
Wideband operation, DC to 6 GHz	Supports a wide array of applications including wireless cellular, microwave communi- cations, satellite, defense and aerospace, medical broadband and optic applications.
Excellent Power Handling Capability 31/32 dBm	Enables its use at the output of a variety of amplfiers
Small Size and simple to use (2 mm x 2 mm)	As a single chip solution, the EQY series occupies less board space than a lumped element approach, minimizes component count and ensures repeatable performance over wide frequency range.

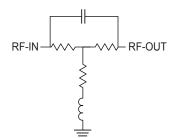
*GaAs IPD (Gallium Arsenide Integrated Passive Device)

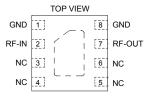
Microwave Gain Equalizer

 50Ω 2dB DC to 6 GHz

Product Features

- 2.1 dB Slope
- Small Package 2 x 2 mm MCLP
- Wide Bandwidth, DC-6 GHz
- Excellent Return Loss, 20 dB typ.


Typical Applications


- Cellular
- PCS
- Communications
- Radar
- Defense

General Description

EQY-2-63+ is an absorptive Gain Equalizer fabricated using highly repetitive GaAs IPD MMIC process incorporating resistors, capacitors and inductors having negative insertion loss slope. EQY-2-63+ has a nominal attenuation slope of 2.1 dB and is packaged in tiny 2 x 2 mm, 8-Lead MCLP[™] package.

simplified schematic & pad description

Function	Pad Number	Description
RF-IN	2	RF-Input pad
RF-OUT	7	RF-Output pad
GND	1,8 & Paddle	Ground
NC	3-6	No connection, ground externally

Generic photo used for illustration purposes only

CASE STYLE: MC1631-1

+ROHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units
Frequency Range		DC		6	GHz
Insertion Loss	0.01	2.2	2.5	2.9	dB
	1	—	2.4	_	
	2	—	2.1	_	
	3	1.1	1.5	1.9	
	4	—	1.0	_	
	5	0.1	0.6	0.9	
	6	—	0.4	_	
VSWR	0.01 -1	—	1.02	—	:1
	1 - 2	—	1.03	_	
	2 - 3	—	1.04	_	
	3 - 4	—	1.08	_	
	4 - 5	—	1.17	_	
	5 - 6	_	1.29	_	

Electrical Specifications¹ at 25°C, 50 Ω , unless otherwise noted.

1. Measured on Mini-Circuits Characterization Test Board TB-1041-2-63+. See Characterization Test Circuit (Fig. 1)

Absolute Maximum Ratings²

Operating Case Temperature	-40°C to 85°C
Storage Temperature	-65°C to 150°C
RF Input Power	31 dBm

2. Permanent damage may occur if any of these limits are excedeed.

Characterization Test Circuit

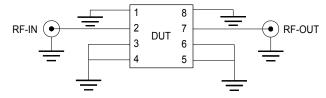
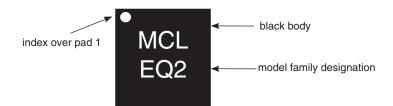
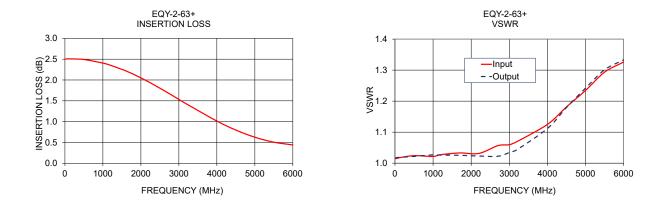



Fig 1. Block Diagram of Test Circuit used for characterization. Test Board TB-1041-2-63+ Conditions: Attenuation & Return Loss Pin=0 dBm

Product Marking



Marking may contain other features or characters for internal lot control

Frequency (MHz)	Insertion Loss (dB)	Input VSWR (:1)	Output VSWR (:1)
10	2.50	1.02	1.02
50	2.51	1.01	1.02
100	2.51	1.02	1.02
500	2.49	1.02	1.02
1000	2.40	1.02	1.03
1200	2.35	1.03	1.03
1700	2.18	1.03	1.03
2200	1.96	1.03	1.02
2700	1.70	1.06	1.02
3000	1.53	1.06	1.03
3200	1.43	1.07	1.04
4000	1.01	1.12	1.11
4500	0.80	1.18	1.18
5000	0.63	1.23	1.24
5500	0.51	1.29	1.30
6000	0.44	1.33	1.33

Typical Performance Data at 25°C

