

ESDALC5-1BF4

Low clamping and low capacitance bidirectional single line ESD protection

Datasheet - production data

Features

- Low clamping voltage
- Bidirectional device
- Low leakage current
- 0201 package
- Ultra low PCB area: 0.18 mm²
- ECOPACK[®]2 compliant component
- Exceeds the following standard:
 - IEC 61000-4-2 level 4 = ±15 kV (air discharge) and ±8 kV (contact discharge)

Applications

Where transient over voltage protection in ESD sensitive equipment is required, such as:

- Smartphones, mobile phones and accessories
- Tablets and notebooks
- Portable multimedia devices and accessories
- Wearable, home automation, healthcare
- Highly integrated systems

Description

The ESDALC5-1BF4 is a bidirectional single line TVS diode designed to protect the data line or other I/O ports against ESD transients.

The device is ideal for applications where both reduced line capacitance and board space saving are required.

Figure 1: Functional diagram

February 2018

DocID024341 Rev 3

1/9

This is information on a product in full production.

1 Characteristics

Table 1: Absolute maximum ratings

Symbol	Paran	Value	Unit	
Vaa	Peak pulse voltage	Contact discharge	16	k\/
VPP	T eak puise voltage	Air discharge	30	ĸv
P _{PP}	Peak pulse power dissipation (8	/20 µs)	28	W
I _{PP}	Peak pulse current (8/20 μs)		2.5	А
Tj	Operating junction temperature range		-40 to +150	°C
T _{stg}	Storage temperature range		-65 to +150	°C
ΤL	Maximum lead temperature for s	260	°C	

$\begin{array}{l} \text{Symbol} \\ V_{BR} & = \\ V_{CL} & = \\ I_{RM} & = \\ V_{RM} & = \\ I_{PP} & = \\ R_{d} & = \\ \alpha T & = \\ C_{LINE} & = \end{array}$	Parameter Breakdown voltage Clamping voltage Leakage current at V _{RM} Stand-off voltage Peak pulse current Dynamic resistance Voltage temperature Line capacitance	$V_{CL} \bigvee_{BR} \bigvee_{RM} \bigvee_{RM} \bigvee_{RM} \bigvee_{RM} \bigvee_{RM} \bigvee_{RM} \bigvee_{RM} \bigvee_{CL} \bigvee_{RM} $
---	--	--

Table 2: Electrical characteristics (Tamb = 25 °C)							
Symbol	Parameter	Min.	Тур.	Max.	Unit		
V _{BR}	I _R = 1 mA	5.8			V		
I _{RM}	$V_{RM} = 5 V$			100	nA		
CLINE	$F = 1 \text{ MHz}, V_{\text{LINE}} = 0 \text{ V}, V_{\text{OSC}} = 30 \text{ mV}$		10	12	рF		

ESDALC5-1BF4

Characteristics

57

DocID024341 Rev 3

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

2.1 0201 package information

The marking codes can be rotated by 90° or 180° to differentiate assembly location. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

DocID024341 Rev 3

ESDALC5-1BF4

Package information

	Dimensions				
Ref.	Millimeters				
	Min.	Тур.	Max.		
А	0.280	0.300	0.320		
b	0.125	0.140	0.155		
D	0.570	0.600	0.630		
D1		0.350			
E	0.270	0.300	0.330		
E1	0.175	0.190	0.205		
fD	0.110	0.125	0.140		
fE	0.040	0.055	0.070		

57

The marking codes can be rotated by 90° or 180° to differentiate assembly location. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.

DocID024341 Rev 3

3 Recommendation on PCB assembly

3.1 Footprint

1. SMD footprint design is recommended.

3.2 Stencil opening design

- 1. Recommended design reference
 - a. Stencil opening thickness: 75 μm / 3 mils

3.3 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with particle size 20-38 μm

3.4 Placement

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ± 0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- 6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.6 Reflow profile

Minimize air convection currents in the reflow oven to avoid component movement.

4 Ordering information

Figure 15	5: Ordering information scheme
	ESDA LC 5 - 1 B F4
ESD array	
Low Capacitance	
Breakdown voltage	
Number of lines	
B = Bi-directional	
Package	
F4 = 0201	

Table 4. Ordering information	Т	able	4:	Ordering	information	۱
-------------------------------	---	------	----	----------	-------------	---

Order code	Marking	Package	Weight	Base qty.	Delivery mode
ESDALC5-1BF4	C ⁽¹⁾	0201	0.116 mg	15000	Tape and reel

Notes:

 $^{(1)}\mbox{The}$ marking can be rotated by multiples of 90° to differentiate assembly location.

5 Revision history

Table 5: Document revision history

Date	Revision	Changes
06-Feb-2014	1	First issue.
01-Jun-2017	2	Updated Table 3: "0201 package mechanical data". Updated Section 3.2: "Stencil opening design".
08-Feb-2018	3	Updated Table 2: "Electrical characteristics (Tamb = 25 °C)".

