

# Nonreflective, Silicon SP4T Switch, 0.1 GHz to 6.0 GHz

Data Sheet HMC7992

### **FEATURES**

Nonreflective, 50 Ω design
High isolation: 45 dB typical at 2 GHz
Low insertion loss: 0.6 dB at 2 GHz
High power handling
33 dBm through path
27 dBm terminated path
High linearity

1 dB compression (P1dB): 35 dBm typical Input third-order intercept (IIP3): 58 dBm typical ESD rating: 2 kV human body model (HBM), Class 2 Single positive supply: 3.3 V to 5.0 V Standard TTL-, CMOS-, and 1.8 V-compatible control 16-lead, 3 mm × 3 mm LFCSP package (9 mm²) Pin compatible with the HMC241ALP3E

#### **APPLICATIONS**

Cellular/4G infrastructure Wireless infrastructure Automotive telematics Mobile radios Test equipment

#### **GENERAL DESCRIPTION**

The HMC7992 is a general-purpose, nonreflective, 0.1 GHz to 6.0 GHz, silicon, single-pole, four-throw (SP4T) switch in a leadless, surface-mount package. The switch is ideal for cellular infrastructure applications, offers high isolation of 45 dB typical at 2 GHz, and a low insertion loss of 0.6 dB at 2 GHz. It offers excellent power handling capability up to 6.0 GHz, with input power of 1 dB compression point (P1dB) of 35 dBm at 5 V operation. The HMC7992 has good low frequency input power handling below 0.1 GHz and can operate well down to 10 kHz, with a typical 1 dB compression of 21 dBm (see Figure 21) and an IIP3 of 37 dBm (see Figure 22) at 1 MHz.

### **FUNCTIONAL BLOCK DIAGRAM**

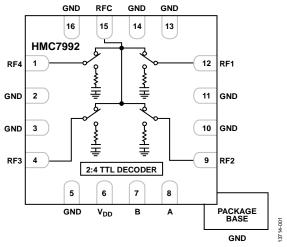



Figure 1.

The on-chip circuitry allows the HMC7992 to operate at a single, positive supply voltage range from 3.3 V to 5 V, and as well as a single, positive control voltage from 0 V to 1.8 V/3.3 V/5.0 V. A 2:4 decoder integrated in the switch requires only two controlled input signals, with a positive control voltage range from 0 V to 1.8 V/3.3 V/5.0 V, to select one of the four radio frequency (RF) paths.

## **TABLE OF CONTENTS**

1/2016—Revision 0: Initial Version

| Features                                             | l |
|------------------------------------------------------|---|
| Applications                                         | 1 |
| Functional Block Diagram                             | 1 |
| General Description                                  | 1 |
| Revision History                                     | 2 |
| Specifications                                       | 3 |
| Absolute Maximum Ratings                             | 4 |
| ESD Caution                                          | 4 |
| Pin Configuration and Function Descriptions          | 5 |
| Interface Schematics                                 | 5 |
| Typical Performance Characteristics                  | 5 |
| REVISION HISTORY                                     |   |
| 8/2019—Rev. 0 to Rev. A                              |   |
| Changes to Specifications Section and Table 1        | 3 |
| Deleted Table 2 and Table 3; Renumbered Sequentially | 1 |
| Changes to Table 3                                   | 5 |
| Moved Table 4                                        | J |
| Deleted Table 510                                    | J |
| Changes to Ordering Guide                            | 2 |

| Insertion Loss, Isolation, and Return Loss                             | 6  |
|------------------------------------------------------------------------|----|
| Input Compression and Input Third-Order Intercept (0.1 GHz to 6.0 GHz) | 8  |
| Input Compression and Input Third-Order Intercept (to 1 GHz)           |    |
| Theory of Operation                                                    | 10 |
| Applications Information                                               | 11 |
| Outline Dimensions                                                     | 12 |
| Ordering Guide                                                         | 12 |

## **SPECIFICATIONS**

 $V_{\text{DD}}$  = 3.3 V to 5.0 V,  $V_{\text{CTL}}$  = 0 V/V  $_{\text{DD}}$  ,  $T_{\text{CASE}}$  = 25°C, 50  $\Omega$  system, unless otherwise noted.

Table 1.

| Parameter                          | Symbol            | Test Conditions/Comments                                                                        | Min  | Тур  | Max             | Unit |
|------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|------|------|-----------------|------|
| INSERTION LOSS                     |                   | 0.1 GHz to 2.0 GHz                                                                              |      | 0.6  | 0.9             | dB   |
|                                    |                   | 2.0 GHz to 4.0 GHz                                                                              |      | 0.7  | 1.1             | dB   |
|                                    |                   | 4.0 GHz to 6.0 GHz                                                                              |      | 1.0  | 1.5             | dB   |
| ISOLATION                          |                   |                                                                                                 |      |      |                 |      |
| RFC to RF1to RF4 (Worst Case)      |                   | 0.1 GHz to 2.0 GHz                                                                              | 40   | 45   |                 | dB   |
|                                    |                   | 2.0 GHz to 4.0 GHz                                                                              | 32   | 37   |                 | dB   |
|                                    |                   | 4.0 GHz to 6.0 GHz                                                                              | 25   | 30   |                 | dB   |
| RETURN LOSS                        |                   |                                                                                                 |      |      |                 |      |
| On State                           |                   | 0.1 GHz to 2.0 GHz                                                                              |      | 25   |                 | dB   |
|                                    |                   | 2.0 GHz to 4.0 GHz                                                                              |      | 24   |                 | dB   |
|                                    |                   | 4.0 GHz to 6.0 GHz                                                                              |      | 17   |                 | dB   |
| Off State                          |                   | 0.1 GHz to 2.0 GHz                                                                              |      | 7    |                 | dB   |
|                                    |                   | 0.4 GHz to 1.0 GHz                                                                              |      | 15   |                 | dB   |
|                                    |                   | 1.0 GHz to 6.0 GHz                                                                              |      | 20   |                 | dB   |
| SWITCHING SPEED                    |                   |                                                                                                 |      |      |                 |      |
| Rise Time and Fall Time            | trise, trall      | 10% to 90% of RF output                                                                         |      | 30   |                 | ns   |
| On Time and Off Time               | ton, toff         | 50% of V <sub>CTL</sub> to 90% of RF output                                                     |      | 150  |                 | ns   |
| RADIO FREQUENCY (RF) SETTLING TIME |                   | 50% V <sub>CTL</sub> to 0.1 dB margin of final RF <sub>OUT</sub>                                |      | 320  |                 | ns   |
| INPUT POWER COMPRESSION            |                   | 0.1 GHz to 6.0 GHz                                                                              |      |      |                 |      |
| 1 dB Compression                   | P1dB              | $V_{DD} = 5 \text{ V}$                                                                          |      | 35   |                 | dB   |
|                                    |                   | $V_{DD} = 3.3 \text{ V}$                                                                        |      | 33   |                 | dB   |
| 0.1 dB Compression                 | P0.1dB            | $V_{DD} = 5 \text{ V}$                                                                          |      | 33   |                 | dB   |
|                                    |                   | $V_{DD} = 3.3 \text{ V}$                                                                        |      | 31   |                 | dB   |
| INPUT THIRD-ORDER INTERCEPT        | IIP3              | 0.1 GHz to 6.0 GHz, two-tone input power = 14 dBm/tone                                          |      |      |                 |      |
|                                    |                   | $V_{DD} = 5 \text{ V}$                                                                          |      | 58   |                 | dBm  |
|                                    |                   | $V_{DD} = 3.3 \text{ V}$                                                                        |      | 56   |                 | dBm  |
| DIGITAL CONTROL VOLTAGES           |                   | <1 μA typical                                                                                   |      |      |                 |      |
| Low Voltage                        | V <sub>IL</sub>   | $V_{DD} = 3.3 \text{ V } (\pm 5\% \text{ V}_{DD})$                                              | 0    |      | 0.85            | V    |
|                                    |                   | $V_{DD} = 5 \text{ V } (\pm 5\% \text{ V}_{DD})$                                                | 0    |      | 1.2             | V    |
| High Voltage                       | V <sub>IH</sub>   | $V_{DD} = 3.3 \text{ V } (\pm 5\% \text{ V}_{DD})$                                              | 1.15 |      | 3.3             | V    |
|                                    |                   | $V_{DD} = 5 \text{ V } (\pm 5\% \text{ V}_{DD})$                                                | 1.55 |      | 5.0             | V    |
| BIAS AND SUPPLY CURRENT            | $I_{DD}$          |                                                                                                 |      |      |                 |      |
| $V_{DD} = 3.3 \text{ V}$           |                   |                                                                                                 |      | 0.16 | 0.20            | mA   |
| $V_{DD} = 5 \text{ V}$             |                   |                                                                                                 |      | 0.18 | 0.23            | mA   |
| RECOMMENDED OPERATING CONDITIONS   |                   |                                                                                                 |      |      |                 |      |
| Bias Voltage Range                 | $V_{DD}$          |                                                                                                 | 3.0  |      | 5.4             | V    |
| Control Voltage Range              | V <sub>CTL</sub>  |                                                                                                 | 0    |      | $V_{\text{DD}}$ | V    |
| Case Temperature Range             | T <sub>CASE</sub> |                                                                                                 | -40  |      | +105            | °C   |
| Maximum RF Input Power             |                   | 0.1 GHz to 6.0 GHz                                                                              |      |      |                 |      |
| Through Path                       |                   | $V_{DD}/V_{CTL} = 5 \text{ V}, T_{CASE} = 105^{\circ}\text{C}$                                  |      | 30   |                 | dBm  |
|                                    |                   | $V_{DD}/V_{CTL} = 5 \text{ V}, T_{CASE} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$          |      | 33   |                 | dBm  |
|                                    |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V}, T_{CASE} = 105^{\circ}\text{C}$                                |      | 29   |                 | dBm  |
|                                    |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V}, T_{CASE} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$        |      | 32   |                 | dBm  |
| Terminated Path                    |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V to 5 V}, T_{CASE} = 105^{\circ}\text{C}$                         |      | 21   |                 | dBm  |
|                                    |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V to 5 V}, T_{CASE} = 85^{\circ}\text{C}$                          |      | 24   |                 | dBm  |
|                                    |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V to 5 V}, T_{CASE} = 25^{\circ}\text{C}$                          |      | 27   |                 | dBm  |
|                                    |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V to 5 V}, T_{CASE} = -40^{\circ}\text{C}$                         |      | 27   |                 | dBm  |
| Hot Switching                      |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V to 5 V}, T_{CASE} = 105^{\circ}\text{C}$                         |      | 24   |                 | dBm  |
| -<br>-                             |                   | $V_{DD}/V_{CTL} = 3.3 \text{ V to 5 V}, T_{CASE} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ |      | 27   |                 | dBm  |

## **ABSOLUTE MAXIMUM RATINGS**

Table 2.

| Rating                                        |  |  |
|-----------------------------------------------|--|--|
| −0.3 V to +5.5 V                              |  |  |
| $-0.5 \text{ V to V}_{DD} + (+0.5 \text{ V})$ |  |  |
|                                               |  |  |
| 34 dBm                                        |  |  |
| 28 dBm                                        |  |  |
| 30 dBm                                        |  |  |
| 135°C                                         |  |  |
| -65°C to +150°C                               |  |  |
| 260°C                                         |  |  |
|                                               |  |  |
| 115°C                                         |  |  |
| 200°C                                         |  |  |
|                                               |  |  |
| 2 kV (Class 2)                                |  |  |
| 1.25 kV                                       |  |  |
|                                               |  |  |

 $<sup>^{\</sup>rm 1}$  For recommended operating conditions, see Table 1.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.




Figure 2. Maximum RF Input Power vs. Frequency

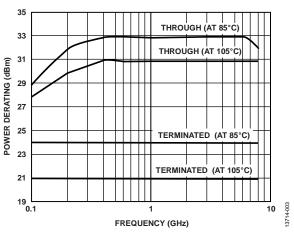



Figure 3. Power Derating vs. Frequency

### **ESD CAUTION**



**ESD (electrostatic discharge) sensitive device.**Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

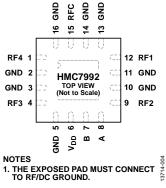



Figure 4. Pin Configuration

**Table 3. Pin Function Descriptions** 

| Pin No.                        | Mnemonic | Description                                                                                                                                                          |
|--------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                              | RF4      | RF Port 4. This pin is dc-coupled and matched to 50 $\Omega$ . A dc blocking capacitor is required on this pin.                                                      |
| 2, 3, 5, 10, 11,<br>13, 14, 16 | GND      | Ground. The package bottom has an exposed metal pad that must connect to the printed circuit board (PCB) RF/dc ground. See Figure 5 for the GND interface schematic. |
| 4                              | RF3      | RF Port 3. This pin is dc-coupled and matched to 50 $\Omega$ . A dc blocking capacitor is required on this pin.                                                      |
| 6                              | $V_{DD}$ | Supply Voltage.                                                                                                                                                      |
| 7                              | В        | Logic Control Input B. See Figure 6 for the control input interface schematic. See Table 4 and the recommended input control voltages range in Table 1.              |
| 8                              | Α        | Logic Control Input A. See Figure 6 for the control input interface schematic. See Table 4 and the recommended input control voltages range in Table 1.              |
| 9                              | RF2      | RF Port 2. This pin is dc-coupled and matched to 50 $\Omega$ . A dc blocking capacitor is required on this pin.                                                      |
| 12                             | RF1      | RF Port 1. This pin is dc-coupled and matched to $50 \Omega$ . A dc blocking capacitor is required on this pin.                                                      |
| 15                             | RFC      | RF Common Port. This pin is dc-coupled and matched to $50 \Omega$ . A dc blocking capacitor is required on this pin.                                                 |
|                                | EPAD     | Exposed Pad. The exposed pad must connect to RF/dc ground.                                                                                                           |

### **INTERFACE SCHEMATICS**



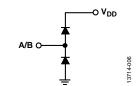



Figure 6. Logic Control (A/B) Interface Schematic

## TYPICAL PERFORMANCE CHARACTERISTICS

### INSERTION LOSS, ISOLATION, AND RETURN LOSS

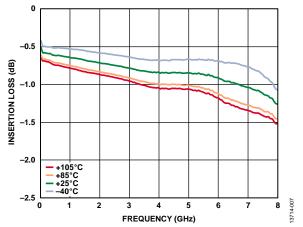



Figure 7. Insertion Loss vs. Frequency for Various Temperatures,  $V_{DD} = 5 V$ 

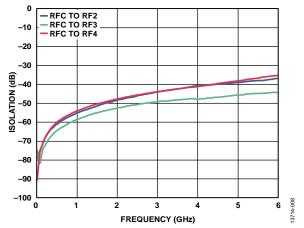



Figure 8. Isolation vs. Frequency,  $V_{DD} = 3.3 \text{ V to } 5 \text{ V}$ , RFC to RF1 = On

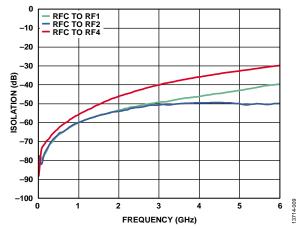



Figure 9. Isolation vs. Frequency,  $V_{DD} = 3.3 \text{ V to 5 V}$ , RFC to RF3 = On

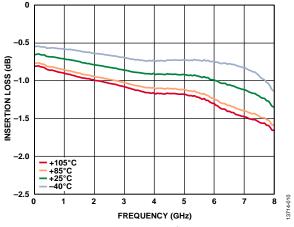



Figure 10. Insertion Loss vs. Frequency for Various Temperatures,  $V_{DD} = 3.3 \text{ V}$ 

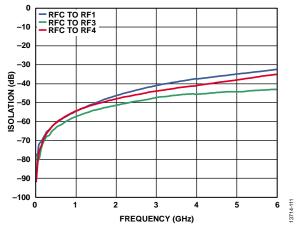



Figure 11. Isolation vs. Frequency,  $V_{DD} = 3.3 \text{ V}$  to 5 V, RFC to RF2 = On

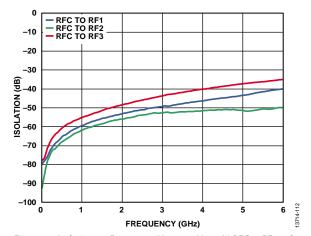



Figure 12. Isolation vs. Frequency,  $V_{DD} = 3.3 \text{ V}$  to 5 V, RFC to RF4 = On

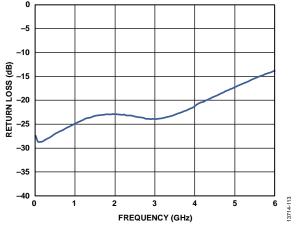



Figure 13. Return Loss for RFC vs. Frequency,  $V_{DD} = 3.3 \text{ V}$  to 5 V

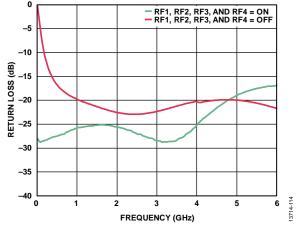



Figure 14. Return Loss for RF1, RF2, RF3, and RF4 vs. Frequency,  $V_{\text{DD}} = 3.3 \, \text{V}$  to 5 V

### INPUT COMPRESSION AND INPUT THIRD-ORDER INTERCEPT (0.1 GHz TO 6.0 GHz)

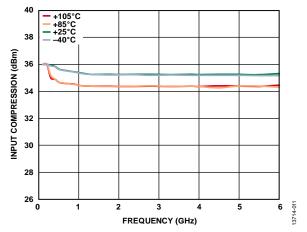



Figure 15. Input Compression 1 dB Point vs. Frequency for Various Temperatures,  $V_{DD} = 5 V$ 




Figure 16. Input Compression 0.1 dB Point vs. Frequency for Various Temperatures,  $V_{DD} = 5 \text{ V}$ 

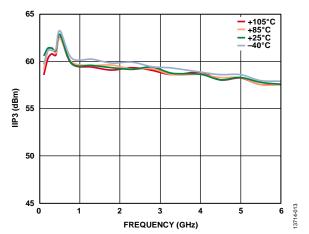



Figure 17. Input Third-Order Intercept (IIP3) Point vs. Frequency for Various Temperatures,  $V_{DD} = 5 \text{ V}$ 

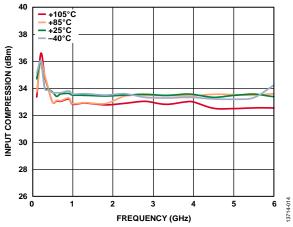



Figure 18. Input Compression 1 dB Point vs. Frequency for Various Temperatures,  $V_{DD} = 3.3 V$ 

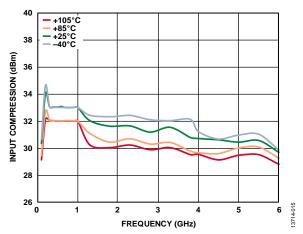



Figure 19. Input Compression 0.1 dB Point vs. Frequency for Various Temperatures,  $V_{DD} = 3.3 \text{ V}$ 

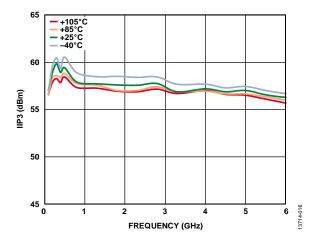



Figure 20. Input Third-Order Intercept (IIP3) Point vs. Frequency for Various Temperatures,  $V_{DD} = 3.3 \text{ V}$ 

### INPUT COMPRESSION AND INPUT THIRD-ORDER INTERCEPT (10 kHz TO 1 GHz)

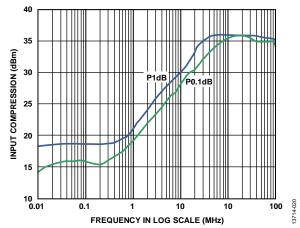



Figure 21. Input Compression (P1dB and P0.1dB Points) vs. Frequency in Log Scale,  $V_{DD}$  = 5 V at 25°C

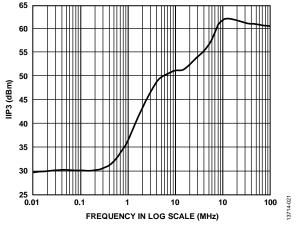



Figure 22. Input Third-Order Intercept (IIP3) vs. Frequency in Log Scale,  $V_{\rm DD} = 5~V$  at  $25^{\circ}{\rm C}$ 

### THEORY OF OPERATION

The HMC7992 requires a single positive supply voltage applied to the  $V_{\text{\tiny DD}}$  pin. A bypassing capacitor is recommended on the supply line to minimize RF coupling.

The HMC7992 integrates with an internal 2:4 decoder; the four RF paths are selected via the two digital control voltages applied to the A and B control inputs. A small value bypassing capacitor is recommended on these digital signal lines to improve the RF signal isolation.

The HMC7992 is internally matched to 50  $\Omega$  at the RF common port (RFC) and the RF ports (RF1, RF2, RF3, and RF4); therefore, no external matching components are required. The RF pins are dc-coupled and dc blocking capacitors are required on the RF paths. The design is bidirectional; the RF input signals can apply at the RFC port or the RF1 to RF4 ports. The inputs and outputs are interchangeable.

Depending on the logic level applied to the control input pins, A and B, one RF output port (for example, RF1) is set to on mode, by which an insertion loss path is provided from the input to the output. The other RF output ports (for example, RF2, RF3, and RF4) are then set to off mode, by which the outputs are isolated from the input. When the RF output ports (RF1, RF2, RF3, and RF4) are in isolation mode, they are internally terminated to  $50~\Omega$ , and thereby can absorb the applied RF signal.

The ideal power-up sequence is as follows:

- 1. Power up GND.
- 2. Power up  $V_{DD}$ .
- 3. Power up the digital control inputs. The relative order of the logic control inputs is not important. Powering the logic control inputs before the  $V_{\rm DD}$  supply can inadvertently forward bias and damage the internal ESD protection structures.
- Apply the RF input.

Table 4. Truth Table

| Control Input |      | Signal Path State |
|---------------|------|-------------------|
| Α             | В    | RFC to            |
| Low           | Low  | RF1               |
| High          | Low  | RF2               |
| Low           | High | RF3               |
| High          | High | RF4               |

## **APPLICATIONS INFORMATION**

Generate the evaluation PCB with proper RF circuit design techniques. Signal lines at the RF port must have a 50  $\Omega$  impedance, and the package ground leads and backside ground slug must connect directly to the ground plane, as shown in Figure 23. The evaluation board shown in Figure 23 is available from Analog Devices, Inc., upon request.

Table 5. Bill of Materials for the EV1HMC7992LP3D<sup>1</sup> Evaluation Board

| Reference Designator | Description                     |
|----------------------|---------------------------------|
| J1 to J5             | PCB mount SMA connectors        |
| C1 to C5             | 100 pF capacitors, 0402 package |
| C8 to C10            | 100 pF capacitors, 0402 package |
| C13                  | 0.1 μF capacitor, 0402 package  |
| R1 to R2             | 0 Ω resistors, 0402 package     |
| U1                   | HMC7992LP3DE SP4T switch        |
| PCB <sup>2</sup>     | 600-01284-00 evaluation PCB     |

 $<sup>^{\</sup>rm I}$  Reference this evaluation board number when ordering the complete evaluation board.

<sup>&</sup>lt;sup>2</sup> Circuit board material: Roger 4350 or Arlon 25FR.

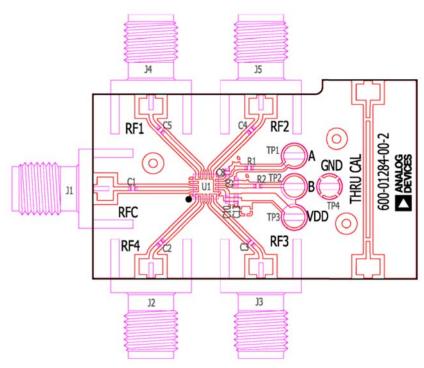



Figure 23. EV1HMC7992LP3D Evaluation Board