

EV20045DQ-00A

Low Noise, High PSRR, 1A Linear Regulator EV Board

DESCRIPTION

The EV20045DQ-00A evaluation board demonstrates the performance of MP20045, a low noise, low dropout and high PSRR linear regulator. It operates from a 2.5V to 5.5V input voltage and the output voltage can be set externally which ranges from 1.5V to 5V.

The EV20045DQ-00A can supply up to 1A of load current, and features current limiting, over temperature protection and power-good status.

An internal PMOS pass element is used to allow a low 110uA ground current, marking the MP20045 suitable for battery-power devices.

ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Value	Units
Input Voltage	VIN	3.5 – 5.5	V
Output Voltage	V _{оит}	3	V
Load Current	l _{out}	1	Α

FEATURES

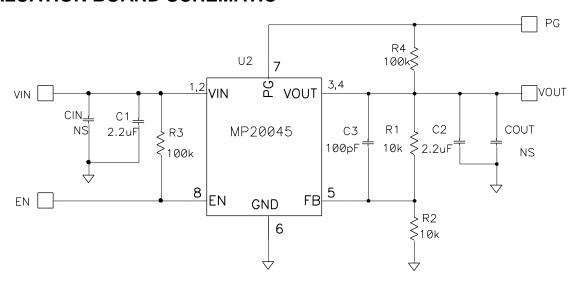
- Up to 1A Output Current
- Low 140mV Dropout at 1A
- Adjustable Output
- 56dB PSRR at 1kHz
- 13µV_{RMS} Low Noise Output
- Open Drain Power-Good Status Output
- Very Fast Transient Responses
- Current Limit and Thermal Protection

APPLICATIONS

- Notebook Computers
- Cordless Telephones
- Cellular Phones
- Modems
- Hand-Held Instruments
- PDA and Palmtop Computers

MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

EV20045DQ-00A EVALUATION BOARD



(L x W x H) 2.5" x 2.5" x 0.4" (6.35cm x 6.35cm x 1.1cm)

Board Number	MPS IC Number	
EV20045DQ-00A	MP20045DQ	

EVALUATION BOARD SCHEMATIC

EV20045DQ-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Part Number
2	C1,C2	2.2uF	Ceramic Capacitor,X7R,16V	0805	TDK	C2012X7R1C225K
1	C3	100pF	Ceramic Capacitor,COG,50V	0603	TDK	C1608COG1H101J
2	CIN,COUT	NS				
2	R1,R2	10kΩ	Film Res, 1%	0603	Yageo	RC0603FR-0710KL
2	R3,R4	100kΩ	Film Res, 5%	0603	Any	
1	U1		LDO Regulator	QFN8 (3mm*3mm)	MPS	MP20045DQ

PRINTED CIRCUIT BOARD LAYOUT

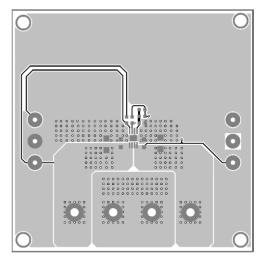


Figure 1—Top Layer

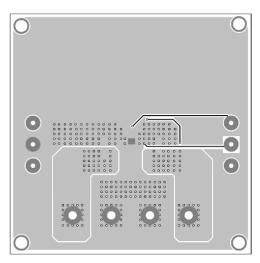


Figure 2—Bottom Layer

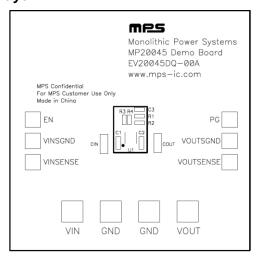


Figure 3—Top Silk Layer

QUICK START GUIDE (ADJUSTABLE OUTPUT)

The output voltage of this board is set externally which ranges from 1.5V to 5V by operating from +2.5V to +5.5V input as the figure 4. The default output voltage of this board is set to 3.0V.

The board layout accommodates most commonly used resistors and capacitors.

- 1. Attach the positive and negative ends of the load to the VOUT and GND pins, respectively.
- 2. Attach the Input Voltage (3.5V \leq V_{IN} \leq 5.5V) and Input Ground to the VIN and GND pins, respectively.
- 3. To enable the MP20045 apply a voltage, 1.5V \leq V_{EN} \leq 5.5V, to the EN pin. To disable the MP20045 apply a voltage, V_{EN} < 0.4V, to the EN pin. The EN pin can be connected to V_{IN} with a $100k\Omega$ resistor for automatic startup.
- 4. The Output Voltage V_{OUT} can be changed by varying R2. Calculate the new value by formula:

$$R2 = \frac{R1}{(\frac{V_{OUT}}{V_{FR}}) - 1}$$

Where VFB = 1.5V and R1 = $10k\Omega$.

Example:

For $V_{OUT} = 3.0V$:

$$R2 = \frac{10k\Omega}{(\frac{3.0}{1.5}) - 1} = 10k\Omega$$

Therefore, use a $10k\Omega$ standard 1% value.

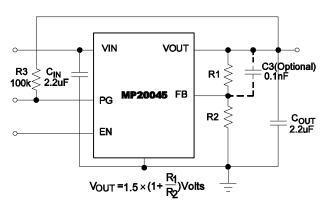


Figure 4—Adjust Version

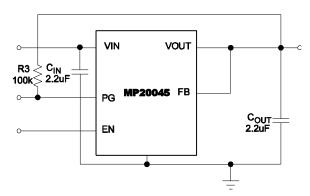


Figure 5—Fixed Version