# EV2013A-5-J\_Q\_G-00A

40V, 150mA, Low Quiescent Current **Linear Regulator Evaluation Board** 

#### DESCRIPTION

The EV2013A-5-J Q G-00A is an evaluation board for the MP2013A-5, MPQ2013A-5 and MPQ2013A-5-AEC1, a low linear regulator that supplies power to systems with high voltage batteries.

MP2013A-5/MPQ2013A-5/MPQ2013A-5-AEC1 includes a wide 6V to 40V input range, low dropout voltage and low quiescent supply current. The low quiescent current and low dropout voltage allow operations at extremely low power levels. Therefore, the MP2013A-5/MPQ2013A-5/MPQ2013A-5-AEC1 is ideal for the low power microcontrollers and the batterypowered equipments.

The EV2013A-5-J Q G-00A is fully assembled and tested evaluation board. It generates a +5V output voltage at load current up to 150mA from a 6V to 40V input range.

### **ELECTRICAL SPECIFICATIONS**

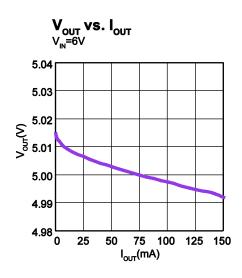
| Parameter      | Symbol          | Value  | Units |
|----------------|-----------------|--------|-------|
| Input Voltage  | V <sub>IN</sub> | 6 – 40 | V     |
| Output Voltage | Vouт            | 5      | V     |
| Output Current | Іоит            | 150    | mA    |

#### **FEATURES**

- 6V to 40V Input Range
- 150mA Specified Current
- 600mV Dropout at 150mA Load
- Output ±2% Accuracy
- **Specified Current Limit**
- Thermal Shutdown
- -40°C to +125°C Specified Junction Temperature Range
- Includes QFN8 (3x3mm) Package

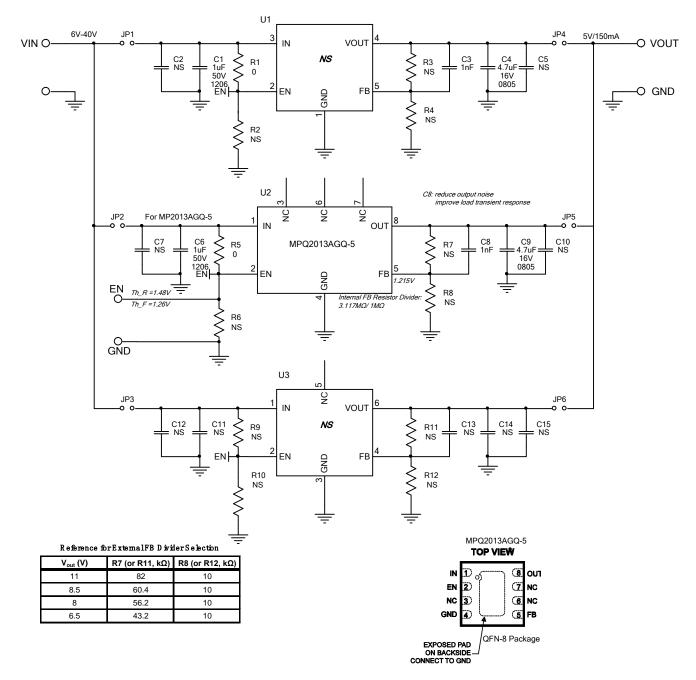
#### **APPLICATIONS**

- Industrial/Automotive Applications
- Portable/Battery-Powered Equipment
- Ultra low power Microcontrollers
- Cellular Handsets
- Medical Imaging


All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

### **EV2013A-5-J Q G-00A EVALUATION BOARD**




(L x W x H) 2.5" x 2.5" x 0.4" (6.35cm x 6.35cm x 1.0cm)

| <b>Board Number</b> | MPS IC Number |  |  |
|---------------------|---------------|--|--|
| EV2013A-5-J_Q_G-00A | MPQ2013AGQ-5  |  |  |

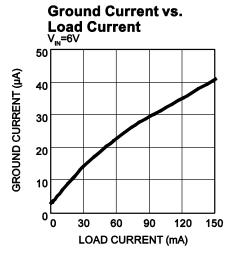




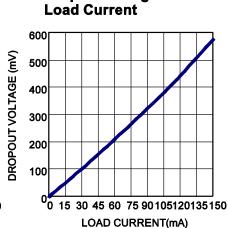
### **EVALUATION BOARD SCHEMATIC**



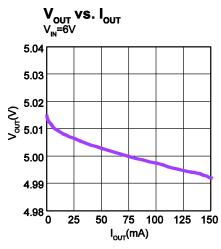


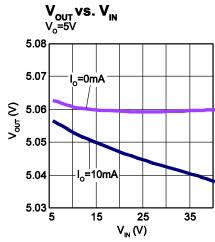

## **EV2013A-5-J\_Q\_G-00A BILL OF MATERIALS**

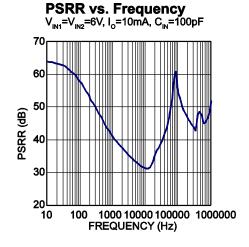

| Qty | RefDes                                          | Value | Description               | Package  | Manufacturer | Manufactuer_P/N    |
|-----|-------------------------------------------------|-------|---------------------------|----------|--------------|--------------------|
| 2   | C1, C6                                          | 1uF   | Ceramic Cap.,<br>50V, X7R | 1206     | muRata       | GRM31MR71H105KA88L |
| 2   | C3, C8                                          | 1nF   | Ceramic Cap.,<br>50V, X7R | 0603     | muRata       | GRM188R71H102KA01D |
| 2   | C4, C9                                          | 4.7uF | Ceramic Cap.,<br>16V, X7R | 0805     | muRata       | GCM21BR71C475KA73L |
| 9   | C2, C5, C7,<br>C10, C11, C12,<br>C13, C14, C15  | NS    |                           |          |              |                    |
| 2   | R1, R5                                          | 0     | Film Res., 5%             | 0603     | Yageo        | RC0603JR-070RL     |
| 10  | R2, R3, R4, R6,<br>R7, R8, R9,<br>R10, R11, R12 | NS    |                           |          |              |                    |
| 6   | JP1, JP2, JP,<br>JP4, JP5, JP6                  |       | Jumper                    |          |              |                    |
| 1   | U1                                              | NS    |                           |          |              |                    |
| 1   | U2                                              |       | Linear Regulator          | QFN8-3x3 | MPS          | MPQ2013AGQ-5-AEC1  |
| 1   | U3                                              | NS    |                           |          |              |                    |
| 4   | VIN, GND,<br>VOUT, GND                          |       | 2.0 Golden Pin            |          | HZ           |                    |
| 2   | EN, GND                                         |       | 2.54mm Test Pin           |          | any          |                    |




### **EVB TEST RESULTS**


Performance waveforms are tested on the evaluation board.  $V_{OUT} = 5V$ ,  $T_A = 25$ °C, unless otherwise noted.



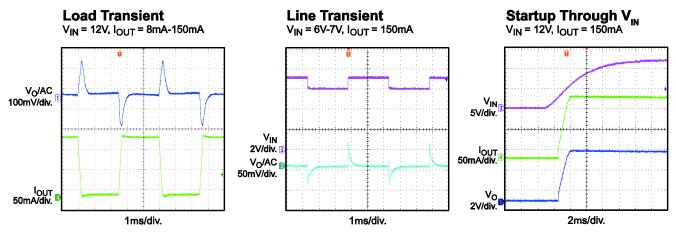



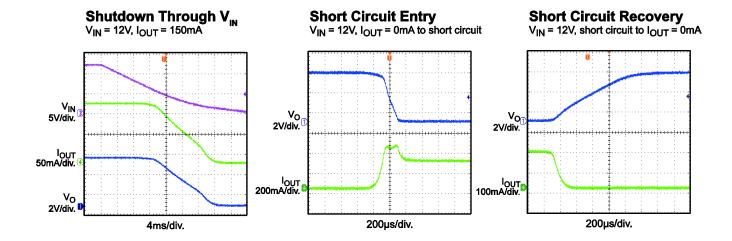


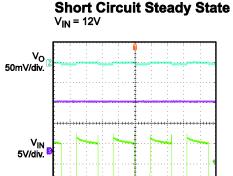

Dropout Voltage vs.







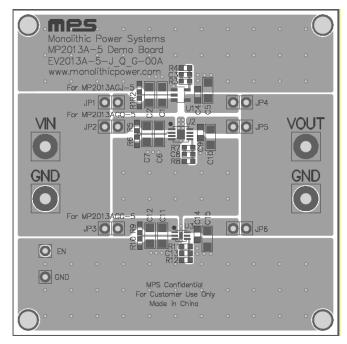





### **EVB TEST RESULTS** (continued)

Performance waveforms are tested on the evaluation board.

 $V_{OUT} = 5V$ ,  $T_A = 25$ °C, unless otherwise noted.








20ms/div.

l<sub>OUT</sub> 100mA/div.

### PRINTED CIRCUIT BOARD LAYOUT



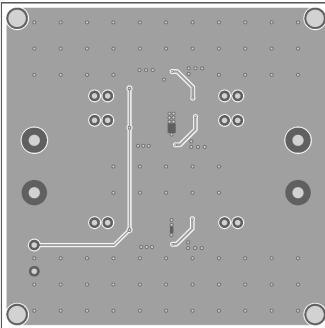



Figure 1—Top Silk & Top Layer

Figure 2—Bottom Layer



#### **QUICK START GUIDE**

 Connect different jumpers to select different MPQ2013A-5 ICs with different packages for evaluation:

| Connected Jumpers | Selected IC  |  |
|-------------------|--------------|--|
| JP2, JP5          | MPQ2013AGQ-5 |  |

- Connect the positive and negative terminals of the load to the VOUT and GND pins, respectively. Set load current between 0-150mA. Be aware that electronic loads represent a negative impedance to the regulator and if set to a too high current will trigger over-currentprotection or short-current-protection.
- 3. Preset the power supply output between 6V and 40V, and then turn it off. (If longer cables are used between the source and the EVB (>0.5m total), a damping capacitor should be installed at the input terminals. Especially when  $V_{IN} \ge 24V$ ).
- 4. Connect the positive and negative terminals of the power supply output to the VIN and GND pins, respectively.
- 5. Turn the power supply on. The MPQ2013A-5 will automatically startup. The default V<sub>OUT</sub> is 5V.
- 6. To use EN turning on/off MPQ2013A-5, remove R5 first. Then give a voltage between EN and GND higher than 1.48V to turn on, lower than 1.26V to turn off.