EXAMALOGES

Low Power IEEE 802.15.4/Proprietary GFSK/FSK Zero-IF 2.4 GHz Transceiver IC

ADF7242

FEATURES

Frequency range (global ISM band) 2400 MHz to 2483.5 MHz Programmable data rates and modulation IEEE 802.15.4-2006-compatible (250 kbps) GFSK/FSK/GMSK/MSK modulation 50 kbps to 2000 kbps data rates Low power consumption 19 mA (typical) in receive mode 21.5 mA (typical) in transmit mode (Po = 3 dBm) 1.7 μA, 32 kHz crystal oscillator wake-up mode High sensitivity (IEEE 802.15.4-2006) −95 dBm at 250 kbps High sensitivity (0.1% BER) −96 dBm at 62.5 kbps (GFSK) −93 dBm at 500 kbps (GFSK) −90 dBm at 1 Mbps (GFSK) −87.5 dBm at 2 Mbps (GFSK) Programmable output power −20 dBm to +4.8 dBm in 2 dB steps Integrated voltage regulators 1.8 V to 3.6 V input voltage range Excellent receiver selectivity and blocking resilience Zero-IF architecture Complies with EN300 440 Class 2, EN300 328, FCC CFR47 Part 15, ARIB STD-T66 Digital RSSI measurement Fast automatic VCO calibration Automatic RF synthesizer bandwidth optimization

On-chip low power processor performs Radio control Packet management Packet management support Insertion/detection of preamble/SWD/CRC/address IEEEE 802.15.4-2006 frame filtering IEEEE 802.15.4-2006 CSMA/CA unslotted modes Flexible 256-byte transmit/receive data buffer IEEEE 802.15.4-2006 and GFSK/FSK SPORT modes Fast settling automatic frequency control Flexible multiple RF port interface External PA/LNA support hardware Switched antenna diversity support Wake-up timer Very few external components Integrated PLL loop filter, receive/transmit switch, battery monitor, temperature sensor, 32 kHz RC and crystal oscillators Flexible SPI control interface with block read/write access Small form factor 5 mm × 5 mm 32-lead LFCSP package APPLICATIONS Wireless sensor networks

Automatic meter reading/smart metering Industrial wireless control Healthcare Wireless audio/video Consumer electronics ZigBee

FUNCTIONAL BLOCK DIAGRAM

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.

08912-001

TABLE OF CONTENTS

REVISION HISTORY

7/10-Revision 0: Initial Version

GENERAL DESCRIPTION

The ADF7242 is a highly integrated, low power, and high performance transceiver for operation in the global 2.4 GHz ISM band. It is designed with emphasis on flexibility, robustness, ease of use, and low current consumption. The IC supports the IEEE 802.15.4- 2006 2.4 GHz PHY requirements as well as proprietary GFSK/ FSK/GMSK/MSK modulation schemes in both packet and data streaming modes. With a minimum number of external components, it achieves compliance with the FCC CFR47 Part 15, ETSI EN 300 440 (Equipment Class 2), ETSI EN 300 328 (FHSS, DR > 250 kbps), and ARIB STD T-66 standards.

The ADF7242 complies with the IEEE 802.15.4-2006 2.4 GHz PHY requirements with a fixed data rate of 250 kbps and DSSS-OQPSK modulation. With its support of GFSK/FSK/GMSK/MSK modulation schemes, the IC can operate over a wide range of data rates from 50 kbps to 2 Mbps and is, therefore, equally suitable for proprietary applications in the areas of smart metering, industrial control, home and building automation, and consumer electronics. In addition, the agile frequency synthesizer of the ADF7242, together with short turnaround times, facilitates the implementation of FHSS systems.

The transmitter path of the ADF7242 is based on a direct closed-loop VCO modulation scheme using a low noise fractional-N RF frequency synthesizer. The automatically calibrated VCO operates at twice the fundamental frequency to reduce spurious emissions and avoid PA pulling effects. The bandwidth of the RF frequency synthesizer is automatically optimized for transmit and receive operations to achieve optimum phase noise, modulation quality, and synthesizer settling time performance. The transmitter output power is programmable from −20 dBm to +4 dBm with automatic PA ramping to meet transient spurious specifications. An integrated biasing and control circuit is available in the IC to significantly simplify the interface to external PAs.

The receive path is based on a zero-IF architecture enabling very high blocking resilience and selectivity performance, which are critical performance metrics in interference dominated environments such as the 2.4 GHz band. In addition, the architecture does not suffer from any degradation of blocker rejection in the image channel, which is typically found in low IF receivers. In GFSK/FSK modes, the receiver features a high speed automatic frequency control (AFC) loop, which allows the frequency synthesizer to find and correct any frequency errors in the received packet.

The IC can operate with a supply voltage between 1.8 V and 3.6 V with very low power consumption in receive and transmit modes while maintaining its excellent RF performance, making it especially suitable for battery-powered systems.

The ADF7242 features a flexible dual-port RF interface that can be used with an external LNA and/or PA in addition to supporting switched antenna diversity.

The ADF7242 incorporates a very low power custom 8-bit processor that supports a number of transceiver management functions. These functions are handled by the two main modules of the processor; the radio controller and the packet manager.

The radio controller manages the state of the IC in various operating modes and configurations. The host MCU can use single byte commands to interface to the radio controller. The packet manager is highly flexible and supports various packet formats. In transmit mode, the packet manager can be configured to add preamble, sync, and CRC words to the payload data stored in the on-chip packet RAM. In receive mode, the packet manager can detect and generate an interrupt to the MCU upon receiving valid sync or CRC words, and store the received data payload in the packet RAM. A total of 256 bytes of transmit and receive packet RAM space is provided to decouple the over-the-air data rate from the host MCU processing speed. Thus, the ADF7242 packet manager eases the processing burden on the host MCU and saves the overall system power consumption.

In addition, for applications that require data streaming, a synchronous bidirectional serial port (SPORT) provides bitlevel input/output data, and has been designed to directly interface to a wide range of DSPs, such as ADSP-21xx, SHARC®, TigerSHARC®, and Blackfin®. The SPORT interface can optionally be used for GFSK/FSK as well as IEEE 802.15.4-2006 modes.

The processor also permits the download and execution of a set of firmware modules, which include IEEE 802.15.4 automatic modes, such as node address filtering, as well as unslotted CSMA/CA. Execution code for these firmware modules is available from Analog Devices, Inc.

To further optimize the system power consumption, the ADF7242 features an integrated low power 32 kHz RC wake-up oscillator, which is calibrated from the 26 MHz crystal oscillator while the transceiver is active. Alternatively, an integrated 32 kHz crystal oscillator can be used as a wake-up timer for applications requiring very accurate wake-up timing. A battery backed-up RAM (BBRAM) is available on the IC where IEEE 802.15.4- 2006 network node addresses can be retained when the IC is in the sleep state.

The ADF7242 also features a very flexible interrupt controller, which provides MAC-level and PHY-level interrupts to the host MCU. The IC is equipped with a SPI interface, which allows burst-mode data transfer for high data throughput efficiency. The IC also integrates a temperature sensor with digital readback and a battery monitor.

SPECIFICATIONS

VDD_BAT = 1.8 V to 3.6 V, GND = 0 V, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical specifications are at VDD_BAT = 3.6 V, $\rm T_A$ = 25°C, f $\rm C_{HANNEL}$ = 2450 MHz. All measurements are performed using the ADF7242 reference design, RFIO2 port, unless otherwise noted.

GENERAL SPECIFICATIONS

Table 1.

RF FREQUENCY SYNTHESIZER SPECIFICATIONS

Table 2.

TRANSMITTER SPECIFICATIONS

Table 3.

 \overline{a}

1 RBW = resolution bandwidth.

RECEIVER SPECIFICATIONS

Table 4.

AUXILIARY SPECIFICATIONS

 $\overline{}$

CURRENT CONSUMPTION SPECIFICATIONS

Table 6.

TIMING AND DIGITAL SPECIFICATIONS

Table 7. Logic Levels

Table 8. GPIOs

Table 9. SPI Interface Timing

Table 10. IEEE 802.15.4 State Transition Timing

Table 11. GFSK/FSK State Transition Timing

 1 mac_delay_ext setting applies to both RX and TX states. The default setting is 0 μs.

Table 12. Timing IEEE 802.15.4-2006 SPORT Mode

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
t_{21}	18			μs	SFD detect to TRCLK_CLKO_GP3 (data bit clock) active delay
t_{22}				LIS	TRCLK CKO GP3 bit period
t_{23}	0.51			μs	DR_GP0 to TRCLK_CKO_GP3 falling edge setup time
t_{24}		16		LIS	TRCLK_CKO_GP3 symbol burst period

Table 13. MAC Timing

Table 14. Timing GFSK SPORT Mode

TIMING DIAGRAMS

SPI Interface Timing Diagram

Additional description and timing diagrams are available in the [Serial Peripheral interface](#page-71-1) section.

Sleep-to-Idle SPI Timing

Figure 5. Wake-Up After an RC_RESET or RC_SLEEP Command

MAC Delay Timing Diagram

Figure 6. IEEE 802.15.4 MAC Timing

IEEE 802.15.4 RX SPORT Mode Timing Diagrams

Figure 7. IEEE 802.15.4 RX SPORT Mode: Bit Clock and Data Available

IEEE 802.15.4 TX SPORT MODE TIMING DIAGRAMS

Table 16. IEE 802.15.4 TX SPORT Mode Configurations

Refer to the [SPORT Interface](#page-62-1) section for further details.

GFSK/FSK RX SPORT MODE TIMING DIAGRAMS

Table 17. GFSK/FSK RX SPORT Mode Configurations

Figure 10. GFSK/FSK RX SPORT Mode: CLK and Data Pins Active in RX, Without Gating by Frame Detection

Figure 11. GFSK/FSK RX SPORT Mode: SCLK and Data Pin Activity Gated By Preamble Detection

Figure 12. GFSK/FSK RX SPORT Mode: SCLK and Data Pins Activity Gated By Synchronization Word Detection

GFSK/FSK TX SPORT Mode Timing Diagrams

Table 18. GFSK/FSK TX SPORT Mode Configurations

Refer to the [SPORT Interface](#page-62-1) section for further details.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 19.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

The exposed paddle of the LFCSP package should be connected to ground.

This device is a high performance RF integrated circuit with an ESD rating of <2 kV, and it is ESD sensitive. Proper precautions should be taken for handling and assembly.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Figure 14. Pin Configuration

Table 20. Pin Function Descriptions

 $\overline{}$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 16. IEEE 802.15.4-2006 Packet Mode PER vs. RF Input Power Level vs. Temperature and VDD_BAT, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, RFIO2

Figure 17. IEEE 802.15.4 Packet Mode Sensitivity vs. Temperature and VDD_BAT, fCHANNEL = 2.405 GHz, 2.45 GHz, 2.475 GHz, RFIO1

Figure 18. IEEE 802.15.4-2006 Packet Mode Blocker Rejection vs. Temperature and VDD_BAT, Modulated Blocker, $P_{WANTED} = -85$ dBm + 3 dB, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, RFIO2

Figure 19. IEEE 802.15.4-2006 Packet Mode Wide-Band Blocker Rejection, CW Blocker, $P_{WANTED} = -95$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 20. IEEE 802.15.4 Packet Mode Narrow-Band Blocker Rejection, CW Blocker, $P_{WANTED} = -95$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 22. IEEE 802.15.4 Packet Mode Narrow-Band Blocker Rejection vs. Temperature and VDD_BAT, Modulated Blocker, P_{WANTED} = -95 dBm + 3 dB, $f_{CHANNEI} = 2.45$ GHz, RFIO2

Figure 23. IEEE 802.15.4 Packet Mode Out-of-Band Blocker Rejection, CW Blocker, $P_{WANTED} = -95$ dBm + 3 dB, $f_{CHANNEL} = 2.405$ GHz and 2.48 GHz, $RFIO2, VDD_BAT = 3.6 V, Temperature = 25°C$

Figure 24. IEEE 802.15.4 Packet Mode RSSI Error vs. RF Input Power Level vs. Temperature and VDD_BAT, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, RFIO2

Figure 25. IEEE 802.15.4 Packet Mode SQI vs. RF Input Power Level vs. Temperature and VDD_BAT, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, RFIO2

Figure 26. IEEE 802.15.4-2006 CCA Operation vs. RSSI Threshold, $f_{CHANNEL} = 2.45$ GHz, VDD_BAT = 3.6 V, Temperature = 25°C, RFIO2 Port

Figure 29. PER vs. RF Input Power Level vs. Temperature and VDD_BAT, 125 kbps FSK (f_{DEV} = \pm 60 kHz) Mode, f_{CHANNEL} = 2.45 GHz, RFIO2

Figure 30. 1% PER sensitivity vs. Data Rate, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 31. BER vs. RF Input Power Level vs. Temperature and VDD_BAT, 2 Mbps GFSK ($f_{DEF} = \pm 500$ kHz) Mode, $f_{CHANNELS} = 2.45$ GHz, RFIO2

Figure 34. 0.1% BER Sensitivity vs. Data Rate, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, RFIO2

Figure 36. Narrow-Band Blocker Rejection vs. Temperature and VDD_BAT, CW Blocker, 2 Mbps GFSK ($f_{DEV} = \pm 500$ kHz) Packet Mode, $P_{WANTED} = -85$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 37. Wideband Blocker Rejection vs. Temperature and VDD_BAT, Modulated Blocker, 2 Mbps GFSK ($f_{DEV} = \pm 500$ kHz) Packet Mode, P_{WANTED} = -85 dBm + 3 dB, $f_{CHANNEL}$ = 2.45 GHz, RFIO2

Figure 38. Narrow-Band Blocker Rejection vs. Temperature and VDD_BAT, Modulated Blocker, 2 Mbps GFSK ($f_{DEV} = \pm 500$ kHz) Packet Mode, P_{WANTED} = -85 dBm + 3 dB, $f_{CHANNEL}$ = 2.45 GHz, RFIO2

Figure 39. Wideband Blocker Rejection vs. Temperature and VDD_BAT, CW Blocker, 125 kbps FSK ($f_{DEV} = \pm 500$ kHz) Packet Mode, $P_{WANTED} = -94$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 40. Narrow-Band Blocker Rejection vs. Temperature and VDD_BAT, CW Blocker, 125 kbps FSK ($f_{DEF} = \pm 60$ kHz) Packet Mode, $P_{WANTED} = -94$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 41. Wideband Blocker Rejection vs. Temperature and VDD_BAT, Modulated Blocker, 125 kbps FSK (f_{DEV} = \pm 60 kHz) Packet Mode, $P_{WANTED} = -94$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 42. Narrow-Band Blocker Rejection vs. Temperature and VDD_BAT, Modulated Blocker, 125 kbps FSK (f_{DEV} = \pm 60 kHz) Packet Mode, $P_{WANTED} = -94$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 43. Wideband Blocker Rejection vs. Temperature and VDD_BAT, CW Blocker, 2 Mbps GFSK ($f_{DEV} = \pm 500$ kHz) SPORT Mode, $P_{WANTED} = -87.5$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 44. Narrow-Band Blocker Rejection vs. Temperature and VDD_BAT, CW Blocker, 2 Mbps GFSK ($f_{DEV} = \pm 500$ kHz) SPORT Mode, $P_{WANTED} = -87.5$ dBm + 3 dB, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 45. Minimum and Maximum RSSI Error for 1000 Packets vs. RF Input Power Level vs. Temperature and VDD_BAT, 2 Mbps GFSK ($f_{DEV} = \pm 500$ kHz) $Packet$ Mode, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 46. Minimum and Maximum RSSI Error for 1000 Packets vs. RF Input Power Level vs. Temperature and VDD_BAT, 500 kbps FSK ($f_{DEV} = \pm 250$ kHz) Packet Mode, $f_{CHANNEL} = 2.45$ GHz, RFIO2

Figure 47. PER vs. Frequency Error with and Without AFC, 2 Mbps GFSK $(f_{DFV} = \pm 500$ kHz) Mode, $f_{CHANNEL} = 2.45$ GHz, RFIO2, VDD_BAT = 3.6 V, Temperature = $25^{\circ}C$

Figure 48. PER vs. Frequency Error with and Without AFC, 500 kbps GFSK $(f_{DFV} = \pm 250$ kHz) Mode, $f_{CHANNEL} = 2.45$ GHz, RFIO2, VDD_BAT = 3.6 V, Temperature = 25° C

Figure 49. PER vs. Frequency Error vs. Symbol Rate Tolerance, 2 Mbps GFSK $(f_{DFV} = \pm 500$ kHz) Mode, $f_{CHANNEL} = 2.45$ GHz, VDD_BAT = 3.6 V, Temperature = 25°C, RFIO2

Figure 50. IEEE 802.15.4-2006 Transmitter Spectrum vs. Temperature and VDD_BAT, $f_{CHANNEL} = 2.45$ GHz, Output Power = 3 dBm

Figure 51. IEEE 802.15.4-2006 Transmitter EVM vs. Temperature and VDD_BAT at All Channels,Output Power = 3 dBm

Figure 52. 2 Mbps GFSK (f_{DEV} = \pm 500 kHz) Mode Transmitter Spectrum vs. $Temperature$ and VDD_BAT, $f_{CHANNEL} = 2.45$ GHz, Output Power = 3 dBm

Figure 53. 500 kbps GFSK (f_{DEV} = \pm 250 kHz) Mode Transmitter Spectrum vs. T emperature and VDD_BAT, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, Output Power = 3 dBm

Figure 54. 125 Mbps FSK (f_{DEV} = \pm 60 kHz) Mode Transmitter Spectrum vs. Temperature and VDD_BAT, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, Output Power = 3 dBm

Figure 55. 2 Mbps GFSK (f_{DEV} = \pm 500 kHz) Mode Transmitter Eye Diagram, $f_{CHANNEL} = 2.45$ GHz, Output Power = 3 dBm, VDD_BAT = 3.6 V, Temperature = 25° C

Figure 56. 500 kbps FSK ($f_{DEV} = \pm 250$ kHz) Mode Transmitter Eye Diagram, $f_{CHANNEL} = 2.45$ GHz, Output Power = 3 dBm, VDD_BAT = 3.6 V, Temperature = 25° C

Figure 57. 2 Mbps GFSK (f_{DEV} = \pm 500 kHz) Mode Transmitter Phase Error vs. Temperature, VDD_BAT, and Channels, 1 MHz Channel Step, Output Power = 3 dBm

Figure 58. 2 Mbps GFSK (f_{DEV} = \pm 500 kHz) Mode Transmitter MER vs. Temperature, VDD_BAT, and Channels, 1 MHz Channel Step, Output Power = 3 dBm

Figure 59. 1 Mbps GFSK ($f_{DEV} = \pm 250$ kHz) Mode Transmitter Phase Error vs. Temperature, VDD_BAT, and Channels, 1 MHz Channel Step, Output Power = 3 dBm

Figure 60. 500 kbps GFSK (f_{DEV} = \pm 250 kHz) Mode Transmitter Phase Error vs. Temperature, VDD_BAT, and Channels, 1 MHz Channel Step, Output Power = 3 dBm

Figure 61. 250 kbps GFSK (f_{DEV} = \pm 250 kHz) Mode Transmitter Phase Error vs. Temperature, VDD_BAT, and Channels, 1 MHz Channel Step, Output Power = 3 dBm

Figure 62. 125 kbps FSK (f_{DEV} = \pm 60 kHz) Mode Transmitter Phase Error vs. Temperature, VDD_BAT, and Channels, 1 MHz Channel Step, Output Power = 3 dBm

Figure 63. Transmitter Phase Error vs. Data Rate for Each of the Transmitter Bandwidth LUTs, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, Output Power = 3 dBm

Figure 64. PA Output Power vs. RF Carrier Frequency, Temperature, and VDD_BAT (A discrete matching network and a harmonic filter are used as per the ADF7242 reference design.)

Figure 65. PA Output Power vs. Control Word, Temperature, and VDD_BAT, $f_{CHANNEL} = 2.44 \text{ GHz}$ (A discrete matching network and a harmonic filter are used as per the ADF7242 reference design.)

Figure 66. Transmitter Output Power vs. Control Word for Default and High Power Modes, $f_{CHANNEL} = 2.45$ GHz, VDD_BAT = 3.6 V, Temperature = 25°C, RF Carrier Frequency, Temperature, and VDD_BAT (A discrete matching network and a harmonic filter are used as per the

Figure 67. Transmitter Current Consumption vs. Control Word, for Default and High Power Modes, $f_{\text{CHANNEL}} = 2.45 \text{ GHz}$, VDD_BAT = 3.6 V, Temperature = 25° C

Figure 68. Temperature Sensor Performance (Average of 1000 ADC Readbacks) and 3-∑ Error vs. Temperature, VDD _{BAT} = 3.6 V

TERMINOLOGY

ACK IEEE 802.15.4-2006 acknowledgment frame

ADC Analog-to-digital converter

AFC Automatic frequency correction

AGC Automatic gain control

Battmon Battery monitor

CCA Clear channel assessment

BBRAM Backup battery random access memory

CRC Cyclic redundancy check

CSMA/CA Carrier-sense-multiple-access with collision avoidance

DR Data rate

DSSS Direct sequence spread spectrum

FCS Frame check sequence

FHSS Frequency hopping spread spectrum

FCF Frame control field

FSK Frequency shift keying

GFSK Gaussian frequency shift keying

LQI Link quality indicator

MCR Modem configuration register

MCU Microcontroller unit

MER Modulation error ratio

MSK Minimum shift keying **NC** Not connected **OCL** Offset correction loop **OQPSK** Offset-quadrature phase shift keying **PA** Power amplifier **PHR** PHY header **PHY** Physical layer **POR** Power-on reset **PSDU** PHY service data unit **RC** Radio controller **RCO32K** 32 kHz RC oscillator **RSSI** Receive signal strength indicator **RTC** Real-time clock **SFD** Start-of-frame delimiter **SQI** Signal quality indicator **SWD** Sync word detect **VCO** Voltage-controlled oscillator **WUC** Wake-up controller

XTO26M 26 MHz crystal oscillator

XTO32K 32 kHz crystal oscillator

08912-024

RADIO CONTROLLER

Figure 69. ADF7242 State Diagram

The ADF7242 incorporates a radio controller that manages the state of the IC in various operating modes and configurations. The host MCU can use single-byte commands to interface to the radio controller. The function of the radio controller includes the control of the sequence of powering up and powering down various blocks as well as system calibrations in different states of the device. [Figure 69](#page-34-1) shows the state diagram of the ADF7242 with possible transitions that are initiated by the host MCU and automatically by the radio controller.

Device Initialization

When the battery voltage is first applied to the ADF7242, a cold start-up sequence should be followed, as shown in [Figure 70](#page-36-1). The start-up sequence is as follows:

- Apply the battery voltage, VDD BAT, to the device with the desired voltage ramp rate. After a time, t_{RAMP}, VDD_BAT reaches its final voltage value.
- After t_{RAMP}, execute the SPI command, RC_RESET. This command resets and shuts down the device.
- After the specified time, t₁₅, the host MCU can set the $\overline{\text{CS}}$ port of the SPI low.
- Wait until the MISO output of the SPI (SPI_READY flag) goes high, at which time the device is in the idle state and ready to accept commands.

A power-on reset takes place when the host MCU sets the $\overline{\text{CS}}$ port of the SPI low. All device LDOs are enabled together with the 26 MHz crystal oscillator and the digital core. After the radio controller initializes the configuration registers to their default values, the device enters the idle state.

The cold start-up sequence is needed only when the battery voltage is first applied to the device. Afterwards, a warm startup sequence can be used where the host MCU can wake up the device from a sleep state by setting the CS port of the SPI low.

Idle State

In this state, the receive and transmit blocks are powered down. The digital section is enabled and all configuration registers as well as the packet RAM are accessible. The host MCU has to set any configuration parameters, such as modulation scheme, channel frequency, and WUC configuration in this state.

Bringing the \overline{CS} input low in the sleep state causes a transition into the idle state. The transition from the sleep state to the idle statetiming is shown in Figure 4. The idle state can also be entered by issuing an RC_IDLE command in any state other than the sleep state.

PHY_RDY State

Upon entering the PHY_RDY state from the idle state, the RF frequency synthesizer is enabled and a system calibration is carried out. The receive and transmit blocks are not enabled in this state. The system calibration is omitted when the PHY_RDY state is entered from the RX, TX, or CCA state.

The PHY_RDY state can be entered from the idle, RX, TX, or CCA state by issuing an RC_PHY_RDY command.

RX State

The RF frequency synthesizer is automatically calibrated to the programmed channel frequency upon entering the RX state from the PHY_RDY or TX state. The frequency synthesizer calibration can be omitted for single-channel communication systems if short turnaround times are required. Following a programmable MAC delay period, the ADF7242 starts searching for a preamble and a synchronization word if enabled by the user.

The RX state can be entered from the PHY_RDY, CCA, and TX states by issuing an RC_RX command. Depending on whether the device is configured to operate in packet or SPORT mode by setting Register buffercfg, Field rx_buffer_mode, the device can revert automatically to the PHY_RDY state when a packet is received, or remain in the RX state until a command to enter a different state is issued. Refer to the [Receiver](#page-47-1) section for further details.

CCA State

Upon entering the CCA state, a clear channel assessment is performed. The CCA state can be entered from the PHY_RDY or RX state by issuing an RC_CCA command. By default, upon completion of the clear channel assessment, the ADF7242 automatically reverts to the state from which the RC_CCA command originated.

TX State

Upon entering the TX state, the RF frequency synthesizer is automatically calibrated to the programmed channel frequency. The frequency synthesizer calibration can be omitted for communication systems operating on a single channel if short turnaround times are required. Following a programmable delay period, the PA is ramped up and transmission is initiated.

The TX state can be entered from the PHY_RDY or RX state by issuing the RC_TX command. Depending on whether the device is configured to operate in packet or SPORT mode by setting Register buffercfg, Field rx_buffer_mode, the device can revert automatically to the PHY_RDY state when a packet is transmitted, or remain in the TX state until a command to enter a different state is issued. Refer to the [Transmitter](#page-39-1) section for further details.

MEAS State

The MEAS state is used to measure the chip temperature. The transmitter and receiver blocks are not enabled in this state. The chip temperature is measured using the ADC, which can be read from Register adc_rbk, Field adc_out, and is continuously updated with the chip temperature reading.

This state is enabled by issuing the RC_MEAS command from the idle state and can be exited using the RC_IDLE command.
The sleep state is entered with the RC_SLEEP command. The sleep state can be configured to operate in three different modes, which are listed in [Table 21](#page-36-0).

¹ Refer to the [IEEE 802.15.4-2006 Receiver Configuration in Packet Mode](#page-47-0) section for further details.

SLEEP MODES

The sleep modes are configurable with the wake-up configuration registers, tmr_cfg0 and tmr_cfg1. The contents of Register tmr_cfg0 and Register tmr_cfg1 are reset in the sleep state.

SLEEP_BBRAM

This mode is suitable for applications where the MCU is equipped with its own wake-up timer. SLEEP_BBRAM mode is enabled by setting Register tmr_cfg1, Field sleep_config = 1.

Sleep States Superintensity of the SLEEP BBRAM_XTO

This mode enables the 32 kHz crystal oscillator and retains certain configuration registers in the BBRAM during the sleep state. To enable SLEEP_BBRAM_XTO mode, set Register tmr_cfg1, Field sleep_config = 5. A wake-up interrupt can be set using, for example, Register irq1_en0, Field wakeup = 1. Refer to the [Wake-Up Controller \(WUC\)](#page-69-0) section for details on how to configure the ADF7242 WUC.

SLEEP_BBRAM_RCO

This mode enables the 32 kHz RC oscillator and retains certain configuration registers in the BBRAM during the sleep state. This mode can be used when lower timer accuracy is acceptable by the communication system. It is enabled by setting Register tmr_cfg1, Field sleep_config = 11. A wake-up interrupt can be set using, for example, Register irq1_en0, Field wakeup = 1. Refer to the [Wake-Up Controller \(WUC\)](#page-69-0) section for details on how to configure the ADF7242 WUC.

Wake-Up from the Sleep State

The host MCU can bring \overline{CS} low at any time to wake the ADF7242 from the sleep state. After bringing \overline{CS} low, it must wait until the MISO output (SPI_READY flag) goes high prior to accessing the SPI port. This delay reflects the start-up time of the ADF7242. When the MISO output is high, the voltage regulator of the digital section and the crystal oscillator have stabilized. Unless the chip is in the sleep state, the MISO pin always goes high immediately after bringing \overline{CS} low. The sleep state can also be exited by a timeout event with the WUC configured. Refer to the Wake-Up Controller (WUC) section for details on how to configure the ADF7242 WUC.

Figure 70. Cold Start Sequence from Application of the Battery

RF FREQUENCY SYNTHESIZER

A fully integrated RF frequency synthesizer is used to generate both the transmit signal and the receive LO signal. The architecture of the frequency synthesizer is shown in [Figure 71](#page-37-0). The receiver uses the frequency synthesizer circuit to generate the local oscillator (LO) for downconverting an RF signal to the baseband. The transmitter is based on a direct closed-loop VCO modulation scheme using a low noise fractional-N RF frequency synthesizer, where a high resolution Σ-Δ modulator is used to generate the required frequency deviations at the RF in response to the data being transmitted.

The VCO and the frequency synthesizer loop filter of the ADF7242 are fully integrated. To reduce the effect of VCO pulling by the power-up of the power amplifier, as well as to minimize spurious emissions, the VCO operates at twice the RF frequency. The VCO signal is then divided by 2 giving the required frequency for the transmitter and the required LO frequency for the receiver. The frequency synthesizer also features automatic VCO calibration and bandwidth selection.

Figure 71. Synthesizer Architecture

RF FREQUENCY SYNTHESIZER CALIBRATION

The ADF7242 requires a system calibration prior to being used in the RX, CCA, or TX state. Because the calibration information is reset when the ADF7242 enters a sleep state, a full system calibration is automatically performed on the transition between the idle and PHY_RDY states. The system calibration is omitted when the PHY_RDY state is entered from the TX, RX, or CCA state.

[Figure 72](#page-37-1) shows a breakdown of the total system calibration time. It comprises a power-up delay, calibration of the receiver baseband filter (RC Cal), and a VCO calibration (VCO Cal). Once the VCO is calibrated, the frequency synthesizer is allowed to settle to within ±5 ppm of the target frequency. A fully automatic fast VCO frequency and amplitude calibration

scheme is used to mitigate the effect of temperature, supply voltage, and process variations on the VCO performance.

The VCO calibration phase must not be skipped during the system calibration in the PHY_RDY state. Therefore, it is important to ensure that Register vco_cal_cfg, Field skip_vco_cal = 9 prior to entering the PHY_RDY state from the idle state. This is the default setting and, therefore, only requires programming if skipping of the calibration was previously selected.

The VCO calibration can be skipped on the transition from the PHY_RDY state to the RX, TX, and CCA states on the condition that the calibration has been performed in the PHY_RDY state on the same channel frequency to be used in the RX, TX, and CCA states. The following sequence should be used if skipping the VCO calibration is required in any state following the PHY_RDY state:

- 1. After the system calibration is performed in the PHY_RDY state, the VCO frequency band in Register vco_band_rb, Field vco_band_val_rb and the VCO bias DAC code in Register vco_idac_rb, Field vco_idac_val_rb should be read back.
- 2. Before transitioning to any other state and assuming operation on the same channel frequency, the VCO frequency band and amplitude DAC should be overwritten as follows:
	- a) Set Register vco_cal_cfg, Field skip_vco_cal = 15 to skip the VCO calibration.
	- b) Enable the VCO frequency over-write mode by setting Register vco_ovrw_cfg, Field vco_band_ovrw_en = 1.
	- c) Write the VCO frequency band read back after the system calibration in the PHY_RDY state to Register vco_band_ovrw, Field vco_band_ovrw_val.
	- d) Enable the VCO bias DAC over-write mode by setting Register vco_ovrw_cfg, Field vco_idac_ovrw_en = 1
	- e) Write the VCO bias DAC read back after the system calibration in the PHY_RDY state to Register vco_idac_ovrw, Field vco_idac_ovrw_val .

Following the preceding procedure, the device can transition to other states, which use the same channel frequency without performing a VCO calibration. If it is required to change the channel frequency before entering the RX, TX, or CCA state at any point after the preceding procedure has been used, Register vco_ cal_cfg, Field skip_vco_cal must be set to 9 before transitioning to the respective state. Then the VCO calibration is automatically performed.

RF FREQUENCY SYNTHESIZER BANDWIDTH

The ADF7242 radio controller optimizes the RF frequency synthesizer bandwidth based on whether the device is in the RX or the TX state. If the device is in the RX state, the frequency synthesizer bandwidth is set by the radio controller to ensure optimum blocker rejection. If the device is in the TX state, the radio controller sets the frequency synthesizer bandwidth based

on the required data rate to ensure optimum modulation quality. The frequency synthesizer bandwidth is optimized for the recommended modulation schemes, data rates, and frequency deviations given in [Table 22](#page-39-0). If the user requires a different modulation scheme or data rate from those listed in [Table 22](#page-39-0), it is recommended, for optimum device performance, to choose a frequency deviation for the required data rate that gives a modulation index close to those recommended in [Table 22](#page-39-0).

RF CHANNEL FREQUENCY PROGRAMMING

The frequency of the synthesizer is programmed with the frequency control word, ch_freq[23:0], which extends over Register ch_freq0, Register ch_freq1, and Register ch_freq2. The frequency control word, ch_freq[23:0], contains a binary representation of the absolute frequency of the desired channel divided by 10 kHz.

Writing a new channel frequency value to the frequency control word ch_freq[23:0] takes effect after the next frequency synthesizer calibration phase. The frequency synthesizer is calibrated by default during the transition into the PHY_RDY from the idle state as well as in the TX, RX and CCA states. Refer to the [RF Frequency Synthesizer Calibration](#page-37-2), [Transmitter](#page-39-1), and [Receiver](#page-47-1) sections for further details. To facilitate fast channel frequency changes, a new frequency control word can be written in the RX state before a packet has been received. The next RC_RX o RC_TX command initiates the required frequency synthesizer calibration and settling cycle. Similarly, a new frequency control word can be written after a packet has been transmitted while in the TX state and the next RC_RX or RC_TX command initiates the frequency synthesizer calibration and settling cycle.

REFERENCE CRYSTAL OSCILLATOR

The on-chip crystal oscillator generates the reference frequency for the frequency synthesizer and system timing. The oscillator operates at a frequency of 26 MHz. The crystal oscillator is amplitude controlled to ensure a fast start-up time and stable operation under different operating conditions. The crystal and associated external components should be chosen with care because the accuracy of the crystal oscillator can have a significant impact on the performance of the communication system. Apart from the accuracy and drift specification, it is important to consider the nominal loading capacitance of the crystal. Crystals with a high loading capacitance are less sensitive to frequency pulling due to tolerances of external capacitors and the printed circuit board parasitic capacitances. When selecting a crystal, these advantages should be balanced against the higher current consumption, longer start-up time, and lower trimming range resulting from a larger loading capacitance.

The total loading capacitance must be equal to the specified load capacitance of the crystal and comprises the external parallel loading capacitors, the parasitic capacitances of the XOSC26P and XOSC26N pins, as well as the parasitic capacitance of tracks on the printed circuit board.

The ADF7242 has an integrated crystal oscillator tuning capacitor that facilitates the compensation of systematic production tolerance and temperature drift. The tuning capacitor is controlled with Register xto26_trim _cal, Field xto26_trim (0x371). The tuning range provided by the tuning capacitor depends on the loading capacitance of a specific crystal. The total tuning range is typically 25 ppm

TRANSMITTER

TRANSMIT OPERATING MODES

The four primary transmitter operating modes are:

- IEEE 802.15.4-2006 packet mode
- IEEE 802.15.4-2006 SPORT mode
- GFSK/FSK packet mode
- GFSK/FSK SPORT mode

The desired mode of operation is selected via Register rc_cfg, Field rc_mode. The ADF7242 supports GFSK/FSK modulation with the data rates listed in [Table 22](#page-39-0). The ADF7242 also fully supports user-defined data rates between 50 kbps and 2 Mbps for FSK mode of operation. The data rate, DR, is set with Register dr0, Field data_rate_high and Register dr1, Field data rate low according to the following equation:

 $DR = (data\ rate\ high \times 256 + data\ rate\ low) \times 100\ bps$

The default values of the dr0 and dr1 registers configure the device for IEEE 802.15.4-2006 mode.

For GFSK/FSK data rates greater than 250 kbps and IEEE 802.15.4- 2006 mode, the modulator preemphasis filter must be enabled with Register tx_m, Field preemp_filt = 1. The modulator of the ADF7242 has an optional Gaussian symbol filter that can be enabled with Configuration Register tx_m , Field gauss_filt = 1. The BT product of the Gaussian symbol filter is fixed at 0.5. This can be used for improved spectral efficiency. Gaussian filtering must be disabled for IEEE 802.15.4-2006 mode.

The deviation frequency (f_{DEV}) of the modulator is programmable with Register tx_fd, Field tx_freq_dev in steps of 10 kHz. Refer to the [Device Configuration](#page-65-0) section for recommended settings for Register tx_fd, Field tx_freq_dev corresponding with the recommended modulation parameters listed in [Table 22](#page-39-0). The default value of Register tx_fd, Field tx_freq_dev configures the correct setting for IEEE 802.15.4-2006 mode. If the user requires a different modulation scheme or data rate from those listed in [Table 22](#page-39-0), it is recommended, for optimum device performance, to choose a frequency deviation for the required data rate that gives a modulation index close to those recommended in [Table 22](#page-39-0)

TRANSMITTER IN IEEE 802.15.4-2006 MODE IEEE 802.15.4-2006 Transmission

IEEE 802.15.4-2006-compatible mode with packet manager support is selected with Register rc_cfg, Field rc_mode = 0 (0x13E). In this mode, the ADF7242 packet manager automatically generates the IEEE 802.15.4-2006-compatible preamble and SFD. There is also an option to use a nonstandard SFD by programming Register sfd_15_4 with the desired alternative SFD. Refer to the [IEEE 802.15.4-2006 Programmable SFD](#page-47-2) subsection of the [Receiver in IEEE 802.15.4-2006 Mode](#page-47-3) section for further details. There are 256 bytes of dedicated RAM (packet RAM), which constitute TX_BUFFER and RX_BUFFER, available to store transmit and receive packets. The packet header must be the first byte written to TX_BUFFER. The address of the first byte of TX_BUFFER is stored in Register txpb, Field tx_pkt_base.

If the automatic FCS field generation has been disabled (Register pkt cfg, Field auto fcs off = 1), the full frame including FCS must be written to TX_BUFFER. In this case, the number of bytes written to TX_BUFFER must be equal to the length specified in the PHR field.

If automatic FCS field generation has been enabled (Register pkt_cfg, Field auto_fcs_off = 0), the FCS is automatically appended to the frame in TX_BUFFER. In this case, the number of bytes written to TX_BUFFER must be equal to the length specified in the PHR field minus two.

The format of the frame in TX_BUFFER, both with automatic FCS field generation enabled and with it disabled, is shown in [Figure 73](#page-40-0).

Details of how to configure IEEE 802.15.4-2006 TX SPORT mode are given in the [SPORT Interface](#page-62-0) section.

Table 22. Recommended Modulation Schemes

Figure 73. Field Format of TX_BUFFER

IEEE 802.15.4-2006 Transmitter Timing and Control

This section applies when IEEE 802.15.4-2006 packet mode is enabled. Accurate control over the transmission slot timing is maintained by two delay timers (Register delaycfg1, Field tx_mac_delay and Register delaycfg2, Field mac_delay_ext), which introduce a controlled delay between the rising edge of the CS signal following the RC_TX command and the start of the transmitoperation. Figure 74 illustrates the timing of the transmit operation assuming that the ADF7242 was operating in PHY_RDY, RX, or TX state prior to the execution of an RC_TX command.

If enabled, the external PA interface, as described in the [Power](#page-45-0) [Amplifier](#page-45-0) section, is powered up prior to the synthesizer calibration to allow sufficient time for the bias servo loop to settle. Ramp-up of the PA is completed shortly before the overall MAC delay has elapsed. If enabled, an rc_ready interrupt (see the [Interrupt Controller](#page-80-0) section) is generated at the transition into the TX state. Following the completion of the PA ramp-up phase, the transceiver enters the TX state. The minimum and maximum time for the PA ramp-up to complete prior to the transceiver entering the TX state given by Parameter t_{35} in [Table 14](#page-14-0) also applies to IEEE 802.15.4-2006 transmit mode.

The radio controller first transmits the automatically generated preamble and SFD. If it has been enabled, an SFD interrupt is asserted after the SFD is transmitted. The packet manager then reads TX_BUFFER, starting with the PHR byte and transmits its contents. Following the transmission of the entire frame, the radio controller turns the PA off and asserts a tx_pkt_sent interrupt. The ADF7242 then automatically returns to the PHY_RDY state unless automatic operating modes have been configured.

By default, the synthesizer is recalibrated each time an RC_TX command is issued. [Figure 75](#page-41-1) shows the synthesizer calibration sequence that is performed each time the transceiver enters the TX state. The total TX MAC delay is defined by the combined delay configured with Register delaycfg1, Field tx_mac_delay

and Register delaycfg2, Field mac_delay_ext. Register delaycfg1, Field tx_mac_delay is programmable in steps of 1 μ s, whereas Register delaycfg2, Field mac_delay_ext is programmable in steps of 4 μs. The default value of Register delaycfg1, Field tx_mac_delay is the length of 12 IEEE 802.15.4-2006-2.4 GHz symbols or 192 μs.

The default value of Register delaycfg2, Field mac_delay_ext is 0 μs. Following the issue of the RC_TX command, while the delay defined by Register delaycfg1, Field tx_mac_delay is elapsing, Register delaycfg2, Field mac_delay_ext can be updated up until the time, t₂₇, specified in [Table 13](#page-14-1). This allows a dynamic adjustment of the transmission timing for acknowledge (ACK) frames for networks using slotted CSMA/CA. To ensure correct settling of the synthesizer prior to PA ramp-up, the total TX MAC delay should not be programmed to a value shorter than specified by the PHY_RDY or RX to TX timing specified in [Table 10](#page-13-0). The RC_TX command can be aborted up to the time specified by Parameter t_{28} in [Table 13](#page-14-1) by means of issuing an RC_PHY_RDY, RC_RX, or RC_IDLE command.

The VCO calibration (VCO_cal) can be skipped if shorter turnaround times are required. Skipping the VCO calibration is possible if the channel frequency control word ch_freq[23:0] has remained unchanged since the last RC_PHY_RDY, RC_RX, RC_CCA, or RC_TX command was issued with VCO_cal enabled. The initialization, synthesizer settling, and PA ramping phases are mandatory however because the synthesizer bandwidth is changed between receive and transmit operation. Skipping the VCO calibration is an option for single-channel communication systems, or systems where an ACK frame is transmitted on the same channel upon reception of a packet.

VCO_cal is skipped by setting Register vco_cal_cfg, Field skip_vco_cal = 15. In this case, tx_mac_delay can be reduced to 140 μs. The VCO calibration is executed if Register vco_cal_cfg, Field skip_vco_cal = 9 .

IEEE 802.15.4 AUTOMATIC RX-TO-TX TURNAROUND MODE

The ADF7242 features an automatic RX-to-TX turnaround mode when it is operating in IEEE 802.15.4-2006 packet mode (Register rc_cfg, Field rc_mode = 0). The automatic RX-to-TX turnaround mode facilitates the timely transmission of acknowledgment frames.

[Figure 76](#page-41-2) illustrates the timing of the automatic RX-to-TX turnaround mode. When enabled by setting Register buffercfg, Field auto_rx_to_tx_turnaround, the ADF7242 automatically enters the TX state following the reception of a valid IEEE 802.15.4-2006 frame. After the combined transmit MAC delay (tx_mac_delay + mac_delay_ext), the ADF7242 enters the TX state and transmits the frame stored in TX_BUFFER. After the transmission is complete, the ADF7242 enters the PHY_RDY state. There is a 38 μs delay between the reception of the last symbol and the generation of the rx_pkt_rcvd interrupt. The transmit MAC delay timeout period begins immediately after the reception of the last symbol. Therefore, the host MCU has up to t_{28} μs (see [Table 13](#page-14-1)) after a frame has been received to cancel the transmit operation by means of issuing an RC_IDLE, RC_PHY_RDY, or RC_RX command.

TRANSMITTER IN GFSK/FSK MODE Packet Mode GFSK/FSK Transmission

The packet manager provides support for proprietary GFSK/ FSK payload formats. Packet fields applicable to GFSK/FSK packet mode are shown in [Table 23](#page-42-0). In transmit mode, the packet manager can be configured to add preamble and sync words to the payload data stored in the packet RAM. It can also optionally calculate and transmit a CRC word.

To enable GFSK/FSK transmit packet mode operation, set Register rc_cfg, Field rc_mode = 4; 0x13E[7:0]). The host MCU writes the payload data to the packet ram. The location of transmit data in the packet RAM is defined by the value in Register tx_pb, Field tx_pkt_base (Location 0x314). This holds the address of the first byte of the transmit payload data in the packet RAM.

The preamble, sync word, and CRC word can be automatically added by the packet manager to the data stored in the packet RAM for transmission. [Figure 77](#page-43-0) shows the fields stored in the packet buffer.

Preamble

The preamble is a 0xAA sequence, with a programmable length. It is necessary to have preamble at the beginning of the packet to allow time for the receiver AGC, AFC, and clock and data recovery circuitry to settle before the start of the sync word. The required preamble length depends on the radio configuration. [Table 38](#page-66-0) in the [Configuration Values for GFSK/FSK Packet and](#page-66-1) [SPORT Modes](#page-66-1) section provides data on required preamble length for some examples of different configurations.

The total length of the preamble transmitted is equal to the number of bytes set in Register fsk_preamble (0x102) added to the number of bytes set in Register preamble_num_validate (0x3F3), along with any additional preamble bits required to pad the SWD (see the [Sync Word \(SWD\)](#page-42-1) section for details).

Sync Word (SWD)

The value of the SWD is set in the sync_word0, sync_word1, and sync_word2 registers (0x10C, 0x10D, and 0x10E). The SWD is transmitted most significant bit first starting with sync_word2. The transmitted sync word is a multiple of eight bits. Therefore, for nonbyte length sync words, the transmitted sync pattern should be padded with the preamble pattern, as shown in [Table 24](#page-43-1).

Payload Length

The payload length is defined as the number of bytes from the end of sync word to the start of the CRC.

CRC

An optional CRC-16 can be appended to the packet. The CRC polynomial used is:

 $g(x) = x^{16} + x^{12} + x^5 + 1$

To disable the automatic appending of a CRC to the packet, set Register pkt_cfg, Field auto_fcs_off = 1. This field is set to 0 by default.

Postamble

The packet manager automatically appends two bytes of postamble to the end of the transmitted packet. Each byte of postamble is 0xAA.The first byte is transmitted immediately after the CRC. The PA ramp-down begins immediately after the first postamble byte. The second byte is transmitted while the PA is ramping down.

Table 23. Description of Fields Applicable to GFSK/FSK Packet Transmission

Table 24. Sync Word Programming Examples

08912-091

08912-091

SPORT MODE GFSK/FSK Transmitter Timing and Control

For GFSK/FSK TX SPORT mode operation, set Register rc_cfg, Field rc_mode = 3; 0x13E[7:0]). Refer to the [SPORT Interface](#page-62-0) section for further details.

[Figure 79](#page-44-0) illustrates the timing of the transmit operation in GFSK/FSK TX SPORT mode. Following the transition into the TX state, the packet manager transmits SPORT input data until the TX state is left with an appropriate command. Because the

packet format is entirely under user control, no tx_sfd and tx_pkt_sent interrupts are generated. The calibration sequence shown in [Figure 75](#page-41-1) in the [IEEE 802.15.4-2006 Transmitter](#page-40-1) [Timing and Control](#page-40-1) section is fully applicable to GFSK/FSK transmit SPORT mode.

[Table 25](#page-44-1) shows the latency between data at the SPORT interface input and the modulated RF output signal transmitted.

Figure 79. TX Timing and Control (GFSK/FSK SPORT Mode)

Table 25. Transmit Latency for Selected Data Rates

POWER AMPLIFIER

The integrated power amplifier (PA) is connected to the RFIO2P and RFIO2N RF ports. It is equipped with a built-in harmonic filter to simplify the design of the external harmonic filter. The output power of the PA is set with Register extpa_msc, Field pa_pwr with an average step size of 2 dB. The step size increases at the lower end of the control range. Refer to [Figure 65](#page-32-0) for the typical variation of output power step size with the control word value. The PA also features a high power mode, which can be enabled by setting Register pa_bias, Field pa_bias_ctrl = 63 and Register pa_cfg, Field pa_bridge_dbias = 21.

PA Ramping Controller

The PA ramping controller of the ADF7242 minimizes spectral splatter generated by the transmitter. Upon entering the TX state, the ramping controller automatically ramps the output power of the PA from the minimum output power to the specified nominal value. In packet mode, transmission of the packet commences after the ramping phase. When the transmission of the packet is complete or the TX state is exited, the PA is turned off immediately. It is also possible to allow the PA to ramp down its output power using the same ramp rate for the ramp-up phase, by setting Register ext_ctrl, Field pa_shutdown_mode to 1.

Figure 80 illustrates the shape of the PA ramping profile and its timing. It follows a linear-in-dB shape. The ramp time depends on the output power setting in Register extpa_msc, Field pa_pwr and is specified with Register pa_rr, Field pa_ramp_rate according to the following equation:

t_ramp = $2^{pa_rr.pa_ramp_rate}$ \times 2.4 ns \times *extpa_msc.pa_pwr*

External PA Interface

The ADF7242 has an integrated biasing block for external PA circuits as shown in [Figure 81](#page-46-0). It is suitable for external PA circuits based on a single GaAs MOSFET and a wide range of integrated PA modules. The key components are shown in [Figure 82](#page-46-1). A switch between Pin VDD_BAT and Pin PAVSUP_ATB3 controls the supply current to the external FET. PABIOP_ATB4 can be used to set a bias point for the external FET. The bias point is controlled by a 5-bit DAC and/or a bias servo loop.

To have the external PA interface under direct control of the host MCU, set Register ext_ctrl, Field extpa_auto_en = 0. The host MCU can then use Register pd_aux, Field extpa_bias_en to enable or disable the external PA. If Register ext_ctrl, Field extpa_auto_en = 1, the external PA automatically turns on when entering, and turns off when exiting the TX state. If this setting is used, the host MCU should not alter the configuration of Register pd_aux, Field extpa_bias_en.

The function of the two pins, PAVSUP_ATB3 and PABIAOP_ ATB4, depends on the mode selected with Register extpa_msc, Field extpa_bias_mode, as shown in [Table 26](#page-46-2).

The reference current source for the DAC is controlled with Register extpa_msc, Field extpa_bias_src (0x3AA[3]). If Register extpa_msc, Field extpa_bias_src = 0, the current is derived from the external bias resistor. If Register extpa_msc, Field extpa_bias_src = 1, the current is derived from the internal reference generator. The first option is more accurate and is recommended whenever possible.

External PA Interface Modes

- Mode 0 allows supply to an external circuit to be switched on or off. This is useful for circuits that have no dedicated power-down pin and/or have a high power-down current.
- Mode 1 allows the supply to an external circuit to be switched on or off. In addition, the PABIOP_ATB4 pin acts as a programmable current source. A programmable voltage can be generated if a suitable resistor is connected between PABIAOP_ATB4 and GND.
- Mode 2 allows the supply to an external PA circuit to be switched on or off. In addition, the PABIOP_ATB4 pin acts as a programmable current sink. A programmable voltage can be generated if a suitable resistor is connected between PABIAOP_ATB4 and VDD_BAT.
- Mode 3 is the same as Mode 1, except that the switch between PAVSUP_ATB3 and VDD_BAT is open.
- Mode 4 is the same as Mode 2, except that the switch between PAVSUP_ATB3 and VDD_BAT is open.
- Mode 5 is intended for a PA circuit based on a single external FET. The supply voltage to this FET is controlled through the PAVSUP_ATB3 pin to ensure a low leakage current in the power-down state. The bias servo loop controls the gate bias voltage of the external FET such that the current through the supply switch is equal to a

Table 26. PA Interface

reference current. The reference current for the bias servo loop is generated by the 5-bit reference DAC. In this mode, the bias servo loop expects the current in the FET to increase with increasing voltage at the PABIAOP_ATB4 output.

 Mode 6 is the same as Mode 5, except that the bias servo loop expects the current in the FET to increase with decreasing voltage at the PABIAOP_ATB4 output.

Figure 81. Typical External PA Applications Circuit

¹ Autoenabled when Register ext_ctrl, Field extpa_auto_en = 1.

 $2 X =$ don't care.

Figure 82. Details of External PA Interface circuit

RECEIVER **RECEIVE OPERATING MODES**

The four primary receiver operating modes are

- IEEE 802.15.4-2006 packet manager mode
- IEEE 802.15.4-2006 SPORT mode
- GFSK/FSK packet manager mode
- GFSK/FSK SPORT mode

The desired operating mode is selected with Register rc_cfg, Field rc_mode. The SPORT modes are explained in more detail in the [SPORT Interface](#page-62-0) section.

The data rate is set with Register dr0, Field data_rate_high and Register dr1, Field data_rate_low as documented in the [Transmitter](#page-39-1) section. The data rate is automatically configured in IEEE 802.15.4-2006 mode.

RECEIVER IN IEEE 802.15.4-2006 MODE

IEEE 802.15.4-2006 Reception

When IEEE 802.15.4-2006 mode is selected, the output of the post demodulator filter is fed into a bank of correlators, which compare the incoming data sequences to the expected IEEE 802.15.4-2006 sequences. The IEEE 802.15.4-2006 receiver block operates in three primary states.

- Preamble qualification
- Symbol timing recovery
- Data symbol reception

During preamble qualification, the correlators check for the presence of preamble. When preamble is qualified, the device enters symbol timing recovery mode. The device symbol timing is achieved once a valid SFD is detected. The ADF7242 supports programmable SFDs. Refer to the [IEEE 802.15.4-2006](#page-47-2) [Programmable SFD](#page-47-2) section for further details.

The received symbols are then passed to the packet manager in packet mode or the SPORT interface in SPORT mode. In SPORT mode, four serial clocks are output on Pin TRCLK_CKO_GP3, and four data bits are shifted out on Pin DR_GP0 for each received symbol. Refer to the [SPORT Interface](#page-62-0) section for further details.

If in packet mode, when the packet manager determines the end of a packet, the ADF7242 automatically transitions to PHY_ RDY or TX or remains in RX, depending on the setting in Register buffercfg, Field rx_buffer_mode (see [IEEE 802.15.4-](#page-47-0) [2006 Receiver Configuration in Packet Mode](#page-47-0) section). If in SPORT mode, the part remains in RX until the user issues a command to change to another state.

IEEE 802.15.4-2006 Programmable SFD

An alternative to the standard IEEE 802.15.4-2006 SFD byte can optionally be selected by the user. The default setting of Register sfd_15_4, Field sfd_symbol_1 and Field sfd_symbol_2 (0x3F4[7:0]) is the standard IEEE 802.15.4-2006 SFD. If the user programs this register with an alternative value, this is used as the SFD in

receive and transmit in IEEE 802.15.4-2006 mode. The requirements are as follows:

- The value must not be a repeated symbol (for example, not 0x11 or 0x22).
- The value must not be similar to the preamble symbol (that is, not Symbol 0x0 or Symbol 0x8).

IEEE 802.15.4-2006 Receiver Configuration in Packet Mode

IEEE 802.15.4-2006 mode with packet management support is selected when Register rc_cfg, Field rc_mode = 0 (0x13E[7:0]). RX_BUFFER is overwritten when the ADF7242 enters the RX state following an RC_RX command and an SFD is detected. The SFD is stripped off the incoming frame, and all data following and including the frame length (PHR) is written to RX_BUFFER.

If Register pkt cfg, Field auto fcs off = 1, the FCS of the incoming frame is stored in RX_BUFFER. When the entire frame has been received, an rx_pkt_rcvd interrupt is asserted irrespective of the correctness of the FCS. If auto_fcs_off = 0, the radio controller calculates the FCS of the incoming frame according to the FCS polynomial defined in the IEEE 802.15.4-2006 standard (see Equation 1), and compares the result against the FCS of the incoming frame. An rx_pkt_rcvd interrupt is asserted only if both FCS fields match. The FCS is not written to RX_BUFFER but is replaced with the measured RSSI and signal quality indicator (SQI) values of the received frame (see [Figure 83](#page-48-0)).

$$
G_{16}(x) = x^{16} + x^{12} + x^5 + 1
$$
 (1)

The behavior of the radio controller following the reception of a frame can be configured with Register buffercfg, Field rx_ buffer_mode (0x107[1:0]). With the default setting rx_buffer_ mode = 0, the part reverts automatically to PHY_RDY when an rx_pkt_rcvd interrupt condition occurs. This mode prevents RX_BUFFER from being overwritten by the next frame before the host MCU can read it from the ADF7242. This is because a new frame is always written to RX_BUFFER starting from the address stored in Register rxpb, Field rx_pkt_base (0x315[7:0]). Note that reception of the next frame is inhibited until the MAC delay following an RC_RX command has elapsed.

If Register buffercfg, Field rx_buffer_mode = 1 (0x107[1:0]), the part remains in the RX state, and the reception of the next packet is enabled one MAC delay period after the frame has been written to RX_BUFFER. Depending on the network setup, this mode can cause an unnoticed violation of RX_BUFFER integrity if a frame arrives prior to the MCU having read the frame from RX_BUFFER.

If Register buffercfg, Field rx_buffer_mode = 2 (0x107[1:0]), the reception of frames is disabled. This mode is useful for RSSI measurements and CCA, if the contents of RX_BUFFER are to be preserved.

RECEIVER CALIBRATION

The receive path is calibrated each time an RC_RX command is issued. [Figure 84](#page-48-1) outlines the synthesizer and receive path calibration sequence and timing for the IEEE 802.15.4-2006 mode of operation. The calibration step VCO_cal is omitted by setting Register vco_cal_cfg, Field skip_vco_cal = 15 (0x36F[3:0]), which is an option if the value of ch_freq[23:0] remains

unchanged during transitions between the PHY_RDY, RX, and TX states. The synthesizer settling phase is always required because the PLL bandwidth is optimized differently for RX and TX operation. The static offset correction phase (OCL_stat) and dynamic offset correction phase (OCL_dyn) are also mandatory.

Figure 84. RX Path Calibration, IEEE 802.15.4-2006 Mode

IEEE 802.15.4-2006 RECEIVE TIMING AND CONTROL

The IEEE 802.15.4-2006 operating mode is configured with Register rc_cfg, Field rc_mode = 0 (0x13E[7:0]) for packet mode, and Register rc_cfg, Field rc_mode = 2 for IEEE 802.15.4 RX SPORT mode. See the [SPORT Interface](#page-62-0) section for details on the operation of the SPORT interface. By default, ADF7242 performs a synthesizer and a receiver path calibration immediately after it receives an RC_RX command. The transition into the RX state occurs after the receiver MAC delay has elapsed. The total receiver MAC delay is determined by the sum of the delay times configured in Register delaycfg0, Field rx_mac_delay (0x109[7:0]) and Register delaycfg2, Field mac_delay_ext $(0x10B[7:0])$. Register delaycfg0, Field rx_mac_delay $(0x109[7:0])$ is programmable in steps of 1 μs, whereas Register delaycfg2, Field mac_delay_ext (0x10B[7:0]) is programmable in steps of 4 μs. For IEEE 802.15.4-2006 RX operation, Register delaycfg2, Field mac_delay_ext is typically set to 0. It can, however, be dynamically used to accurately align the RX slot timing.

[Figure 85](#page-49-0) shows the timing sequence for IEEE 802.15.4-2006 packet mode. If IEEE 802.15.4-2006 SPORT mode is enabled, the timing sequence is the same except that no rx_pkt_rcvd interrupt is generated and no automatic transition into the PHY_RDY state occurs.

When entering the RX state, if Register cca2, Field rx_auto_cca = 1 $(0x106[1])$, a CCA measurement is started. The radio controller asserts a cca_complete interrupt when the CCA result is available in the status word. Upon detection of the SFD, the radio controller asserts an rx_sfd interrupt, which can be used by the host MCU for synchronization purposes. By default, the ADF7242 transitions into the PHY_RDY state when a valid frame has been received into RX_BUFFER and, if enabled, an rx_pkt_rcvd interrupt is asserted. This mechanism protects the integrity of RX_BUFFER. The RX state can be exited at any time by means of an appropriate radio controller command.

Figure 85. RX Timing and Control (IEEE 802.15.4-2006 Packet Mode)

CLEAR CHANNEL ASSESSMENT (CCA)

The CCA function of the ADF7242 complies with CCA Mode 1 as per IEEE 802.15.4-2006. It is also applicable for the GFSK/FSK mode of operation.

A CCA can be specifically requested by means of an RC_CCA command or automatically obtained when the transceiver enters the RX state. In both cases, the start of the CCA averaging window is defined by when the RC_CCA or RC_RX command is issued and when the delay is configured in Register delaycfg0, Field rx_ mac_delay (0x109[7:0]) and Register delaycfg2, Field mac_delay_ ext (0x10B[7:0]). The CCA result is determined by comparing Register cca1, Field cca_thres (0x105[7:0]) against the average RSSI value measured throughout the CCA averaging window. If the measured RSSI value is less than the threshold value configured in Register cca1, Field cca_thres (0x105[7:0]), CCA_ RESULT in the status word is set; otherwise, it is reset. The cca_complete interrupt is asserted when CCA_RESULT in the status word is valid.

[Figure 86](#page-50-0) shows the timing sequence after issuing the RC_CCA command when Register cca2, Field continuous $cca = 0$ (0x106[2]). Following the RC_CCA command, the transceiver starts the CCA observation window after the delay specified by the sum of Register delaycfg0, Field rx_mac_delay (0x109[7:0]) and Register delaycfg2, field mac_delay_ext (0x10b[7:0]) has elapsed. A cca_complete interrupt is asserted at the end of the CCA averaging window, and the transceiver enters the PHY_RDY state.

When Register cca2, Field continuous_cca = 1 (0x106[2]), the transceiver remains in CCA state and continues to calculate

CCA results repeatedly until a RC_PHY_RDY command is issued. This case is illustrated in [Figure 87](#page-50-1). The first cca_complete interrupt occurs when the first CCA averaging window after the RX MAC delay has elapsed. The transceiver then repeatedly restarts the CCA averaging window each time a cca_complete interrupt is asserted.

This configuration is useful for longer channel scans. CCA_RESULT in the status word can be used to identify if the configured CCA RSSI threshold value has been exceeded during a CCA averaging period. Alternatively, the RSSI value in Register rrb, Field rssi_readback can be read by the host MCU after each cca_complete interrupt. As indicated in [Figure 87,](#page-50-1) the RSSI readback value holds the results of the previous RSSI measurement cycle throughout the CCA averaging window and is updated only shortly before the cca_complete interrupt is asserted.

The RSSI averaging time is programmable with Register agc_ cfg5, Field rssi_avg_time (0x3B9[1:0]) according to [Table 113](#page-99-0). While operating the transceiver in IEEE 802.15.4-2006 mode, setting Register agc_cfg5, Field rssi_avg_time = 2 (0x3B9[1:0]) is required for compatibility.

LINK QUALITY INDICATION (LQI)

The link quality indication (LQI) is defined in the IEEE 802.15.4- 2006 standard as a measure of the signal strength and signal quality of a received IEEE 802.15.4-2006 frame. The ADF7242 makes several measurements available from which an IEEE 802.15.4-2006 compliant LQI value can be calculated in the MCU. The first parameter is the RSSI value (see the [Automatic Gain Control](#page-61-0) [\(AGC\) and Receive Signal Strength Indicator \(RSSI\)](#page-61-0) subsection of the [Receiver Radio Blocks](#page-60-0) section).

The second parameter required for the LQI calculation can be read from Register lrb, Field sqi_readback (0x30D[7:0]), which contains an 8-bit value representing the quality of a received IEEE 802.15.4-2006 frame. It increases monotonically with the signal quality and must be scaled to comply with the IEEE 802.15.4-2006 standard.

If the ADF7242 is operating in IEEE 802.15.4-2006 packet mode (Register rc_cfg, Field rc_mode = 0 (0x13E[7:0])), and Register pkt_cfg, Bit auto_fcs_off = 0 (0x108[0]), the SQI of a received frame is measured and stored together with the frame in RX_BUFFER. The SQI is measured over the entire packet and stored in place of the second byte of the FCS of the received frame in RX_BUFFER.

IEEE 802.15.4 AUTOMATIC TX-TO-RX TURNAROUND MODE

The ADF7242 features an automatic TX-to-RX turnaround mode when operating in IEEE 802.15.4-2006 packet mode. The automatic TX-to-RX turnaround mode facilitates the timely reception of acknowledgment frames.

[Figure 88](#page-52-0) illustrates the timing of the automatic TX-to-RX turnaround mode. When enabled by setting Register buffercfg, Field auto_tx_to_rx_turnaround $(0x107[3])$, the ADF7242 automatically enters the RX state following the transmission of an IEEE 802.15.4-2006 frame. After the combined receiver MAC delay (Register delaycfg0, Field rx_mac_delay + Register delaycfg2, Field mac_delay_ext), the ADF7242 enters the RX state and is ready to receive a frame into RX_BUFFER. Subsequently, when a valid IEEE 802.15.4-2006 frame is received, the ADF7242 enters the PHY_RDY state.

IEEE 802.15.4 FRAME FILTERING, AUTOMATIC ACKNOWLEDGE, AND AUTOMATIC CSMA/CA

The following IEEE 802.15.4-2006 functions are enabled by the firmware module, RCCM_IEEEX:

- Automatic IEEE 802.15.4 frame filtering
- Automatic acknowledgment of received valid IEEE 802.15.4 frames
- Automatic frame transmission using unslotted CSMA/CA with automatic retries

See the [Downloadable Firmware Modules](#page-79-0) and [Writing to the](#page-76-0) [ADF7242](#page-76-0) sections for details on how to download a firmware module to the ADF7242.

Frame Filtering

Frame filtering is available when the ADF7242 operates in IEEE 802.15.4 packet mode. The frame filtering function rejects received frames not intended for the wireless node. The filtering procedure is a superset of the procedure described in Section 7.5.6.2 (third filtering level) of the IEEE 802.15.4-2006 standard. Field addon_en in Register pkt_cfg controls whether frame filtering is enabled

Automatic Acknowledgment

The ADF7242 has a feature that enables the automatic transmission of acknowledgment frames after successfully receiving a frame. The automatic acknowledgment feature of the receiver can only be used in conjunction with the IEEE 802.15.4 frame filtering feature. When enabled, an acknowledgment frame is automatically transmitted when the following conditions are met:

- The received frame is accepted by the frame filtering procedure.
- The received frame is not a beacon or acknowledgment frame.
- The acknowledgment request bit is set in the FCF of the received frame.

[Figure 89](#page-53-0) shows the format of the acknowledgment frame assembled by the ADF7242. The sequence number (Seq. Num.) is copied from the frame stored in RX_BUFFER. The automatic acknowledgment feature of the receiver uses TX_BUFFER to store the constructed acknowledgment frame prior to its transmission. Any data present in TX_BUFFER is overwritten by the acknowledgment frame prior to its transmission.

The transmission of the ACK frame starts after the combined delay given by the sum of the delays specified in Register delaycfg1, Field tx_mac_delay and Register delay_cfg2, Field mac_delay_ext has elapsed. The default settings of Register delaycfg1, Field tx_mac_delay = 192 and Register delay_cfg2, Field mac_delay_ext = 0 result in a delay of 192 μs, which suits networks using unslotted CSMA/CA. Optionally, Register delay_cfg2, Field mac_delay_ext can be updated dynamically while the delay specified in Register delaycfg1, Field tx_mac_delay elapses. This option enables accurate alignment of the acknowledgment frame with the back-off slot boundaries in networks using slotted CSMA/CA.

When the receiver automatic acknowledgment mode is enabled, the ADF7242 remains in the RX state until a valid frame has been received. When enabled, an rx_pkt_rcvd interrupt is generated. The ADF7242 then automatically enters the TX state until the transmission of the acknowledgment frame is complete. When enabled, a tx_pkt_sent interrupt is generated to signal the end of the transmission phase. Subsequently, the ADF7242 returns to the PHY_RDY state.

Automatic Unslotted CSMA/CA Transmit Operation

The automatic CSMA/CA transmit operation automatically performs all necessary steps to transmit frames in accordance with the IEEE 802.15.4-2006 standard for unslotted CSMA/CA network operation. It includes automatic CCA retries with random backoff, frame transmission, reception of the acknowledgment frame, and automatic retries in the case of transmission failure. Partial support is provided for slotted CSMA/CA operation.

The number of CSMA/CA CCA retries can be specified between 0 and 5 in accordance with the IEEE 802.15.4 standard. The CSMA/CA can also be disabled, causing the transmission

of the frame to commence immediately after the MAC delay has expired. This configuration facilitates the implementation of the transmit procedure in networks using slotted CSMA/CA. In this case, the timing of the CCA operation must be controlled by the host MCU, and the number of retries must be set to 1.

Prior to the transmission of the frame stored in TX_BUFFER the radio controller checks if the acknowledge request bit in the FCF of that frame is set. If it is set, then an acknowledgment frame is expected following the transmission. Otherwise, the transaction is complete after the frame has been transmitted. The acknowledgment request bit is Bit 5 of the byte located at the address contained in Register txpb, Field tx_packet_base + 1.

[Figure 90](#page-54-0) depicts the automatic CSMA/CA operation. The firmware module download enables an additional command, RC_CSMACA, to initiate this CSMA/CA operation. It also enables an additional interrupt, csma_ca_complete, to be set to indicate when the CSMA/CA procedure is completed. As per the IEEE 802.15.4-2006 standard for unslotted CSMA/CA, the first CCA is delayed by a random number of backoff periods, where a unit backoff period is 320 μs. The CCA is carried out for a period of 128 μs as specified in the IEEE 802.15.4-2006 standard.

If a busy channel is detected during the CCA phase, the radio controller performs the next delay/CCA cycle until the maximum number of CCA retries specified has been reached. If the maximum number of allowed CCA retries has been reached, the operation is aborted and the device transitions to the PHY_RDY state.

If the CCA was successful, the radio controller changes the device state from the CCA state to the TX state and transmits the frame stored in TX_BUFFER. The minimum turnaround time from RX to TX is 106 μs. If neither the acknowledge request bit in the transmitted frame nor the csma_ca_turnaround bit are set, the device returns to the PHY_RDY state immediately upon completion of the frame transmission. Otherwise, it enters the RX state and waits for up to 864 μs for an acknowledgment. If an acknowledgment is not received within this time and the maximum number of frame retries has not been reached, the ADF7242 remains inside the frame transmit retry loop and starts the next CSMA/CA cycle. Otherwise, it exits to the PHY_RDY state. The procedure exits with a csma_ca_complete interrupt.

Figure 90. Automatic CSMA/CA Transmit Operation (with CCA)

RECEIVER IN GFSK/FSK MODE

The packet manager can detect and interrupt the host MCU upon receiving a qualified preamble, sync word, or valid FCS. The packet manager then stores the received data payload in the packet RAM. This section describes the various configurations of the packet manager in receive mode.

GFSK/FSK Packet Mode Reception

To configure GFSK/FSK packet mode, set Register rc_cfg, Field rc _mode = 4 ($0x13E[7:0]$)). Register writes required to configure GFSK/FSK SPORT are given in the [SPORT Interface](#page-62-0) section. [Table 29](#page-55-0) shows the fields applicable to GFSK/FSK packet reception, and [Figure 91](#page-55-1) shows which fields are stored by the packet manager in RX_BUFFER.

Preamble

This is a mandatory part of the packet that is automatically removed after receiving a packet. In receive mode, the preamble detection circuit tracks the received frame as a sliding window. The window is three bytes in length, and the preamble pattern is fixed at 0xAA. The preamble bits are examined in 2-bit pairs (for example, b10). If either or both bits are in error, the pair is deemed erroneous. The possible erroneous pairs are b00, b11, and b01. The number of erroneous pairs tolerated in the preamble detection can be set by Register fsk_preamble_config, Field fsk_preamble_match_level, as shown in [Table 28](#page-55-2).

If fsk_preamble_match level is set to $0x0C$, the ADF7242 must receive 12 consecutive b10 pairs (three bytes) to confirm valid preamble has been detected. Then, the preamble level must be maintained equal or above the detection threshold over a number of bytes to obtain full qualification. If the number of erroneous bit-pairs drops below the detection threshold before the end of the qualification time; the packet manager discards the preamble and restarts the detection.

The number of preamble bytes required for qualification can be set by Register preamble_num_validate (0x3F3). The user can select the option to automatically lock the AFC and/or AGC at this point. The lock AFC on preamble qualification can be enabled by setting Register afc_config, Field afc_lock_mode = 0x3 (0x3F7[1:0]). The lock AGC on preamble detection can be enabled by setting Register fsk_preamble_config, Field fsk_agc_ lock_after_preamble to 1 (0x111[5]).

Table 28. Preamble Detection Tolerance (Register fsk_preamble_config, Location 0x111)

μ ,				
Value	Description			
0x0C	0 errors allowed			
0x0B	1 erroneous bit-pair allowed in 12 bit-pairs			
0x0A	2 erroneous bit-pairs allowed in 12 bit-pairs			
0x09	3 erroneous bit-pairs allowed in 12 bit-pairs			
0x08	4 erroneous bit-pairs allowed in 12 bit-pairs			
0x00	Preamble detection disabled			

Table 29. Description of Fields Applicable to GFSK/FSK Packet Reception

Figure 91. GFSK/FSK Packet Fields stored by the Packet Manager in RX_BUFFER

When preamble has been qualified, the packet manager searches for a sync word. From the end of preamble, the chip processor searches for the sync word for a maximum duration of four bytes. This is illustrated in [Figure 92.](#page-56-0) If sync word is detected during this window, the packet manager stores the received payload to packet RAM and computes the CRC (if enabled). If the sync word is not detected during this duration, the packet manager unlocks the AGC/AFC and then returns to searching for preamble.

Preamble detection can be disabled by setting Register fsk_ preamble_config, Field skip_preamble_detect_qual high (Location 0x111).

Sync Word (SWD)

This is the synchronization word that is used by the receiver for byte-level synchronization, while also providing an optional interrupt on detection. It is automatically removed after receiving a packet.

The value of the SWD is set in the sync_word0, sync_word1, and sync_word2 registers (0x10C, 0x10D, and 0x10E). The SWD is transmitted most significant bit first starting with sync_word2. The SWD matching length at the receiver is set using Register sync_config, Field sync_len $(0x10F[4:0])$ and can be one bit to 24 bits in length.

The ADF7242 can provide an interrupt on reception of the programmed sync word. This feature can be used to alert the host microprocessor that a valid packet has been received. An error tolerance parameter can also be programmed that accepts a valid match when up to three bits of the sync word sequence are incorrect. The error tolerance value is set using the sync_tol setting in Register sync_config (0x10F[6:5]) as described in [Table 30](#page-56-1). On reception of a valid sync word, the chip processor automatically writes the receive payload to the packet RAM. The rx_pkt_base value in Register rxpb sets the location in packet RAM of the first byte of the received payload. For more details on packet RAM, refer to the [Memory Map](#page-73-0) section.

CRC

To enable CRC detection on the receiver with the 16-bit CRC described in the [Transmitter in GFSK/FSK Mode](#page-42-2) section, set Register pkt_cfg, Field auto_fcs_off = 0 (0x108[0]). This is the default setting. An interrupt on reception of a valid packet containing the correct CRC can be enabled by setting the rx_pkt_rcvd interrupt in Register irq1_en1 or Register irq2_en1.

If it is desired to receive a packet that has a CRC word generated by a different CRC formula, the host MCU should set Register pkt_cfg, Field auto_fcs_off = 1. The CRC word received is stored in RX_BUFFER, as shown in [Figure 91.](#page-55-1) An rx_pkt_rcvd interrupt is not generated; therefore, it is recommended that an rx_sfd interrupt be enabled to inform the host MCU when a packet has been received. Refer to the [Interrupt Controller](#page-80-0) section for details.

Receive GFSK/FSK Demodulator

[Figure 93](#page-57-0) shows a block diagram of the receive demodulator. A correlator demodulator is used for 2FSK and GFSK demodulation. The quadrature outputs of the analog baseband filter are digitized and then fed to a digital frequency correlator that performs filtering and frequency discrimination of the FSK or GFSK signal.

For GFSK/FSK demodulation, data is recovered by comparing the output levels from two correlators. The performance of this frequency discriminator approximates that of a matched filter detector, which is known to provide optimum detection in the presence of additive white Gaussian noise (AWGN). This method of GFSK/FSK demodulation provides approximately 3 dB to 4 dB better sensitivity than a linear demodulator.

The correlator demodulator bandwidth must be configured with Register dm_cfg0, Field discriminator_bw (0x305[6:0]) to match the deviation frequency of the received signal. For applications

with low data rates, the frequency error between the local oscillator of the transmitter and receiver can be a significant fraction of the deviation frequency. This frequency error must be considered when optimizing the demodulator bandwidth setting to ensure reliable operation. The discriminator bandwidth setting is set by Register dm_cfg0, Field discriminator_bw (0x305[6:0]). The discriminator bandwidth setting can be calculated from

$$
discriminator_bw[6:0] = \frac{3.25 \text{ MHz}}{FSK_dev + freq_error_max}
$$

where:

FSK_dev is the GFSK/FSK frequency deviation in Hz (measured from the RF carrier to the Logic 0 or Logic 1 frequency). *freq_error_max* is the maximum expected frequency error, in hertz (Hz), between the carrier frequency of the transmitted signal and the local oscillator (LO) frequency of the receiver.

Figure 93. Structure of RX Demodulator

Automatic Frequency Correction (AFC)

A shown in [Figure 93](#page-57-0), the ADF7242 is equipped with a fully automatic real-time AFC function. It is used to maintain an optimal link budget in the presence of frequency errors between the local oscillators of the receiver and transmitter. AFC is supported in GFSK/FSK mode only.

When AFC is enabled, an internal control loop automatically monitors the frequency error during the preamble sequence of the packet and adjusts the synthesizer LO using an internal proportional integral (PI) control loop. The AFC frequency error measurement bandwidth is targeted specifically at the packet preamble sequence (dc free). When preamble is detected, the AFC is locked by the radio controller. AFC lock is released if the sync word is not detected immediately after the end of preamble. This can be due to false lock, poor quality preamble, and/or sync word. If the qualified preamble is followed by a qualified sync word, the AFC lock is maintained for the duration of the packet.

Setting Register afc_cfg, Field afc_mode = 3 (0x3F7[1:0]) enables AFC operation with automatic preamble locking, which is the recommended setting. The frequency error readback word in Register afc_read, Field afc_freq_error (0x3FA[7:0]) is continuously updated until the AFC is locked. The frequency correction is maintained if the ADF7242 transitions to another state (such as TX). It is overwritten with a new frequency correction value when the receiver next detects valid preamble, or it can be cleared by setting Register afc_range, Field max_afc_range = 0 and Register afc_cfg, Field afc_mode = 2.

The recommended settings for the AFC control loop parameters are Register afc_ki_kp, Field afc_ki = 9 and Register afc_ki_kp, Field afc_kp = 9. An example of AFC performance for a selection of data rates is given in [Table 31](#page-58-0).

The maximum AFC correction range is set by Register afc_range, Field max_afc_range. It has a resolution of 1 kHz. This setting helps prevent the AFC loop from attempting to acquire signals outside the frequency range of interest. The AFC detects and corrects frequency errors up to ±max_afc_range from the programmed channel frequency. The nominal channel frequency is set by the frequency control word, ch_freq[23:0]. The max_afc_range value is generally set to less than half the bandwidth of the baseband filter.

Postdemodulator Filter

The digital post demodulator filter, shown in [Figure 93](#page-57-0), removes excess noise from the demodulator output. Its bandwidth is programmable with Register dm_cfg1, Field postdemod_bw (0x38B[7:0]) and should be optimized for the data rate used. If the bandwidth is set too narrow, performance degrades due to intersymbol interference. If the bandwidth is set too wide, performance degrades due to excess noise. For optimum performance, the post demodulator filter bandwidth should be set to $0.75 \times$ data rate. The following formula can be used to determine the appropriate register setting:

 $postdemod_bw = roundoff(17 \times 10^{-5} \times (0.75 \times$ *data rate*[bps]) – 4 × 10⁻¹¹(0.75 × *data rate*[bps])²)

Refer to the [Device Configuration](#page-65-0) section for recommended postdemodulator filter settings and for example data rates.

Clock and Data Recovery (CDR)

An oversampled digital clock and data recovery (CDR) PLL is used to resynchronize the received bit stream to a local clock in all modulation modes. The data rate of the CDR is set by Register dr0, Field data_rate_high (0x30E[7:0]) and Register dr1, Field data_rate_low $(0x30F[7:0])$.

The maximum data rate tolerance of the CDR PLL is determined by the number of bit transitions in the transmitted packet. For example, if using GFSK/FSK with a 101010… preamble, a maximum tolerance of ±3.0% of the data rate is achieved.

This tolerance is reduced during the recovery of the remainder of the packet where data transitions may not occur on regular intervals.

However, it is possible to tolerate uncoded payload data fields and payload data fields with long run length coding constraints if the data rate tolerance and packet length are both constrained. More details of CDR operation using uncoded packet formats are described in the AN-915 Application Note.

The CDR is designed for fast acquisition of the recovered symbols during the preamble and typically achieves bit synchronization within five symbol transitions of preamble.

Receiver Calibration in GFSK/FSK Mode

The receive path is calibrated each time an RC_RX command is issued. The sequence is identical for IEEE 802.15.4 and GFSK/FSK mode of operation; the timing parameters, however, are different. [Figure 94](#page-59-0) outlines the synthesizer and receive path calibration sequence and timing for the GFSK/FSK mode of operation. (See the [Receiver Calibration](#page-48-2) section for information on which calibration stages are mandatory and which are optional.)

In GFSK/FSK reception, the total receiver calibration time is 664 μs. Assuming that Register delaycfg0, Field rx_mac_delay $(0x109[7:0])$ remains at the default delay setting of 192 μs, this requires Register delaycfg2, Field mac_delay_ext (0x10B[7:0]) to be set to 472 μs. Optimal receiver performance is achieved when no input signal is present during the receiver MAC delay.

Figure 94. Receive Path Calibration, GFSK/FSK Mode

GFSK/FSK Receive Timing and Control

GFSK/FSK receive mode is enabled by setting Register rc_cfg, Field rc_mode = 3 (0x13E[7:0]). See the [SPORT Interface](#page-62-0) section for details. [Figure 95](#page-59-1) shows the timing and control sequence for GFSK/FSK SPORT mode. [Figure 96](#page-59-2) shows the timing and control sequence for GFSK/FSK packet mode.

In order for the RC_READY interrupt to be generated at the correct time, Register delaycfg2, Field mac_delay_ext must be set to 0x76 (472 μs). If this value is set, the total MAC delay in GFSK/FSK receive mode is 664 μs. For applications requiring fast turnaround times, it is recommended that Register delaycfg2, Field mac_delay_ext be set to 0x00. In this case, the RC_ READY interrupt should be ignored because the calibration time is still 664 μs.

Following the receiver MAC delay, the transceiver enters the RX state. The transceiver starts to search for a valid preamble/sync word. If enabled, an rx_sfd interrupt is asserted when a preamble followed by the correct sync word has been received. In GFSK/ FSK SPORT mode, the framing signal appearing on the IRQ2_ TRFS_GP2 output provides more accurate timing information than the rx_sfd interrupt and no rx_pkt_rcvd interrupt is generated. A command to enter an alternative state must be issued to exit the RX state.

Figure 96. RX Timing and Control GFSK/FSK Packet Mode

RECEIVER RADIO BLOCKS

Baseband Filter

Baseband filtering on the ADF7242 is accomplished by a cascade of analog and digital filters. The single-sided 3 dB bandwidth of the analog baseband filter is programmable from 555 kHz to 1126 kHz through Register rxfe_cfg, Field rxbb_bw_ana (0x39B[3:0]). The bandwidth of the digital filter can be set with Register iirf_cfg, Field iir_stage1_bw (0x389[1:0]) and Register iirf_cfg, Field iir_stage2_bw (0x389[4:2]). The recommended settings for these registers given in the [Device Configuration](#page-65-0) section are based on the modulation parameters shown in [Table 22](#page-39-0) in the [Transmitter](#page-39-1) section. These settings assume a crystal frequency tolerance of ±20 ppm for GFSK/FSK mode and ±40 ppm for IEEE 802.15.4-2006 mode. Any changes in Register rxfe_cfg, Field rxbb_bw_ana take effect only upon transition from the idle to the PHY_RDY state. [Table 32](#page-60-1) shows example bandwidths for the analog and digital filters.

Offset Correction Loop (OCL)

The ADF7242 is equipped with a fast and autonomous offset correction loop (OCL), which cancels both static and dynamic time-varying offset voltages present in the zero-IF receiver path. In IEEE 802.15.4 mode, the OCL operates continuously and is not constrained by the formatting, timing, or synchronization of the data being received. In GFSK/FSK mode, the OCL is active only during the receive path calibration phase. After minimizing the offset voltage, the OCL is automatically frozen until the next RC_RX command is issued. This scheme allows the ADF7242 to maintain its RF sensitivity independent of any data formatting constraints in the GFSK/FSK mode. The scheme is also suitable for fast hopping spread-spectrum (FHSS) communication systems. However, because the offset voltages in the receive path are subject to drift over time, there is an upper limit on the channel dwell time. When operating in GFSK/FSK mode, it is recommended to re-issue the RC_RX command at least every 400 ms. It is recommended to use the values listed in the [Device Configuration](#page-65-0) section for the configuration registers pertaining to the offset correction loop.

Table 32. Analog and Digital Filter Parameters

Automatic Gain Control (AGC) and Receive Signal Strength Indicator (RSSI)

The ADF7242 AGC circuit features fast overload recovery using dynamic bandwidth adjustments for fast preamble acquisition and optimum utilization of the dynamic range of the receiver path. The radio controller automatically enables the AGC after an offset correction phase, which is carried out when the transceiver enters the RX state. The optimum AGC configuration parameters depend on the selected data rate, the modulation format, and the configuration of the receiver offset correction loop. The recommended settings for the AGC configuration registers based on the modulation parameters, shown in [Table 22](#page-39-0), are given in the [Device Configuration](#page-65-0) section.

In GFSK/FSK mode, it is possible to lock the AGC and prevent further gain updates after the reception of the preamble using Register fsk_preamble_config, Field fsk_agc_lock_after_ preamble.

The RSSI readback value is continuously updated while the ADF7242 is in the RX state. The result is provided in Register rrb, Field rssi_readback (0x30C[7:0]) in decibels relative to 1 mW (dBm) using signed twos complement notation. The RSSI averaging window is synchronized with the start of the active RX phase at the end of the MAC delay following an RC_RX command. The RSSI averaging time is programmable with Register agc_cfg5, Field rssi_avg_time (0x3B9[1:0]), and depends on the AGC update rate according to the following formula:

T_avg_rssi = 77 ns × 2*α*

where

α = 2 + (*Register agc_cfg5*, *Field agc_filt2_tavg1*) +(*Register agc_cfg6*, *Field agc_filt2_tavg2*) + (*Register agc_cfg5*, *Field rssi_avg_time*)

In IEEE 802.15.4-2006 mode, the default RSSI averaging period of 128 μs, or eight symbol periods, must be used for compliance with the IEEE 802.15.4-2006 standard. If the ADF7242 is operating in the IEEE 802.15.4-2006 packet mode, the RSSI of received frames is measured and stored together with the frame in RX_BUFFER. The RSSI is measured in a window with a length of eight symbols immediately following the detected SFD. The result is then stored in place of the first byte of the FCS of the received frame in RX_BUFFER. For GFSK/FSK mode, the optimum RSSI averaging time is application dependent and the default settings should be appropriate for most applications.

It is also possible to compensate for systematic errors of the measured RSSI value and/or production tolerances by adjusting the RSSI readback value by an offset value that can be programmed in Register agc_cfg5, Field rssi_offs (0x3B9[4:2]). The adjustment resolution is in 1 dB steps.

SPORT INTERFACE

The SPORT interface is a high speed synchronous serial interface suitable for interfacing to a wide variety of MCUs and DSPs, without the use of glue logic. These include, among others, the ADSP-21xx, SHARC, TigerSHARC and Blackfin DSPs. [Figure 116](#page-83-0) and [Figure 117](#page-84-0) show typical application diagrams using one of the available SPORT modes. The interface uses four signals, a clock output (TRCLK_CKO_GP3), a receive data output (DR_GP0), a transmit data input (DT_GP1), and a framing signal output (IRQ2_TRFS_GP2). The IRQ2 output functionality is not available while the SPORT interface is enabled. The SPORT interface supports GFSK/FSK and IEEE 802.15.4 receive and transmit operations. When using GFSK/FSK mode, the polarity of the receive/transmit clock appearing on the TRCLK_CKO_GP3 output is programmable. A detailed overview of the function of the interface pins for each GFSK/FSK mode SPORT configuration is listed in [Table 33](#page-63-0). The corresponding list for IEEE 802.15.4 mode is listed in [Table 34](#page-64-0). It is possible to use the SPORT interface for transmitting IEEE 802.15.4 frames by configuring the ADF7242 in 2 Mbps FSK mode (see [Device Configuration](#page-65-0) section) and performing the symbol chipping operation externally.

GFSK/FSK SPORT MODE GFSK/FSK SPORT Mode Transmit Operation

[Figure 97](#page-63-1) illustrates the operation of the SPORT interface in the TX state. The SPORT interface is enabled by setting Register gp_cfg, Bit gpio_config = 1 or Bit gpio_config = $4 (0x32C[7:0])$ depending on the desired clock polarity. When enabled, the data input of the transmitter is fully controlled by the SPORT interface. The transmit clock appears when the transmit MAC delay (tx_max_delay) has elapsed. The ADF7242 keeps transmitting the serial data presented at the DT_GP1 input until the TX state is exited by means of a command, for example, the RC_ PHY_RDY command. A timing diagram GFSK/FSK transmit SPORT mode is provided in [Figure 13](#page-20-0).

GFSK/FSK SPORT Mode Receive Operation

The SPORT interface supports GFSK/FSK receive operation with a number of modes to suit particular signaling requirements, as shown in [Figure 98.](#page-63-2) For GFSK/FSK receive SPORT operation, set Register rc_cfg, Field rc_mode = 3 (0x13E[7:0]). This disables any packet-level processing by the packet manager. The operating mode of the SPORT interface can be configured through Register gp_cfg, Bit gpio_config (0x32C[7:0]). [Table 33](#page-63-0) shows an overview of all available configurations. The SPORT mode configurations gpio_config = 2, 3, 5, and 6 in Register gp_cfg provide synchronization with a programmable SWD. For these modes, the synchronization block must be configured with appropriate register writes as

outlined in the [GFSK/FSK Packet Mode Reception](#page-55-3) section, prior to issuing the RC_RX command.

When in SPORT mode, received data continues to appear on the interface pins until the RC_RX command is reissued or the RX state is exited by means of an appropriate SPI command. The following SPORT operating modes can be selected.

Register gp_cfg, Field gpio_config = 1 or Field gpio_config = 4

The data clock is enabled at the TRCLK_CKO_GP3 output together with the received data at the DR_GP0 output during the receiver MAC delay. The GFSK/FSK SWD is ignored in this configuration. The IRQ2_TRFS_GP2 output has no function. [Figure 10](#page-18-0) illustrates further timing details.

Register gp_cfg, Field gpio_config = 2 or Field gpio_config = 5

When a preamble signal has been detected, the data clock and data signals start to appear at the TRCLK_CKO_GP3 and DR_GP0 output, respectively. The IRQ2_TRFS_GP2 output goes HIGH when the sync word has been detected in the received GFSK/FSK bit stream. [Figure 11](#page-18-1) shows more timing details.

Register gp_cfg, Field gpio_config = 3 or Field gpio_config = 6

The data clock starts to appear at the TRCLK_CKO_GP3 output when a valid preamble and the SWD have both been detected in the received GFSK/FSK bit stream. The first active clock edge corresponds with the first data bit following the GFSK/FSK SWD appearing on the DR_GP0 output. The framing signal IRQ2_TRFS_GP2 goes high when the SWD has been detected in the received bit sequence. The DR_GP0 output signal should be ignored prior to the first active clock edge appearing on the TRCLK_CKO_GP3 output. [Figure 12](#page-19-0) illustrates the applicable timing details.

SWD and Preamble in GFSK/FSK SPORT Mode

To configure GFSK/FSK SPORT mode, set Register rc_cfg, Field rc_mode = 3 (0x13E[7:0]). The preamble length requirements and tolerance options described in the [GFSK/FSK Packet Mode](#page-55-3) section also apply for SPORT mode. The ADF7242 can also support automatic detection of a SWD in SPORT mode. The ADF7242 SWD detection algorithm as described in the [GFSK/FSK Packet Mode Reception](#page-55-3) section applies. There are a number of clock and data gating options available. Options include gating received data on preamble, or SWD detection. Refer to [Table 33](#page-63-0) for further details.

Figure 98. Overview of SPORT Modes in GFSK/FSK RX State

Table 33. GFSK/FSK Mode SPORT Interface Configurations

Register gp_cfg, Bit gpio_config	IRQ2 TRFS GP2	DR GPO	DT GP1	TRCLK CKO GP3
	RX: not used, low TX: not used, low	RX: data output, changes at falling edge of data clock TX: not used	RX: not used TX: data input, sampled at rising edge of data clock	RX: data clock TX: data clock
2	RX: goes high when sync match has been detected	RX: data output, changes at falling edge of data clock	RX: not used	RX: data clock, gated with detection of preamble
3	RX: goes high when sync match has been detected	RX: data output, changes at falling edge of data clock	RX: not used	RX: data clock, gated with detection of sync word
4	RX: not used, low TX: not used, low	RX: data output, changes at rising edge of data clock TX: not used	RX: not used TX: data input, sampled at falling edge of data clock	RX: data clock TX: data clock
5	RX: goes high when sync match has been detected	RX: data output, changes at rising edge of data clock	RX: not used	RX: data clock, gated with detection of preamble
6	RX: goes high when sync match has been detected	RX: data output, changes at rising edge of data clock	RX: not used	RX: data clock, gated with detection of sync word

IEEE 802.15.4-2006 SPORT MODE

IEEE 802.15.4-2006 SPORT Mode Receive Operation

The ADF7242 provides an IEEE 802.15.4-2006 operating mode in which the SPORT interface is active and the packet manager is bypassed. It allows the reception of packets of arbitrary length. The mode is enabled by setting Register rc_cfg, Field rc_mode = $2(0x13E[7:0])$ and Register gp_cfg, Field gpio_ config = 1 (0x32C[7:0]). When the SFD is detected, data and clock signals appear on the SPORT outputs, DR_GP0 and TRCLK_CKO_GP3, respectively. The SPORT interface remains active until an RC_RX command is reissued or the RX state is exited by another command. The rx_pkt_rvcd interrupt is not available in this mode. [Figure 7](#page-16-0) illustrates the timing for this configuration. Refer to [Table 34](#page-64-0) for details of pins relevant to the SPORT interface in IEEE 802.15.4-2006 mode.

Receive Symbol Clock in IEEE 802.15.4-2006 SPORT Mode

The ADF7242 offers a symbol clock output option during IEEE 802.15.4 packet reception. This option is useful when a tight

timing synchronization between incoming packets and the network is required, and the SFD interrupt (rx_sfd) cannot be used to achieve this. When in IEEE 802.15.4-2006 packet mode (Register rc_cfg, Field rc_mode = 0), set Register gp_cfg, Field gpio_config = $7 (0x32C[7:0])$ to enable the symbol clock output.

IEEE 802.15.4-2006 SPORT Mode Transmit Operation

IEEE 802.15.4-2006 TX SPORT mode is enabled by setting Register rc_cfg, Field rc_mode = 3. It is necessary for the host MCU to perform the IEEE 802.15.4 chipping sequence in this mode. The data, sent through the SPORT interface on Pin DT_GP1, should be synchronized with the clock signal that appears on Pin TRCLK_CKO_GP3. [Figure 9](#page-17-0) shows the timing for this configuration. As in GFSK/FSK TX SPORT mode, the polarity of this clock signal can be set by Register gp_cfg, Field gpio_config. The tx_pkt_sent interrupt is not available in this mode. See [Table 34](#page-64-0) for details of pins relevant to this SPORT mode.

Table 34. IEEE 802.15.4 Mode SPORT Interface Configuration

DEVICE CONFIGURATION

After a cold start, or wake-up from sleep, it is necessary to configure the ADF7242. The device can be configured in four primary ways: an IEEE 802.15.4-2006 packet mode, an IEEE 802.15.4-2006 SPORT mode, and GFSK/FSK packet and GFSK/FSK SPORT modes. Registers applicable to the set-up each of the four primary modes are detailed in [Table 35](#page-65-1).

[Table 36](#page-66-2) through to [Table 42](#page-67-0) detail the values that should be written to the register locations given in [Table 35](#page-65-1) to configure the ADF7242 in the desired mode of operation.

If it is desired to transition from a GFSK/FSK mode to an IEEE.802.15.4-2006 mode, or vice-versa, it is necessary to first issue the RC_RESET command.

Table 35. Register Writes Required to Configure the ADF7242

1 These apply only when the user wishes to program a nonstandard SFD.

2 This register should only be written to in GFSK/FSK packet mode because the default setting of 0x05 is used in IEEE 802.15.4 packet mode.

CONFIGURATION VALUES COMMON TO IEEE 802.15.4 AND GFSK/FSK MODES

If it is desired to use RF Port 1 rather than RF Port 2 (see the [RF](#page-68-0) [Port Configurations/Antenna Diversity](#page-68-0) section), the value specific to the desired operating mode given in [Table 36](#page-66-2) should be written to the relevant register field.

Table 36. Settings Required to Select Between LNA Port 1 and LNA Port 2

CONFIGURATION VALUES FOR GFSK/FSK PACKET AND SPORT MODES

If it is desired to use either GFSK/FSK packet or SPORT mode, the host MCU should write the configuration values shown in [Table 37](#page-66-3) to the given register locations. These are common to all GFSK/FSK packet and SPORT modes. Depending on the desired data rate, the relevant values from [Table 38](#page-66-0) should also be written.

Table 38. Data Rate-Specific GFSK/FSK Settings

Table 37. Settings Common to All GFSK/FSK Configurations

1 This register should be written to in GFSK/FSK packet mode only. The preamble length transmitted that is given in this table is correct for the values of Register preamble_num_validate given in [Table 37 a](#page-66-3)nd Register sync_config given in [Table 40,](#page-67-1) where sync_word0 is padded with one byte of preamble. Refer to the [Transmitter in GFSK/FSK Mode s](#page-42-2)ection for details.

To select between packet mode and SPORT mode for GFSK/FSK, write the values given in [Table 39](#page-67-2).

[Table 40](#page-67-1) gives recommended sync word configuration values. In this example, the sync word length is set to 16 bits so that the sync word will be 0x7F31. Any bits in the sync_word0, sync_ word1, or sync_word2 register that are excluded by the setting in sync_len must be filled with preamble pattern. Refer to the [Receiver in GFSK/FSK Mode](#page-55-4) section of the datasheet for details.

To enable the AFC, write the values given in [Table 41](#page-67-3).

Table 41. AFC Configuration Settings for GFSK/FSK

CONFIGURATION VALUES FOR IEEE 802.15.4- 2006 PACKET AND SPORT MODES

No register writes are required to configure IEEE 802.15.4 packet mode unless it is desired to select RF Port 1 rather than RF Port 2. For SPORT mode, the values detailed in [Table 42](#page-67-0) should be written to the ADF7242.

Table 42. IEEE 802.15.4 Configuration Settings

Note that, if it is desired to use a nonstandard SFD, an additional register write is required. Refer to the [IEEE 802.15.4-](#page-47-2) [2006 Programmable SFD](#page-47-2) section for details.

RF PORT CONFIGURATIONS/ANTENNA DIVERSITY

ADF7242 is equipped with two fully differential RF ports. Port 1 is capable of receiving, whereas Port 2 is capable of receiving or transmitting. RF Port 1 comprises Pin RFIO1P and Pin RFIO1N, and RF Port 2 comprises Pin RFIO2P and Pin RFIO2N. Only one of the two RF ports can be active at any one time.

The availability of two RF ports facilitates the use of switched antenna diversity and results in a simplified application circuit if the ADF7242 is connected to an external LNA and/or PA. Port selection for receive operation is configured through Register rxfe_cfg, Field lna_sel (0x39B[6:4]).

Configuration A

Configuration A of [Figure 99](#page-68-1), is the default connection, where a single antenna is connected to RF Port 2. This selection is made by setting Register rxfe_cfg, Field lna_sel = 1 (default setting).

Configuration B

Configuration B shows a dual-antenna configuration that is suitable for switched antenna diversity. In this case, the link margin can be maximized by comparing the RSSI level of the signal received on each antenna and thus selecting the optimum antenna. In addition, for IEEE 802.15.4-2006 mode the SQI value in Register lrb, Field sqi_readback can be used in the antenna selection decision.

Suitable algorithms for the selection of the optimum antenna depend on the particulars of the underlying communication system. Switching between two antennas is likely to cause a short interruption of the received data stream. Therefore, it is advisable to synchronize the antenna selection phase with the preamble component of the packet. In a static communication system, it is often sufficient to select the optimum antenna once.

Configuration C

Configuration C shows that connecting an external PA and/or LNA is possible with a single external receive/transmit switch. The PA transmits on RF Port 2. RF Port 1 is configured as the receive input (Register rxfe_cfg, Field lna_sel = 0).

ADF7242 provides two signals, RXEN_GP6 and TXEN_GP5, to automatically enable an external LNA and/or a PA. If Register ext_ctrl, Bit txen_en = 1, the ADF7242 outputs a logic high level at the TXEN_GP5 pin while in TX state, and a logic low level while in any other state. If Register ext_ctrl, Bit rxen_en = 1, the ADF7242 outputs a logic high level at the RXEN_GP6 pin while in RX state and a logic low level while in any other state.

The RXEN_GP6 and TXEN_GP5 outputs have high impedance in the sleep state. Therefore, appropriate pull-down resistors must be provided to define the correct state of these signals during power-down. See the [PA Ramping Controller](#page-45-1) section for further details on the use of an external PA, including details of the integrated biasing block, which simplifies connection to PA circuits based upon a single FET.

Configuration D

Configuration D is similar to Configuration A, except that a dipole antenna is used. In this case, a balun is not required.

Figure 99. RF Interface Configuration Options (A: Single Antenna; B: Antenna Diversity; C: External LNA/PA; D: Dipole Antenna)

AUXILLARY FUNCTIONS **TEMPERTURE SENSOR**

To perform a temperature measurement, the MEAS state is invoked using the RC_MEAS command. The result can be read back from Register adc_rbk, Field adc_out (0x3AE[5:0]). Averaging multiple readings improves the accuracy of the result. The temperature sensor has an operating range from −40°C to +85°C.

The die (ambient) temperature is calculated as follows:

tdie = (4.72°C × *Register adc_rbk*, *Field adc_out*) + 65.58°C + *correction value*.

where *correction value* can be determined by performing a readback at a single known temperature. Note also that averaging a number of ADC readbacks can improve the accuracy of the temperature measurement.

BATTERY MONITOR

The battery monitor features very low power consumption and can be used in any state other than the sleep state. The battery monitor generates a batt_alert interrupt for the host MCU when the battery voltage drops below the programmed threshold voltage. The default threshold voltage is 1.7 V, and can be increased in 62 mV steps to 3.6 V with Register bm_cfg, Field battmon_voltage (0x3E6[4:0]).

WAKE-UP CONTROLLER (WUC)

Circuit Description

The ADF7242 features a 16-bit wake-up timer with a programmable prescaler. The 32.768 kHz RC oscillator or the 32.768 kHz external crystal provides the clock source for the timer. This tick rate clocks a 3-bit programmable prescaler whose output clocks a preloadable 16-bit down counter. An overview of the timer circuit is shown in [Figure 100](#page-69-1) lists the possible division rates for the prescaler. This combination of programmable prescaler and 16-bit down counter gives a total WUC range of 30.52 μs to 36.4 hours.

Table 43. Prescaler Division Factors

An interrupt generated when the wake-up timer has timed out can be enabled in Register irq1_en0 or Register irq2_en0.

Figure 100. Hardware Wake-Up Timer Diagram

WUC Configuration and Operation

The wake-up timer can be configured as follows:

- The clock signal for the timer is taken from the external 32.768 kHz crystal or the internal RC oscillator. This is selectable via Register tmr_cfg1, Bit sleep_config (0x317[6:3]).
- A 3-bit prescaler, which is programmable via Register tmr_cfg0, Bit timer_prescal (0x316[2:0]) determines the tick period.

This is followed by a preloadable 16-bit down counter. After the clock is selected, the reload value for the down counter (tmr_rld0 and tmr_rld1) and the prescaler values (Register tmr_cfg0, Bit timer_prescal) can be programmed. When the clock has been enabled, the counter starts to count down at the tick rate starting from the reload value. If wake-up interrupts are enabled, the timer unit generates an interrupt when the timer value reaches 0x0000. When armed, the wake-up interrupt triggers a wake-up from sleep.

The reliable generation of wake-up interrupts requires the WUC timeout flag to be reset immediately after the reload value has been programmed. To do this, first write 1and then write 0 to Register tmr_ctrl, Field wake_timer_flag_reset. To enable automatic wake-up from the sleep state, arm the timer unit for wake-up operation by writing 1 to Register tmr_cfg1, Field wake_on_timeout. After writing this sequence to the ADF7242, a sleep command can be issued.

Calibrating the RC oscillator

The RC oscillator is not automatically calibrated. If it is desired to use the RC oscillator as the clock source for the WUC, the host MCU should initiate a calibration. This can be performed at any time in advance of entering the sleep state. To perform a calibration, the host MCU should

- Set Register tmr_ctrl, Field wuc_rc_osc_cal = 0
- Set Register tmr_ctrl, Field wuc_rc_osc_cal = 1

Table 44. 0x3F0: tx_fsk_test

The calibration time is typically 1 ms. When the calibration is complete Register wuc_32khzosc_status, Field rc_osc_cal_ready is high. Following calibration, the host MCU can transition to the SLEEP_BBRAM_RCO sleep state, by following the full procedure given in the [WUC Configuration and Operation](#page-70-0) section.

TRANSMIT TEST MODES

The ADF7242 has various transmit test modes that can be used in IEEE 802.15.4-2006 and GFSK/FSK SPORT modes. These test modes can be enabled by writing to Register tx_fsk_test (Location 0x3F0), as described in [Table 44](#page-70-1). A continuous packet transmission mode is also available in IEEE 802.15.4-2006 and GFSK/FSK packet modes. This mode can be enabled using the following procedure:

- 1. An IEEE 80.215.4-2006 or a GFSK/FSK packet with random payload should be written to TX_BUFFER as described in the [Transmitter](#page-39-1) section. It is recommended to use a packet with the maximum length of 127 bytes.
- 2. Set Register buffercfg, Field trx_mac_delay = 1.
- 3. Set Register buffercfg, Field tx_buffer_mode = 3.
- 4. Set Register pkt_cfg, Field skip_synth_settle = 1.
- 5. Issue Command RC_TX. The transmitter continuously transmits the packet stored in TX_BUFFER.
- 6. If Command RC_PHY_RDY is issued at any point after this step, all the preceding configuration registers must be rewritten to the device before reissuing Command RC_TX.

Note that the transmitter momentarily transmits an RF carrier between packets due to a finite delay from when the packet handler finishes transmitting a packet in TX_BUFFER and going back to transmit the start of TX_BUFFER again.

SERIAL PERIPHERAL INTERFACE (SPI) **GENERAL CHARACTERISTICS**

The ADF7242 is equipped with a 4-wire SPI interface, using the SCLK, MISO, MOSI, and $\overline{\text{CS}}$ pins. The ADF7242 always acts as aslave to the host MCU. Figure 101 shows an example connection diagram between the host MCU and the ADF7242. The diagram also shows the direction of the signal flow for each pin. The SPI interface is active and the MISO output enabled only while the CS input is low. The interface uses a word length of eight bits, which is compatible with the SPI hardware of most microprocessors. The data transfer through the SPI interface occurs with the most significant bit of address and data first. Referto Figure 3 for the SPI interface timing diagram. The MOSI input is sampled at the rising edge of SCLK. As commands or data are shifted in from the MOSI input at the SCLK rising edge, the status word or data is shifted out at the MISO pin synchronous with the SCLK clock falling edge. If CS is brought low, the most significant bit of the status word appears on the MISO output without the need for a rising clock edge on the SCLK input.

COMMAND ACCESS

The ADF7242 is controlled through commands. Command words are single-byte instructions that control the state transitions of the radio controller and access to the registers and packet RAM. The complete list of valid commands is given in [Table 45](#page-72-0). Commands with the RC prefix are handled by the radio controller, whereas memory access commands, which have the SPI prefix are handled by an independent controller. Thus, SPI commands can be issued independent of the state of the radio controller.

A command is initiated by bringing CS low and shifting in the command word over the SPI as shown in [Figure 102.](#page-71-1)

All commands are executed after \overline{CS} goes high again or at the next positive edge of the SCLK input. The latter condition occurs in the case of a memory access command. In this case, the command is executed on the positive SCLK clock edge corresponding to the most significant bit of the first parameter word. The CS input must be brought high again after a command has been shifted into the ADF7242 to enable the recognition of successive command words. This is because a single command can be issued only during a CS low period (with the exception of a double NOP command).

The execution of certain commands by the radio controller may take several instruction cycles, during which the radio controller unit is busy. Prior to issuing a radio controller command, it is, therefore, necessary to read the status word to determine if the ADF7242 is ready to accept a new radio controller command. This is best accomplished by shifting in SPI_NOP commands, which cause status words to be shifted out. The RC_READY variable is used to indicate when the radio controller is ready to accept a new RC command, whereas the SPI_READY variable indicates when the memory can be accessed. To take the burden of repeatedly polling the status word off the host MCU for complex commands such as RC_RX, RX_TX, and RC_PHY_RDY, the IRQ handler can be configured to generate an RC_READY interrupt. See the [Interrupt Controller](#page-80-0) section for details. Otherwise, the user can program timeout periods according to the command execution times provided under the state transition timing given in [Table 10](#page-13-0) and [Table 11](#page-13-1).

STATUS WORD

The status word of the ADF7242 is automatically returned over the MISO each time a byte is transferred over the MOSI. The meaning of the various status word bit fields is illustrated in [Table 46](#page-72-1). The RC_STATUS field reflects the current state of the radio controller. By definition, RC_STATUS reflects the state of a completed state transition. During the state transition, RC_STATUS maintains the value of the state from which the state transition was invoked.
Table 45. Command List

Table 46. SPI Status Word

MEMORY MAP

The various memory locations used by the ADF7242 are shown in [Figure 103](#page-73-0). The radio control and packet management of the part are realized through the use of an 8-bit, custom processor and an embedded ROM. The processor executes instructions stored in the embedded program ROM. There is also a local RAM, subdivided into three sections, that is used as a data packet buffer, both for transmitted and received data (packet RAM), and for storing the radio and packet management configuration (BBRAM and MCR). The RAM addresses of these variables are 11 bits in length.

BBRAM

The 64-byte battery back-up, or BBRAM, is used to maintain settings needed at wake-up from sleep state by the wake-up controller.

MODEM CONFIGURATION RAM (MCR)

The 256-byte modem configuration RAM, or MCR, contains the various registers used for direct control or observation of the physical layer radio blocks of the ADF7242. Contents of the MCR are not retained in the sleep state.

PROGRAM ROM

The program ROM consists of 4 kB of nonvolatile memory. It contains the firmware code for radio control, packet management, and smart wake mode.

PROGRAM RAM

The program RAM consists of 2 kB of volatile memory. This memory space is used for various software modules, such as address filtering and CSMA/CA, which are available from Analog Devices. The software modules are downloaded to the program RAM memory space over the SPI by the host microprocessor. See the [Program RAM Write](#page-76-0) subsection of the [Memory Access](#page-75-0) section for details on how to write to the program RAM.

PACKET RAM

The packet RAM consists of 256 bytes of memory space from Address 0x000 to Address 0x0FF, as shown in [Figure 103](#page-73-0). This memory is allocated for storage of data from valid received packets and packet data to be transmitted. The packet manager stores received payload data at the memory location indicated by the value of Register rxpb, Field rx_pkt_base, the receive address pointer. The value of Register txpb, Field tx_pkt_base, the transmit address pointer, determines the start address of data to be transmitted by the packet manager. This memory can be arbitrarily assigned to store single or multiple transmit or receive packets, both with and without overlap as shown in [Figure 104](#page-74-0). The rx_pkt_base value should be chosen to ensure that there is enough allocated packet RAM space for the maximum receiver payload length.

Figure 104. Example Packet RAM Configurations Using the Transmit Packet and Receive Packet Address Pointers

MEMORY ACCESS

Memory locations are accessed by invoking the relevant SPI command. An 11-bit address is used to identify registers or locations in the memory space. The most significant three bits of the address are incorporated into the command by appending them as the LSBs of the command word. [Figure 105](#page-75-1) illustrates the command, address, and data partitioning. The various SPI memory access commands are different depending on the memory location being accessed. This is described in [Table 47](#page-75-2).

An SPI command should be issued only if the SPI_READY bit of the status word is high.

In addition, an SPI command should not be issued while the radio controller is initializing. SPI commands can be issued in any radio controller state including during state transition.

Figure 105. SPI Memory Access Command/Address Format

Table 47. Summary of SPI memory access commands

WRITING TO THE ADF7242

Block Write

Packet RAM memory locations can be written to in block format using the SPI_PKT_WR. The SPI_PKT_WR command is 0x10. This command provides pointer-based write access to the packet RAM. The address of the location written to is calculated from the base address in Register txpb, Field tx_pkt_base (0x314[7:0]) plus an index. The index is zero for the first data word following the command word, and is auto-incremented for each consecutive data word written. The first data word following an SPI_PKT_WR command is thus stored in the location with Address txpb, Field tx_pkt_base (0x314[7:0]), the second in packet RAM location with Address txpb, Field tx_pkt_base + 1, and so on. This feature makes this command efficient for bulk writes of data that recurrently begin at the same address. [Figure 106](#page-77-0) shows the access sequence for Command SPI_PKT_WR.

The MCR, BBRAM, and packet RAM memory locations can be written to in block format using the SPI_MEM_WR command. The SPI_MEM_WR command code is 00011xxxb, where xxxb represent Bits[10:8] of the first 11-bit address. If more than one data byte is written, the write address is automatically incremented for every byte sent until CS is set high, which terminates the memory access command. See Figure 107 for more details. The maximum block write for the MCR, packet RAM, and BBRAM memories are 256 bytes, 256 bytes, and 64 bytes, respectively. These maximum block-write lengths should not be exceeded.

Example

Write 0x00 to the rc_cfg register (Location 0x13E).

- The first five bits of the SPI_MEM_WR command are 00011.
- The 11-bit address of rc_cfg is 00100111110.
- The first byte sent is 00011001 or $0x19$.
- The second byte sent is 00111110 or 0x3E.
- The third byte sent is 0x00.

Thus, 0x193F00 is written to the part.

Random Address Write

MCR, BBRAM, and packet RAM memory locations can be written to in random address format using the SPI_MEMR_WR command. The SPI_MEMR_WR command code is 00001xxxb, where xxxb represent Bits[10:8] of the 11-bit address. The lower eight bits of the address should follow this command and then the data byte to be written to the address. The lower eight bits of the next address are entered followed by the data for that address until all required addresses within that block are written, as shown in [Figure 108.](#page-77-2) Note that the SPI_MEMR_WR command facilitates the modification of individual elements of a packet in RX_BUFFER and TX_BUFFER without the need to download and upload an entire packet.

The address location of a particular byte in RX_BUFFER and TX_BUFFER in the packet RAM is determined by adding the relative location of a byte to Address Pointer rx_pkt_base (Register rxpb; 0x315[7:0]) or Address Pointer tx_pkt_base (Register txpb; 0x314[7:0]), respectively.

Program RAM Write

The program RAM can only be written to using the memory block write, as illustrated in [Figure 109](#page-78-0). The SPI_PRAM_WR command is 0x1E. The program RAM is organized in eight pages with a length of 256 bytes each. The code module must be stored in the program RAM starting from Address 0x0000, or Address 0x00 in Page 0. The current program RAM page is selected with Register prampg, Field pram_page (0x313[3:0]). Prior to uploading the program RAM, the radio controller code module must be divided into blocks of 256 bytes commensurate with the size of the program RAM pages. Each 256-byte block is uploaded into the currently selected program RAM page using the SPI_PRAM_WR command. [Figure 109](#page-78-0) illustrates the sequence required for uploading a code block of 256 bytes to a PRAM page. The SPI_PRAM_WR command code is followed by Address Byte 0x00 to align the code block with the base address of the program RAM page. [Figure 110](#page-78-1) shows the overall upload sequence. With the exception of the last page written to the program RAM, all pages must be filled with 256 bytes of module code.

READING FROM THE ADF7242

Block Read

Command SPI_PKT_RD provides pointer-based read access from the packet RAM. The SPI_PKT_RD command is 0x30. The address of the location to be read is calculated from the base address in Register rxpb, Field rx_pkt_base plus an index. The index is zero for the first readback word. It is auto-incremented for each consecutive SPI_NOP command. The first data byte following a SPI_PKT_RD command is invalid and should be ignored. [Figure 111](#page-78-2) shows the access sequence for Command SPI_PKT_RD.

The SPI_MEM_RD command can be used to perform a block read of MCR, BBRAM, and packet RAM memory locations. The SPI_MEM_RD command code is 00111xxxb, where xxxb represent Bits[10:8] of the first 11-bit address. This command is followed by the remaining eight bits of the address to be read and then two SPI_NOP commands (dummy byte). The first byte available after writing the address should be ignored, with the second byte constituting valid data. If more than one data byte is to be read, the read address is automatically incremented for subsequent SPI_NOP commands sent. See [Figure 112](#page-78-3) for more details.

Random Address Read

MCR, BBRAM, and Packet RAM memory locations can be read from in a nonsequential manner using the SPI_MEMR_RD command. The SPI_MEMR_RD command code is 00101xxxb, where xxxb represent Bits[10:8] of the 11-bit address. This command is followed by the remaining eight bits of the address to be written and then two SPI_NOP commands (dummy byte).

The data byte from memory is available on the second SPI_NOP Thus, 0x393EFFFF is written to the part. command. For each subsequent read, an 8-bit address should be Formand. For each subsequent read, an 8-bit address should be The value shifted out on the MISO line while the fourth byte is followed by two SPI_NOP commands as shown in [Figure 113](#page-78-4).

Read the value stored in the rc_cfg register.

- The first five bits of the SPI_MEM_RD command are 00111.
- The 11-bit address of rc_cfg register is 00100111111. **Program RAM Read**
-
- The second byte sent is 00111110, or 0x3E.
- The third byte sent is 0xFF (SPI_NOP).
- The fourth byte sent is 0xFF.

sent is the value stored in the rc_cfg register.

Example This allows individual elements of a packet in RX_BUFFER and TX_BUFFER to be read without the need to download the entire packet.

The first byte sent is 00111001, or 0x39. The SPI_PRAM_RD command is used to read from the program RAM. This may be performed to verify that a firmware module has been correctly written to the program RAM. Like the SPI_PRAM_WR command, the host MCU must select the program RAM page to read via Register prampg, Field pram_page. Following this, the host MCU may use the SPI_PRAM_RD command to block read the selected program RAM page. The structure of this command is identical to the SPI_MEM_RD command.

08912-037

08912-037

DOWNLOADABLE FIRMWARE MODULES

The program RAM of the ADF7242 can be used to store firmware modules for the on-chip processor that provide extra functionality. The executable code for these firmware modules

and details on their functionality are available from Analog Devices. See the [Writing to the ADF7242](#page-76-1) section for details on how to download these firmware modules to program RAM.

INTERRUPT CONTROLLER

CONFIGURATION

The ADF7242 is equipped with an interrupt controller that is capable of handling up to 16 independent interrupt events. The interrupt events can be triggered either by hardware circuits or the packet manager and are captured in Register irq_src0 (0x3CB) and Register irq_src1(0x3CC).

The interrupt signals are available on two interrupt pins, IRQ1_ GP4 and IRQ2_TRFS_GP2. Each of the 16 interrupt sources can be individually enabled or disabled. The irq1_en0 (0x3C7) and irq1_en1 (0x3C8) registers control the functionality of the IRQ1_GP4 interrupt pin. The irq2_en0 (0x3C9) and irq2_en1 (0x3CA) registers control the functionality of the IRQ2_TRFS_ GP2 interrupt pin. Refer to [Table 48](#page-81-0) and [Table 49](#page-81-1) for details on which bits in the relevant interrupt source and interrupt enable registers correspond to the different interrupts.

The IRQ_STATUS bit of the SPI status word, is asserted if an interrupt is present on either IRQ1 or IRQ2. This is useful for host MCUs that may not have interrupt pins available.

The irq_src1 and irq_src0 registers can be read back to establish the source of an interrupt. An interrupt is cleared by writing 1 to the corresponding bit location in the appropriate interrupt source register (irq_src1 or irq_src0). If 0 is written to a bit location in the interrupt source registers, its state remains unchanged. This scheme allows interrupts to be cleared individually and facilitates hierarchical interrupt processing.

The availability of two interrupt outputs permits a flexible allocation of interrupt source to two different MCU hardware resources. For instance, an rx_sfd interrupt can be associated with a timer-capture unit of the MCU, while all other interrupts are handled by a normal interrupt handling routine. When operating in SPORT mode, Pin IRQ2_TRFS_GP2 acts as a frame synchronization signal and is disconnected from the interrupt controller.

When in the sleep state, the IRQ1_GP4 and IRQ2_TRFS_GP2 pins have high impedance.

When not in the sleep state, Pin IRQ1_GP4 and Pin IRQ2_ TRFS_GP2 are configured as push-pull outputs, using positive logic polarity.

Following a power-on reset or wake-up from sleep, Register irq1_en0, Field powerup and Register irq2_en0, Field powerup are set, while all other bits in the irq1_en0, irq1_en1, irq2_en0, and irq2_en1 registers are reset. Therefore, a power-up interrupt signal is asserted on the IRQ1_GP4 and IRQ2_TRFS_GP2 pins after a power-on-reset event or wake-up from the sleep state. Provided the wake-up from sleep event is caused by the wakeup timer, the power-up interrupt signal can be used to power up the host MCU.

After the ADF7242 is powered up, the rc_ready, wake-up, and power-on reset interrupts are also asserted in the irq_src0 register. However, these interrupts are not propagated to the IRQ1_GP4 and IRQ2_TRFS_GP2 pins because the corresponding mask bits are reset. The irq_src0 and irq_src1 registers should be cleared during the initialization phase.

Table 48. Bit Locations in the Interrupt Source Register irq_src1, with Corresponding Interrupt Enables in irq1_en1, irq2_en1

Table 49. Bit Locations in the Interrupt Source Register irq_src0, with Corresponding Interrupt Enables in irq1_en0, irq2_en0

DESCRIPTION OF INTERRUPT SOURCES

tx_pkt_sent

This interrupt is asserted when in IEEE 802.15.4-2006 or GFSK/FSK packet mode and the transmission of a packet in TX_BUFFER is complete.

rx_pkt_rcvd

This interrupt is asserted when in IEEE 802.15.4-2006 or GFSK/FSK packet mode and a packet with a valid FCS or CRC has been received and is available in RX_BUFFER.

tx_sfd

This interrupt is asserted if the SFD or SWD is transmitted when in IEEE 802.15.4-2006 or GFSK/FSK packet mode.

rx_sfd

This interrupt is asserted if a SFD or SWD is detected while in the RX state in either IEEE 802.15.4 or GFSK/FSK mode.

cca_complete

The interrupt is asserted at the end of a CCA measurement following a RC_RX or RC_CCA command. The interrupt indicates that the CCA_RESULT flag in the status word is valid.

batt_alert

The interrupt is asserted if the battery monitor signals a battery alarm. This occurs when the battery voltage drops below the programmed threshold value. The battery monitor must be enabled and configured. See the [Battery Monitor](#page-69-0) section for further details.

rc_ready

The interrupt is asserted if the radio controller is ready to accept a new command. This condition is equivalent to the rising edge of the RC_READY flag in the status word.

wakeup

The interrupt is asserted if the WUC timer has decremented to zero. Prior to enabling this interrupt, the WUC timer unit must be configured with the tmr_cfg0, tmr_cfg1, tmr_rld0, and tmr_rld1 registers. A wake-up interrupt can be asserted while the ADF7242 is active or has woken up from the sleep state through a timeout event. See the [Wake-Up Controller \(WUC\)](#page-69-1) section or further details.

powerup

The interrupt is asserted if the ADF7242 is ready for SPI access following a wake-up from the sleep state. This condition reflects a rising edge of the flag SPI_READY in the status word. If the ADF7242 has been woken `up from the sleep state using the CS input, this interrupt is useful to detect that the ADF7242 has powered up without the need to poll the MISO output. Register irq1_mask, Field powerup and Register irq2_mask, Field powerup are automatically set on exit from the sleep state. Therefore, this interrupt is generated when a transition from sleep is triggered by \overline{CS} being pulled low or by a timeout event.

APPLICATIONS CIRCUITS

Figure 116. Typical ADF7242 Application Circuit with DSP Using Antenna Diversity

Figure 118. Typical ADF7242 Application Circuit with Discrete External PA

REGISTER MAP

It is recommended that configuration registers be programmed in the idle state. Note that all registers that include fields that are denoted as RC_CONTROLLED must be programmed in the idle state only.

Reset values are shown in decimal notation.

Table 50. Register Map Overview

Address	Register Name	Access Mode	Description
0x100	ext_ctrl	R/W	External LNA/PA and internal PA control configuration bits
0x102	fsk_preamble	R/W	GFSK/FSK preamble length configuration
0x105	cca1	R/W	RSSI threshold for CCA
0x106	cca2	R/W	CCA mode configuration
0x107	buffercfg	R/W	RX and TX Buffer configuration
0x108	pkt_cfg	R/W	Firmware download module enable/FCS/CRC control
0x109	delaycfg0	R/W	RC_RX command to SFD or SWD search delay
0x10A	delaycfg1	R/W	RC_TX command to TX state delay
0x10B	delaycfg2	R/W	MAC delay extension
0x10C	sync_word0	R/W	Sync Word Bits[7:0] of [23:0]
0x10D	sync_word1	R/W	Sync Word Bits[15:8] of [23:0]
0x10E	sync_word2	R/W	Sync Word Bits[23:16] of [23:0]
0x10F	sync_config	R/W	Sync word configuration
0x111	fsk_preamble_config	R/W	GFSK/FSK preamble configuration
0x13E	rc_cfg	R/W	Packet/SPORT mode configuration
0x300	ch_freq0	R/W	Channel frequency settings-low byte
0x301	ch_freq1	R/W	Channel frequency settings-middle byte
0x302	ch_freq2	R/W	Channel frequency settings-two MSBs
0x304	tx_fd	R/W	Transmit frequency deviation register
0x305	dm_cfg0	R/W	Receive discriminator bandwidth register
0x306	tx_m	R/W	Gaussian and preemphasis filter configuration
0x30C	rrb	R	RSSI readback register
0x30D	Irb	R	Signal quality indicator quality readback register
0x30E	dr ₀	R/W	Data rate [bps/100], Bits[15:8] of [15:0]
0x30F	dr1	R/W	Data rate [bps/100], Bits[7:0] of [15:0]
0x313	prampg	R/W	PRAM page
0x314	txpb	R/W	Transmit packet storage base address
0x315	rxpb	R/W	Receive packet storage base address
0x316	tmr_cfg0	R/W	Wake-up timer configuration register-high byte
0x317	tmr_cfg1	R/W	Wake-up timer configuration register-low byte
0x318	tmr_rld0	R/W	Wake-up timer value register-high byte
0x319	tmr_rld1	R/W	Wake-up timer value register-low byte
0x31A	tmr_ctrl	R/W	Wake-up timer timeout flag configuration register
0x31B	wuc_32khzosc_status	R	32 kHz oscillator/WUC status
0x31E	pd_aux	R/W	Battery monitor and external PA bias enable
0x32C	gp_cfg	R/W	GPIO configuration
0x32D	gp_out	R/W	GPIO configuration
0x335	synt	R/W	Synthesizer lock time
0x33D	rc_cal_cfg	R/W	RC calibration setting
0x353	vco_band_ovrw	R/W	Overwrite value for the VCO frequency band.
0x354	vco_idac_ovrw	R/W	Overwrite value for the VCO bias current DAC.
0x355	vco_ovwr_cfg	R/W	VCO calibration settings overwrite enable
0x36E	pa_bias	R/W	PA bias control
0x36F	vco_cal_cfg	R/W	VCO calibration parameters
0x371	xto26_trim_cal	R/W	26 MHz crystal oscillator configuration
0x380	vco_band_rb	R	Readback VCO band after calibration

Table 51. 0x100: ext_ctrl

Table 52. 0x102: fsk_preamble

Table 53. 0x105: cca1

Table 54. 0x106: cca2

Table 55. 0x107: buffercfg

Table 56. 0x108: pkt_cfg

Table 57. 0x109: delaycfg0

Table 58. 0x10A: delaycfg1

Table 59. 0x10B: delaycfg2

Table 60. 0x10C: sync_word0

Table 61. 0x10D: sync_word1

Table 62. 0x10E: sync_word2

Table 63. 0x10F: sync_config

Table 64. 0x111: fsk_preamble_config

Table 65. 0x13E: rc_cfg

Table 66. 0x300: ch_freq0

Table 67. 0x301: ch_freq1

Table 68. 0x302: ch_freq2

Table 69. 0x304: tx_fd

Table 70. 0x305: dm_cfg0

Table 71. 0x306: tx_m

Bit	Field Name	R/W	Reset Value	Description
$[7:2]$	RC CONTROLLED	R/W	0	Controlled by radio controller.
	gauss filt	R/W	Ω	1: GFSK, 0: FSK.
	preemp_filt	R/W		1: enable, 0: disable preemphasis filter. Set for data rate > 250 kbps and IEEE 802.15.4-2006.

Table 72. 0x30C: rrb

Table 73. 0x30D: lrb

Table 74. 0x30E: dr0

Table 75. 0x30F: dr1

Table 76. 0x313: prampg

Table 77. 0x314: txpb

Table 78. 0x315: rxpb

Table 79. 0x316: tmr_cfg0

Table 80. 0x317: tmr_cfg1

Table 81. 0x318: tmr_rld0

Table 82. 0x319: tmr_rld1

Table 83. 0x31A: tmr_ctrl

Table 84. 0x31B: wuc_32khzosc_status

Table 85. 0x31E: pd_aux

Table 86. 0x32C: gp_cfg

Table 87. 0x32D: gp_out

Table 88. 0x335: synt

Table 89. 0x33D: rc_cal_cfg

Table 90. 0x353: vco_band_ovrw

Table 91. 0x354: vco_idac_ovrw

Table 92. 0x355: vco_ovrw_cfg

Table 93. 0x36E: pa_bias

Table 94. 0x36F: vco_cal_cfg

Table 95. 0x371: xto26_trim_cal

Table 96. 0x381: vco_band_rb

Table 97. 0x381: vco_idac_rb

Table 98. 0x389: iirf_cfg

Table 99. 0x38B: dm_cfg1

Table 100. 0x395: rxcal0

Table 101. 0x396: rxcal1

Table 102. 0x39B: rxfe_cfg

Table 103. 0x3A7: pa_rr

Table 104. 0x3A8: pa_cfg

Table 105. 0x3A9: extpa_cfg

Table 106. 0x3AA: extpa_msc

Table 107. 0x3AE: adc_rbk

Table 108. 0x3B2: agc_cfg1

Table 109. 0x3B4: agc_max

Table 110. 0x3B6: agc_cfg2

Table 111. 0x3B7: agc_cfg3

Table 112. 0x3B8: agc_cfg4

Table 113. 0x3B9: agc_cfg5

Table 114. 0x3BA: agc_cfg6

Table 115. 0x3BC: agc_cfg7

Table 116. 0x3BF: ocl_cfg0

Table 117. 0x3C4: ocl_cfg1

Table 118. 0x3C7: irq1_en0

Table 119. 0x3C8: irq1_en1

Table 120. 0x3C9: irq2_en0

Table 121. 0x3CA: irq2_en1

Table 122. 0x3CB: irq_src0

Table 123. 0x3CC: irq_src1

Table 124. 0x3D2: ocl_bw0

Table 125. 0x3D3: ocl_bw1

Table 126. 0x3D4: ocl_bw2

Table 127. 0x3D5: ocl_bw3

Table 128. 0x3D6: ocl_bw4

j.

Table 129. 0x3D7: ocl_bws

Table 130. 0x3E0: ocl_cfg13

Table 131. 0x3E3: gp_drv

Table 132. 0x3E6: bm_cfg

Table 133. 0x3F0: tx_fsk_test

Table 134. 0x3F3: preamble_num_validate

Table 135. 0x3F4: sfd_15_4

Table 136. 0x3F7: afc_cfg

Table 137. 0x3F8: afc_ki_kp

Table 138. 0x3F9: afc_range

Table 139. 0x3FA: afc_read

033009-A

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.

Figure 119. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 5 mm × 5 mm Body, Very Thin Quad $(CP-32-13)$ Dimensions shown in millimeters

ORDERING GUIDE

1 Z = RoHS Compliant Part.

NOTES

NOTES