

High Temperature, High Voltage, Latch-Up Proof, 8-Channel Multiplexer

Data Sheet

ADG5298

FEATURES

Extreme high temperature operation up to 210°C Latch-up proof JESD78D Class II rating Low leakage Ultralow capacitance and charge injection Source capacitance, off: 2.9 pF at ±15 V dual supply Drain capacitance, off: 34 pF at ±15 V dual supply Charge injection: 0.2 pC at ±15 V dual supply and +12 V single supply Low on resistance: 290 Ω typical for dual supply at 210°C ±9 V to ±22 V dual-supply operation 9 V to 40 V single-supply operation 48 V supply maximum rating Fully specified at ±15 V, ±20 V, +12 V, and +36 V Vss to VDD analog signal range **APPLICATIONS**

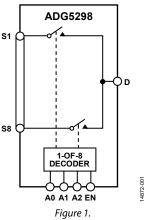
Downhole drilling and instrumentation **Avionics Heavy industrial High temperature environments GENERAL DESCRIPTION**

The ADG5298 is a latch-up proof, monolithic, complementary metal-oxide semiconductor (CMOS) analog multiplexer designed for operation up to 210°C. The ADG5298 switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2.

An EN input enables or disables the device. When EN is disabled, all channels switch off. The ultralow capacitance and charge injection of this switch makes it an ideal solution for data acquisition and sample-and-hold applications, where low glitch and fast settling are required.

The switch conducts equally well in both directions when on, and it has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

This multiplexer is available in a 16-lead ceramic flat package (FLATPACK) and a 16-lead ceramic flat package with reverse formed gullwing leads (FLATPACK_RF). Both packages are designed for robustness at extreme temperatures and are qualified for up to 1000 hours of operation at the maximum temperature rating.


The ADG5298 is a member of a growing series of high temperature qualified products offered by Analog Devices, Inc. For a complete selection table of available high temperature products, see the high temperature product list and qualification data available at www.analog.com/hightemp.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up and Minimizes Parasitic Leakage. A dielectric trench separates the P channel and N channel

transistors to prevent latch-up even under severe overvoltage conditions.

- Achieved JESD78D Class II rating. 2. The ADG5298 was stressed to ±500 mA with a 10 ms pulse at the maximum temperature of the device (210°C).
- 0.2 pC Charge Injection. 3.
- Dual-Supply Operation. 4. For applications where the analog signal is bipolar, the ADG5298 can operate from dual supplies of up to ±22 V.
- 5 Single-Supply Operation. For applications where the analog signal is unipolar, the ADG5298 can operate from a single rail power supply of up to 40 V.
- 6. 3 V Logic-Compatible Digital Inputs. $V_{\rm INH} = 2.0$ V, $V_{\rm INL} = 0.8$ V.
- No Logic Power Supply (V_L) Required. 7.

TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Product Highlights	1
Revision History	2
Specifications	3
±15 V Dual-Supply	3
±20 V Dual Supply	4
12 V Single Supply	5
36 V Single Supply	6
Continuous Current per Channel (Sx or D)	6
Absolute Maximum Ratings	7

Thermal Resistance7
ESD Caution7
Pin Configurations and Function Descriptions
Typical Performance Characteristics9
Test Circuits
Terminology 16
Theory of Operation
Trench Isolation17
Applications Information
Outline Dimensions
Ordering Guide 20

REVISION HISTORY

9/2016—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL-SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, and –55°C \leq T_A \leq +210°C, unless otherwise noted.

Table 1.

Parameter	Symbol ¹	Test Conditions/Comments ¹	Min	Typ²	Max	Unit
ANALOG SWITCH						
Analog Signal Range			Vss		V_{DD}	V
On Resistance	R _{on}	Supply voltage (V _s) = ± 10 V, drain source current (I _{Ds}) = -1 mA, see Figure 31; for maximum R _{ON} , V _{DD} = $+13.5$ V, V _{SS} = -13.5 V		290	400	Ω
On-Resistance Match Between Channels	ΔR _{ON}	$V_{s} = \pm 10 \text{ V}, I_{DS} = -1 \text{ mA}$		2.0	10	Ω
On-Resistance Flatness	R _{FLAT (ON)}	$V_{s} = \pm 10 \text{ V}, I_{DS} = -1 \text{ mA}$		60	130	Ω
LEAKAGE CURRENTS		$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$				
Source Off Leakage	Is (off)	$V_s = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}$, see Figure 32	-8	±0.005	+8	nA
Drain Off Leakage	I _D (off)	$V_{s} = \pm 10 V, V_{D} = \mp 10 V$, see Figure 32	-60	±0.005	+60	nA
Channel On Leakage	I _D (on), I _s (on)	$V_s = V_D = \pm 10 \text{ V}$, see Figure 30	-70	±0.01	+70	nA
DIGITAL INPUTS						
Input High Voltage	VINH		2.0			V
Input Low Voltage	VINL				0.8	V
Input Current	IINL OR INH	Input voltage (V_{IN}) = ground voltage (V_{GND}) or V_{DD}	-0.1	+0.002	+0.1	μA
Digital Input Capacitance	CIN			3		рF
DYNAMIC CHARACTERISTICS ³						
Transition Time	t transition	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35 pF, V _S = 10 V, see Figure 36		150	335	ns
On Time	t _{on} (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$, see Figure 38		125	275	ns
Off Time	toff (EN)	$R_L=300~\Omega,C_L=35~pF,V_S=10~V,see$ Figure 38		160	275	ns
Break-Before-Make Time Delay	t _D	$ \begin{array}{l} R_L = 300 \; \Omega, C_L = 35 \; pF, S1 \; voltage \; (V_{S1}) = \\ S2 \; voltage \; (V_{S2}) = 10 \; V, see \; Figure \; 37 \end{array} $	25	55		ns
Charge Injection	Q _{INJ}	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 39		0.2		рC
Off Isolation		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34		86		dB
Channel to Channel Crosstalk		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33		-80		dB
–3 dB Bandwidth		$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 35		110		MHz
Source Capacitance, Off	Cs (off)	$V_s = 0 V$, frequency (f) = 1 MHz		2.9		рF
Drain Capacitance, Off	C_D (off)	$V_{s} = 0 V, f = 1 MHz$		34		рF
Source/Drain Capacitance, On	C _D (on), C _s (on)	$V_s = 0 V$, $f = 1 MHz$		37		pF
POWER REQUIREMENTS		$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$				
Supply Current						
Positive	IDD	Digital inputs = 0 V or 5 V, see Figure 28		60	80	μΑ
Negative	lss	Digital inputs = 0 V or 5 V, see Figure 29		10	20	μΑ
Ground Current	Ignd	Digital inputs = $0 V$ or $5 V$		60	80	μΑ
Supply Range	V _{DD} /V _{SS}	GND = 0 V	±9		±22	V

 1 See the Terminology section. 2 T_A = 25°C, except for the analog switch and power requirements values, where T_A = 210°C. 3 Guaranteed by design, not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, and -55°C \leq T_{A} \leq +210°C, unless otherwise noted.

Table 2.

Parameter	Symbol ¹	Test Conditions/Comments ¹		Typ ²	Max	Unit
ANALOG SWITCH						
Analog Signal Range			Vss		V_{DD}	V
On Resistance	Ron	$V_s = \pm 15 \text{ V}$, $I_{Ds} = -1 \text{ mA}$, see Figure 31; for maximum R_{ON} , $V_{DD} = +18 \text{ V}$, $V_{Ss} = -18 \text{ V}$		240	350	Ω
On-Resistance Match Between Channels	ΔR _{ON}	$V_{S} = \pm 15 V$, $I_{DS} = -1 mA$		1.5	10	Ω
On-Resistance Flatness	RFLAT (ON)	$V_{s} = \pm 15 V$, $I_{Ds} = -1 mA$		55	110	Ω
LEAKAGE CURRENTS		$V_{DD} = +22 V, V_{SS} = -22 V$				
Source Off Leakage	Is (off)	$V_{s} = \pm 15 \text{ V}, V_{D} = \mp 15 \text{ V}$, see Figure 32	-8	±0.005	+8	nA
Drain Off Leakage	I _D (off)	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V}$, see Figure 32	-60	±0.005	+60	nA
Channel On Leakage	I _D (on), I _s (on)	$V_s = V_D = \pm 15 V$, see Figure 30	-70	±0.01	+70	nA
DIGITAL INPUTS						
Input High Voltage	VINH		2.0			V
Input Low Voltage	VINL				0.8	V
Input Current	I _{INL} or I _{INH}	$V_{IN} = V_{GND} \text{ or } V_{DD}$	-0.1	+0.002	+0.1	μA
Digital Input Capacitance	CIN			3		рF
DYNAMIC CHARACTERISTICS ³						
Transition Time	t _{TRANSITION}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$, see Figure 36		140	305	ns
On Time	ton (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$, see Figure 38		120	245	ns
Off Time	t _{OFF} (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$, see Figure 38		160	260	ns
Break-Before-Make Time Delay	t⊳	$\label{eq:RL} \begin{split} R_L &= 300 \; \Omega, C_L = 35 \; pF, V_{S1} = V_{S2} = 10 \; V, \\ see \; Figure \; 37 \end{split}$	20	45		ns
Charge Injection	Q _{INJ}	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 39		0.4		рC
Off Isolation		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34		86		dB
Channel to Channel Crosstalk		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33		-80		dB
–3 dB Bandwidth		$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 35		121		MHz
Source Capacitance, Off	C _s (off)	$V_s = 0 V$, f = 1 MHz		2.8		рF
Drain Capacitance, Off	C _D (off)	$V_{s} = 0 V, f = 1 MHz$		33		рF
Source/Drain Capacitance, On	C_D (on), C_S (on)	$V_{s} = 0 V, f = 1 MHz$		36		рF
POWER REQUIREMENTS		$V_{DD} = +22 V, V_{SS} = -22 V$				
Supply Current						
Positive	I _{DD}	Digital inputs = 0 V or 5 V, see Figure 28		60	120	μA
Negative	lss	Digital inputs = 0 V or 5 V, see Figure 29		10	20	μA
Ground Current		Digital inputs = 0 V or 5 V		60	120	μA
Supply Range	V _{DD} /V _{SS}	GND = 0 V	±9		±22	V

 1 See the Terminology section. 2 T_A = 25°C, except for the analog switch and power requirements values, where T_A = 210°C.

³ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, and $-55^{\circ}C \leq T_{A} \leq +210^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Symbol ¹	Test Conditions/Comments ¹	Min	Typ²	Max	Unit
ANALOG SWITCH						
Analog Signal Range			Vss		V _{DD}	V
On Resistance	Ron	$V_s = 0 V$ to $10 V$, $I_{Ds} = -1 mA$, see Figure 31;		650	800	Ω
		for maximum R_{ON} , $V_{DD} = 10.8 V$, $V_{SS} = 0 V$				
On-Resistance Match Between Channels	ΔR_{ON}	$V_{s} = 0 V \text{ to } 10 V$, $I_{Ds} = -1 \text{ mA}$		3	24	Ω
On-Resistance Flatness	RFLAT (ON)	$V_{s} = 0 V \text{ to } 10 V$, $I_{Ds} = -1 \text{ mA}$		240	380	Ω
LEAKAGE CURRENTS		$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$				
Source Off Leakage	I _s (off)	V_{S} = 1 V/10 V, V_{D} = 10 V/1 V, see Figure 32	-8	±0.005	+8	nA
Drain Off Leakage	I _D (off)	V_{S} = 1 V/10 V, V_{D} = 10 V/1 V, see Figure 32	-60	±0.005	+60	nA
Channel On Leakage	I_D (on), I_S (on)	$V_s = V_D = 1 \text{ V}/10 \text{ V}$, see Figure 30	-70	±0.01	+70	nA
DIGITAL INPUTS						
Input High Voltage	VINH		2.0			V
Input Low Voltage	VINL				0.8	V
Input Current	IINL OR INH	$V_{IN} = V_{GND} \text{ or } V_{DD}$	-0.1	+0.002	+0.1	μA
Digital Input Capacitance	CIN			3		рF
DYNAMIC CHARACTERISTICS ³						
Transition Time	t _{TRANSITION}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$, see Figure 36		200	490	ns
On Time	ton (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$, see Figure 38		180	435	ns
Off Time	t _{OFF} (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$, see Figure 38		165	305	ns
Break-Before-Make Time Delay	t _D	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$, $V_{S1} = V_{S2} = 8 \ V$, see Figure 37	40	95		ns
Charge Injection	QINJ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 39		0.2		рC
Off Isolation		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34		-86		dB
Channel to Channel Crosstalk		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33		-80		dB
–3 dB Bandwidth		$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 35		95		MHz
Source Capacitance, Off	C _s (off)	$V_{s} = 6 V, f = 1 MHz$		3.3		рF
Drain Capacitance, Off	C _D (off)	$V_{s} = 6 V, f = 1 MHz$		38		рF
Source/Drain Capacitance, On	C _D (on), C _S (on)	$V_{s} = 6 V, f = 1 MHz$		41		рF
POWER REQUIREMENTS		$V_{DD} = 13.2 V$				
Supply Current						
Positive	IDD	Digital inputs = 0 V or 5 V, see Figure 28		50	75	μA
Negative	lss	Digital inputs = 0 V or 5 V, see Figure 29		7.5	15	μA
Ground Current		Digital inputs = 0 V or 5 V		50	75	μA
Supply Range	V _{DD} /V _{SS}	$GND = 0 V, V_{ss} = 0 V$	9		40	V

 1 See the Terminology section. 2 T_A = 25°C, except for the analog switch and power requirements values, where T_A = 210°C. 3 Guaranteed by design, not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, and $-55^{\circ}\text{C} \leq T_{\text{A}} \leq +210^{\circ}\text{C},$ unless otherwise noted.

Table 4.

Parameter	Symbol ¹	Test Conditions/ Comments ¹	Min	Typ ²	Max	Unit
ANALOG SWITCH						
Analog Signal Range			Vss		V_{DD}	V
On Resistance	Ron	$V_s = 0 V$ to 30 V, $I_{Ds} = -1 mA$, see Figure 31; for maximum R_{ON} , $V_{DD} = 32.4 V$, $V_{ss} = 0 V$		260	350	Ω
On-Resistance Match Between Channels	ΔR _{on}	$V_s = 0 V$ to 30 V, $I_{DS} = -1 mA$		1.5	10	Ω
On-Resistance Flatness	RFLAT (ON)	$V_{s} = 0 V$ to 30 V, $I_{Ds} = -1 mA$		55	110	Ω
LEAKAGE CURRENTS		$V_{DD} = 13.2 V, V_{SS} = 0 V$				
Source Off Leakage	I _s (off)	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}, \text{ see Figure 32}$	-8	±0.005	+8	nA
Drain Off Leakage	I _D (off)	$V_s = 1 V/10 V$, $V_D = 10 V/1 V$, see Figure 32	-60	±0.005	+60	nA
Channel On Leakage	I_D (on), I_S (on)	$V_{s} = V_{D} = 1 \text{ V}/10 \text{ V}$, see Figure 30	-70	±0.01	+70	nA
DIGITAL INPUTS						
Input High Voltage	VINH		2.0			V
Input Low Voltage	VINL				0.8	V
Input Current	IINL OR INH	$V_{IN} = V_{GND} \text{ or } V_{DD}$	-0.1	+0.002	+0.1	μA
Digital Input Capacitance	CIN			3		рF
DYNAMIC CHARACTERISTICS ³						
Transition Time	t _{TRANSITION}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 18 V$, see Figure 36		170	320	ns
On Time	ton (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 18 V$, see Figure 38		150	265	ns
Off Time	t _{OFF} (EN)	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 18 V$, see Figure 38		180	265	ns
Break-Before-Make Time Delay	t⊳	$R_L=300~\Omega,~C_L=35~pF,~V_{S1}=V_{S2}=18~V,$ see Figure 37	20	55		ns
Charge Injection	Q _{INJ}	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$, see Figure 39		0.3		рC
Off Isolation		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 34		-86		dB
Channel to Channel Crosstalk		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 33		-80		dB
–3 dB Bandwidth		$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 35		105		MHz
Source Capacitance, Off	C _s (off)	$V_s = 6 V$, $f = 1 MHz$		2.7		рF
Drain Capacitance, Off	C _D (off)	$V_{s} = 6 V, f = 1 MHz$		32		рF
Source/Drain Capacitance, On	C_D (on), C_S (on)	$V_{s} = 6 V, f = 1 MHz$		35		рF
POWER REQUIREMENTS		$V_{DD} = 13.2 V$				
Supply Current						
Positive	IDD	Digital inputs = 0 V or 5 V, see Figure 28		80	155	μA
Negative	Iss	Digital inputs = 0 V or 5 V, see Figure 29		10	20	μA
Ground Current		Digital inputs = 0 V or 5 V		80	155	μA
Supply Range	V _{DD} /V _{SS}	$GND = 0 V, V_{ss} = 0 V$	9		40	V

 1 See the Terminology section. 2 T_A = 25°C, except for the analog switch and power requirements values, where T_A = 210°C.

³ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL (Sx OR D)

Table 5.

Parameter	Test Conditions/Comments	175°C	210°C	Unit
CONTINUOUS CURRENT (Sx OR D)	$\theta_{JA} = 70 \text{ °C/W}$			
$V_{DD} = +15 V$, $V_{SS} = -15 V$		10	10	mA maximum
$V_{DD} = +20 V, V_{SS} = -20 V$		10	10	mA maximum
$V_{DD} = 12 V, V_{SS} = 0 V$		6	6	mA maximum
$V_{DD} = 36 V, V_{SS} = 0 V$		10	10	mA maximum

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 6.

10010-01	
Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	–0.3 V to +48 V
Vss to GND	+0.3 V to -48 V
Analog Inputs ¹	$V_{\text{SS}} - 0.3$ V to $V_{\text{DD}} + 0.3$ V or 30 mA, whichever occurs first
Digital Inputs ¹	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first
Peak Current, Sx or D Pins	31 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or D Pins ²	Data + 5%
Temperature Range	–55°C to +210°C
Junction Temperature	212°C
Reflow Soldering Peak Temperature, Pb Free	260°C (+ 0°C/- 5°C)

¹ Overvoltages at the Ax, EN, Sx, or D pins are clamped by internal diodes. Limit the current to the maximum ratings given. ² See Table 5.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

Table 7. Thermal Resistance

Package Type	θ _{JA}	θ」	Unit
F-16-1 ¹	70	22	°C/W
FR-16-1 ¹	70	10	°C/W

¹ Thermal impedance simulated values are based on JEDEC 2s2p thermal test board. See JEDEC JESD51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

A0 1 EN 2 V _{SS} 3 S1 4 S2 5 (Not to Scale) S3 6 S4 7 D 8	16 A1 15 A2 GND VDD S5 S6 S7 S8 S8 S8
--	--

Figure 2. FLATPACK Pin Configuration

Figure 3. Reversed Formed FLATPACK Pin Configuration

Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	A0	Logic Control Input 0.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, the Ax logic inputs determine the on switches.
3	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
4	S1	Source Terminal 1. This pin can be an input or an output.
5	S2	Source Terminal 2. This pin can be an input or an output.
6	S3	Source Terminal 3. This pin can be an input or an output.
7	S4	Source Terminal 4. This pin can be an input or an output.
8	D	Drain Terminal. This pin can be an input or an output.
9	S8	Source Terminal 8. This pin can be an input or an output.
10	S7	Source Terminal 7. This pin can be an input or an output.
11	S6	Source Terminal 6. This pin can be an input or an output.
12	S5	Source Terminal 5. This pin can be an input or an output.
13	V _{DD}	Most Positive Power Supply Potential.
14	GND	Ground (0 V) Reference.
15	A2	Logic Control Input 2.
16	A1	Logic Control Input 1.

Table 9. Truth Table

A2	A1	AO	EN	On Switch	
X ¹	X ¹	X ¹	0	None	
0	0	0	1	S1	
0	0	1	1	S2	
0	1	0	1	S3	
0	1	1	1	S4	
1	0	0	1	S5	
1	0	1	1	S6	
1	1	0	1	S7	
1	1	1	1	S8	

¹ X is don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

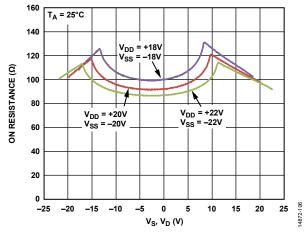


Figure 4. On Resistance (R_{ON}) as a Function of V_S , V_D (±20 V Dual Supply)

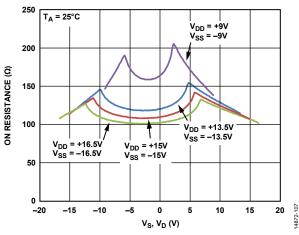


Figure 5. On Resistance (R_{ON}) as a Function of V_s, V_D (±15 V Dual Supply)

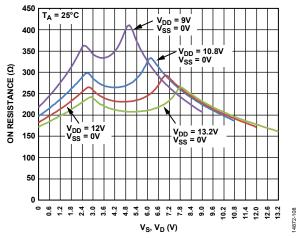


Figure 6. On Resistance (R_{ON}) as a Function of V_{S_r} , V_D (12 V Single Supply)

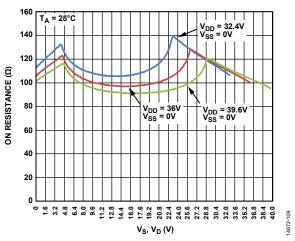


Figure 7. On Resistance (R_{ON}) as a Function of V_S, V_D (36 V Single Supply)

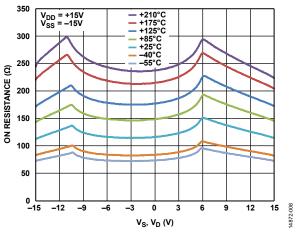


Figure 8. On Resistance (R_{ON}) as a Function of V_{S} , V_{D} for Various Temperatures, ±15 V Dual Supply

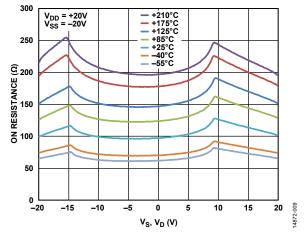
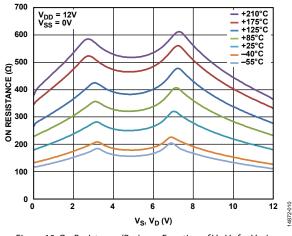
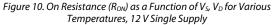
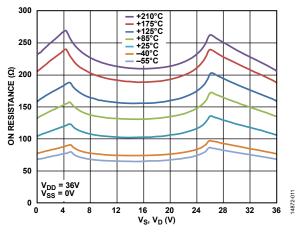
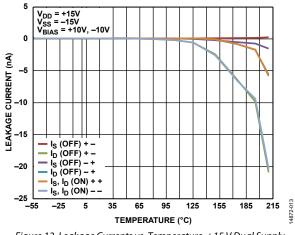
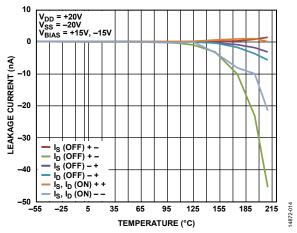
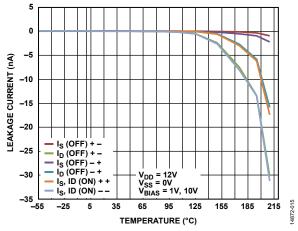
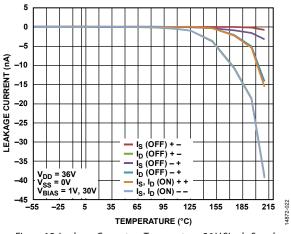
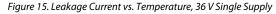




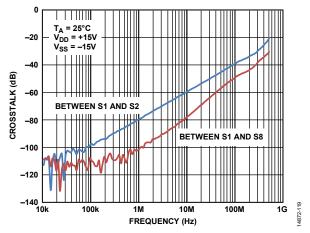
Figure 9. On Resistance (R_{ON}) as a Function of V₅, V_D for Various Temperatures, ± 20 V Dual Supply

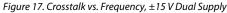






Figure 11. On Resistance (R_{ON}) as a Function of V_{S_r} V_D for Various Temperatures, 36 V Single Supply









Data Sheet

0 $T_A = 25^{\circ}C$ $V_{DD} = +15V$ $V_{SS} = -15V$ -20 Vss -40 OFF ISOLATION (dB) -60 -80 -100 -120 –140 └─ 10k 14872-118 100k 1M 10M 100M 1G FREQUENCY (Hz)

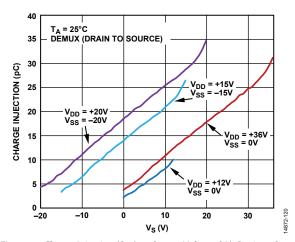
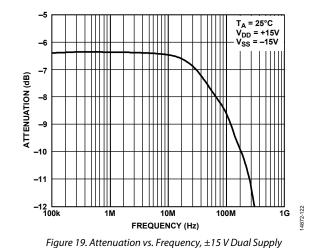
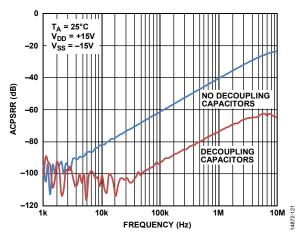
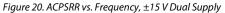





Figure 18. Charge Injection (Q_{INJ}) vs. Source Voltage (V_s), Drain to Source

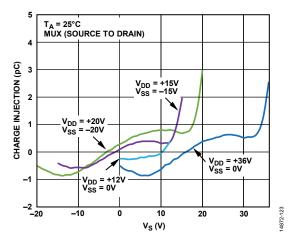
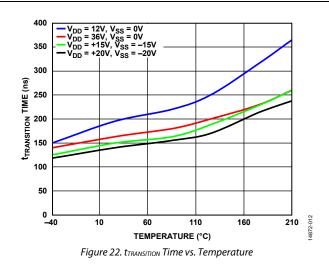
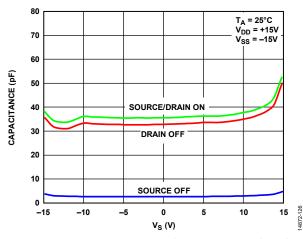
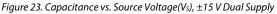





Figure 21. Charge Injection (Q_{INJ}) vs. Source Voltage (V_S), Source to Drain

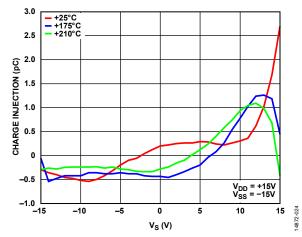


Figure 24. Charge Injection as a Function of Vs for Various Temperatures, ± 15 V Dual Supply

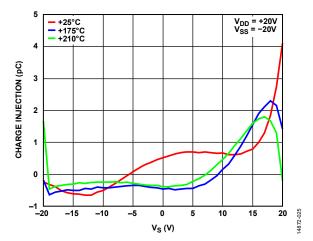


Figure 25. Charge Injection as a Function of V_S for Various Temperatures, ± 20 V Dual Supply

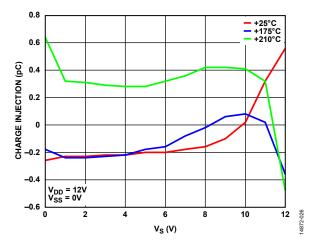


Figure 26. Charge Injection as a Function of Vs for Various Temperatures, 12 V Single Supply

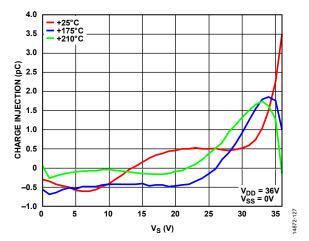
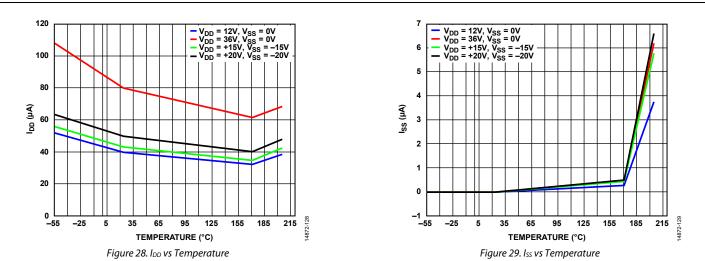
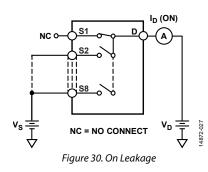




Figure 27. Charge Injection as a Function of V_s for Various Temperatures, 36 V Single Supply

Data Sheet

TEST CIRCUITS

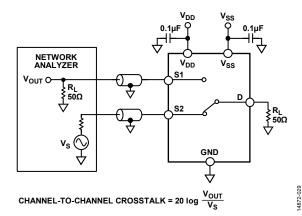


Figure 33. Channel-to-Channel Crosstalk

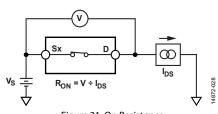
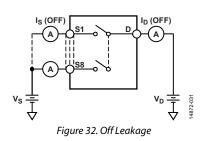
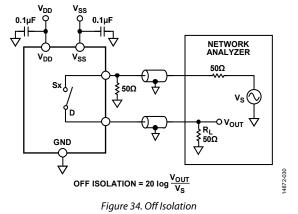
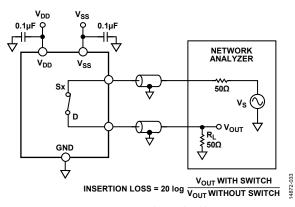
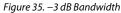






Figure 31. On Resistance

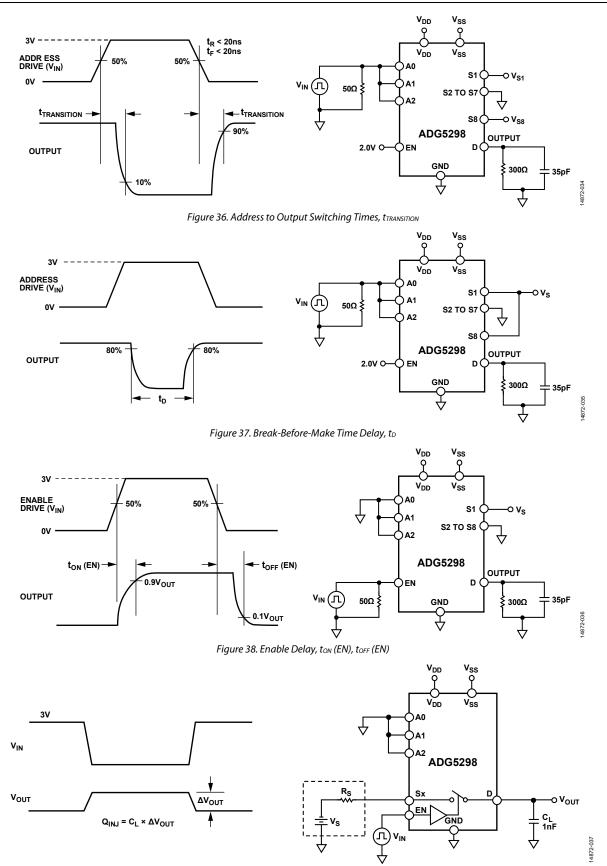


Figure 39. Charge Injection, QINJ

TERMINOLOGY

\mathbf{I}_{DD}

 $I_{\mbox{\scriptsize DD}}$ represents the positive supply current.

Iss

Iss represents the negative supply current.

VD, Vs

 $V_{\rm D}$ and $V_{\rm S}$ represent the analog voltage on Terminal D and Terminal Sx, respectively.

Ron

R_{ON} is the ohmic resistance between Terminal D and Terminal Sx.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT (ON)}

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range is represented by R_{FLAT (ON)}.

I_s (Off)

 I_{S} (off) is the source leakage current with the switch off.

I_D (Off)

 $I_{\rm D}$ (off) is the drain leakage current with the switch off.

I_{D} (On), I_{S} (On)

 $I_{\rm D}$ (on) and I_{S} (on) represent the channel leakage currents with the switch on.

VINL

 $V_{\ensuremath{\text{INL}}}$ is the maximum input voltage for Logic 0.

VINH

 V_{INH} is the minimum input voltage for Logic 1.

$I_{\rm INL}\text{, }I_{\rm INH}$

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

C_D (Off)

 C_D (off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

 C_{s} (off) represents the off switch source capacitance, which is measured with reference to ground.

C_D (On), C_S (On)

 $C_{\rm D}$ (on) and $C_{\rm S}$ (on) represent on switch capacitances, which are measured with reference to ground.

CIN

C_{IN} represents the digital input capacitance.

ton (EN)

 $t_{\rm ON}$ (EN) represents the delay time between the 50% and 90% points of the digital input and switch on condition.

toff (EN)

 t_{OFF} (EN) represents the delay time between the 50% and 90% points of the digital input and switch off condition.

tTRANSITION

 $t_{\rm TRANSITION}$ represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

Break-Before-Make Time Delay (t_D)

 $t_{\rm D}$ represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by -3 dB.

On Response

On response is the frequency response of the on switch.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is a measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

THEORY OF OPERATION

The ADG5298 is a latch-up proof, bidirectional, 8:1 CMOS multiplexer that is designed to operate at very high temperatures. The device is controlled by four parallel digital inputs (EN, A0, A1, and A2). The EN input allows for the ADG5298 to be enabled or disabled. When the ADG5298 is disabled, the source pins (S1 to S8) disconnect from the drain pin (D). When the ADG5298 is enabled, the address lines (A0, A1, and A2) can determine which source pin (S1 to S8) is connected to the drain pin (D).

TRENCH ISOLATION

In the ADG5298, an insulating oxide layer (trench) is placed between the negative channel metal-oxide semiconductor (NMOS) and the positive channel metal-oxide semiconductor (PMOS) transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch that has minimal leakage over temperature.

In junction isolation, the N well and P well of the PMOS and NMOS transistors form a diode that is reverse biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

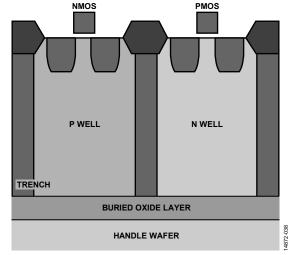


Figure 40. Trench Isolation

APPLICATIONS INFORMATION

The ultralow capacitance and charge injection of this switch makes it an ideal solution for data acquisition and sample-andhold applications, where low glitch and fast settling are required.

The ADG5298 can operate in a wide ambient temperature range from -55° C to $+210^{\circ}$ C. Its wide range coupled with its

latch-up immune and low leakage features makes the ADG5298 perfect for use in harsh environments, such as downhole drilling and avionics. The ADG5298 has achieved a JESD78D Class II rating, handling stresses to ± 500 mA with a 10 ms pulse at the maximum operating temperature of the device (210°C).

04-27-2016-A

OUTLINE DIMENSIONS

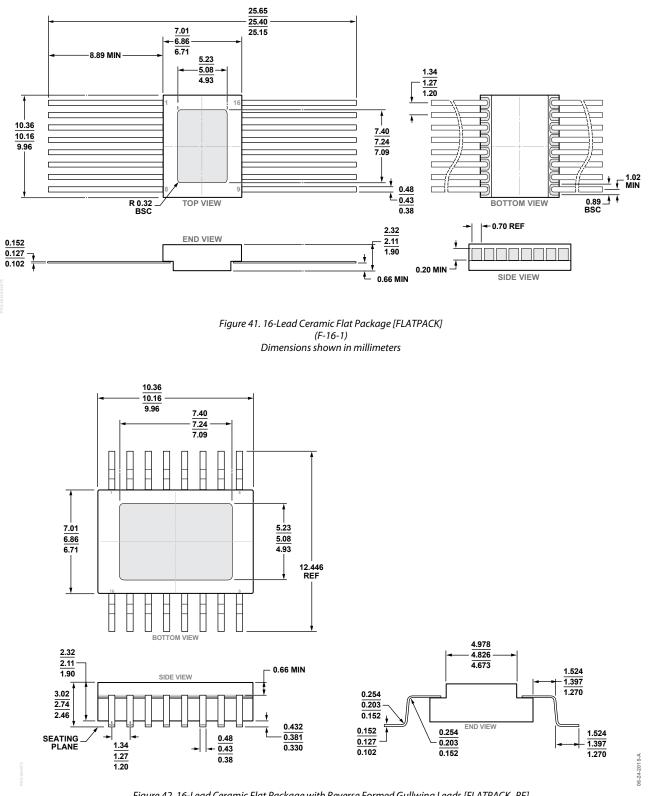


Figure 42. 16-Lead Ceramic Flat Package with Reverse Formed Gullwing Leads [FLATPACK_RF] Cavity Down (FR-16-1) Dimensions shown in millimeters

Rev. 0 | Page 19 of 20