

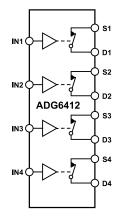
$0.5 \; \Omega \; R_{ON} \text{, } \pm 20 \; \text{V} \text{, } + 36 \; \text{V} \text{, } \text{Quad SPST Switch}$

FEATURES

- Low R_{ON} 0.5 Ω
- High continuous current of up to 847 mA
- Flat R_{ON} across signal range, 0.003 Ω
- ▶ THD of -127 dB at 1 kHz
- Improved balance between on resistance and on capacitance
 Low R_{ON} (0.5 Ω) and C_{ON} (25 pF)
- ▶ 1.8 V, 3.3 V, and 5 V Logic compatibility
- ▶ 16-lead, 4 mm x 4 mm LFCSP
- Pin to pin compatible with the ADG5412 and ADG5412F
- ▶ Fully specified at ±20 V and +36 V
- Operational with asymmetric power supplies
- \blacktriangleright V_{SS} to V_{DD} 2 V analog signal range

APPLICATIONS

- Automatic test equipment
- Data acquisition
- Instrumentation
- Avionics
- Audio and video switching
- Communication systems
- Relay replacement


GENERAL DESCRIPTION

The ADG6412 contains four independent single-pole/single-throw (SPST) switches. The ADG6412 switches turn on with logic 1 on the digital control inputs. Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends from V_{SS} to V_{DD} – 2 V. When switches are open, signal levels up to the supplies are blocked.

The digital inputs are compatible with 5 V, 3.3 V, and 1.8 V logic inputs without the requirement for a separate digital logic supply pin.

The on-resistance profile is exceptionally flat over the full-analog input range, which ensures good linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT $\overline{2}$

Figure 1. Functional Block Diagram

PRODUCT HIGHLIGHTS

- Low R_{ON} of 0.5 Ω.
- High continuous current carrying capability, see Table 4 to Table 7.
- Dual-supply operation. For applications where the analog signal is bipolar, the ADG6412 can be operated from dual supplies up to ±22 V.
- Single-supply operation. For applications where the analog signal is unipolar, the ADG6412 can be operated from a single rail power supply up to 40 V.
- 1.8 V logic-compatible digital inputs: V_{INH} = 1.3 V, V_{INL} = 0.8 V.
- 6. No V_L logic power supply required.

Rev. 0

DOCUMENT FEEDBACK

TECHNICAL SUPPORT

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
General Description	
Functional Block Diagram	1
Product Highlights	. 1
Specifications	. 3
Operating Supply Voltages	
±20 V Dual Supply	3
36 V Single Supply	
Continuous Current Per Channel, Sx or Dx	. 6
Absolute Maximum Ratings	7
Thermal Resistance	. 7
Electrostatic Discharge (ESD) Ratings	7
ESD Caution	
Pin Configurations and Function Descriptions	8
Typical Performance Characteristics	
Test Circuits	13
Terminology	15
I _{DD}	15
I _{SS}	15
V_{D} and V_{S}	15
V _{TRACK}	
R _{ON}	15
ΔR_{ON}	15
R _{FLAT(ON)}	15
I _S (Off)	
I _D (Off)	15
I_D (On) and I_S (On)	15
V _{INL}	
V _{INH}	15

I _{INL} and I _{INH}	15
C_{S} (Off) and C_{D} (Off)	15
C_{D} (On) and C_{S} (On)	.15
C _{IN}	15
t _{ON}	15
t _{OFF}	
t _D	15
Off Isolation	
Charge Injection	15
Channel-to-Channel Crosstalk	
Bandwidth	.15
On Response	15
Insertion Loss	.15
Total Harmonic Distortion + Noise (THD + N)	15
AC Power Supply Rejection Ratio (AC	
PSRR)	
Theory of Operations	.16
Switch Architecture	-
1.8 V Logic Compatibility	.16
Applications Information	17
Large Voltage, High Frequency Signal	
Tracking	.17
Power Supply Recommendations	17
High-Current Drive and Precision Current-	
Sense	
Digital Audio Channel to Ultra-Low THD	.17
Outline Dimensions	18
Ordering Guide	
Evaluation Boards	18

REVISION HISTORY

1/2023—Revision 0: Initial Version

OPERATING SUPPLY VOLTAGES

Table 1. Operating Supply Voltages

Supply Voltage	Min	Max	Unit
Dual Supply	±4.5	±22	V
Single Supply	+5	+40	V

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = –20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2. ±20 V Dual-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					V _{DD} = +18 V, V _{SS} = -18 V
Analog Signal Range			$V_{DD} - 2 V$ to V_{SS}	V	
On Resistance, R _{ON}	0.50			Ω typ	Source voltage (V _S) = -18 V to $+14.5$ V, source current (I _S) = -100 mA, see Figure 26
	0.65	0.8	0.95	Ω max	
	0.54			Ω typ	$V_{\rm S}$ = -18 V to +15.5 V, $I_{\rm S}$ = -100 mA
	0.7	0.85	1.0	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	0.003			Ω typ	$V_{\rm S}$ = -18 V to +15.5 V, $I_{\rm S}$ = -100 mA
	0.085	0.1	0.1	Ωmax	
On-Resistance Flatness, R _{FLAT (ON)}	0.003			Ω typ	$V_{\rm S} = -18$ V to +14.5 V, $I_{\rm S} = -100$ mA
	0.035	0.035	0.035	Ωmax	
	0.04			Ω typ	$V_{S} = -18 V$ to +15.5 V, $I_{S} = -100 mA$
	0.08	0.1	0.1	Ωmax	
LEAKAGE CURRENTS					V _{DD} = +22 V, V _{SS} = -22 V
Source Off Leakage, $\rm I_S$ (Off)	±3.5			nA typ	$V_S = \pm 15 \text{ V}$, drain current (V_D) = $\mp 15 \text{ V}$, see Figure 29
	±12.5	+70/-14	+205/-14	nA max	
Drain Off Leakage, I _D (Off)	±3.5			nA typ	V_{S} = ±15 V, V_{D} = ∓15 V, see Figure 29
	±12.5	+70/-14	+205/-14	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_{S} = V_{D} = \pm 15 V$, see Figure 25
	±1.3	±3	+13/-3	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.3	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I_{INL} , or I_{INH}	0.01			µA typ	Input voltage (V_{IN}) = GND voltage (V_{GND}) or 5 V
			±0.15	µA max	
Digital Input Capacitance, C _{IN}	4.6			pF typ	
DYNAMIC CHARACTERISTICS					
On Time, t _{ON}	366			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35 pF
	439	481	529	ns max	$V_{\rm S}$ = 10 V, see Figure 32
Off Time, t _{OFF}	169			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
	204	204	204	ns max	$V_{\rm S}$ = 10 V, see Figure 32
Charge Injection, Q _{INJ}	-2.2			nC typ	$V_S = 0 V$, $R_S = 0 \Omega$, $C_L = 1 nF$, see Figure 33
Off Isolation	-77			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, frequency = 100 kHz, see Figure 28

Table 2. ±20 V Dual-Supply Specifications (Continued)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	-105			dB typ	R_L = 50 Ω, C_L = 5 pF, frequency = 100 kHz, see Figure 27
Total Harmonic Distortion + Noise, THD + N	0.002			% typ	R_L = 1 kΩ, 20 V p-p, frequency = 20 Hz to 20 kHz, see Figure 30
Total Harmonic Distortion, THD	-127			dB typ	R_L = 1 k Ω , 20 V p-p, frequency = 1 kHz
	-101			dB typ	R_L = 1 k Ω , 20 V p-p, frequency = 20 kHz
	-85			dB typ	R_L = 1 kΩ, 20 V p-p, frequency = 100 kHz
−3 dB Bandwidth	184			MHz typ	R_L = 50 Ω, C_L = 5 pF, signal = 0 dBm, see Figure 31
Insertion Loss	-0.04			dB typ	R_L = 50 Ω, C_L = 5 pF, frequency= 1 MHz see Figure 31
Source Off Capacitance, C _S (Off)	70			pF typ	V _S = 0 V, frequency = 1 MHz
Drain Off Capacitance, C _D (Off)	70			pF typ	V _S = 0 V, frequency = 1 MHz
Drain On Capacitance, C _D (On), Source On Capacitance, C _S (On)	25			pF typ	V_{S} = 0 V, frequency = 1 MHz
Match On Capacitance, C _{MATCH} (On)	0.83			pF typ	V _S = 0 V, frequency = 1 MHz
POWER REQUIREMENTS					V _{DD} = +22 V, V _{SS} = -22 V
Power Supply Current, I _{DD}	170			μA typ	Digital inputs = 0 V or 5 V
	260		260	μA max	
	225			μA typ	Digital inputs = 1.3 V
	330		330	µA max	
Negative Supply Current, I _{SS}	85			µA typ	Digital inputs = 0 V or 5 V
	140		140	µA max	

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3. 36 V Single-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					V _{DD} = 32.4 V, V _{SS} = 0 V
Analog Signal Range			0 V to V _{DD} – 2 V	V	
On Resistance, R _{ON}	0.50			Ω typ	Source voltage (V _S) = 0 V to 28.9 V, source current (I _S) = -100 mA, see Figure 26
	0.65	0.8	0.95	Ω max	
	0.54			Ω typ	$V_{\rm S}$ = 0 V to 29.9 V, $I_{\rm S}$ = -100 mA
	0.7	0.85	1.0	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	0.003			Ω typ	$V_{\rm S}$ = 0 V to 29.9 V, $I_{\rm S}$ = -100 mA
	0.085	0.1	0.1	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	0.003			Ω typ	$V_{\rm S}$ = 0 V to 28.9 V, $I_{\rm S}$ = -100 mA
	0.035	0.035	0.035	Ω max	
	0.04			Ω typ	$V_{\rm S}$ = 0 V to 29.9 V, $I_{\rm S}$ = -100 mA
	0.08	0.1	0.1	Ω max	
LEAKAGE CURRENTS					V _{DD} = 39.6 V, V _{SS} = 0 V
Source Off Leakage, $\rm I_S$ (Off)	±3.5			nA typ	V_S = 1 V/30 V, drain voltage (V _D) = 30 V/1 V, see Figure 29
	±12.5	+70/-14	+205/-14	nA max	

Table 3. 36 V Single-Supply Specifications (Continued)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Drain Off Leakage, I _D (Off)	±3.5			nA typ	V _S = 1 V/30 V, V _D = 30 V/1 V, see Figure 29
	±12.5	+70/-14	+205/-14	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.1			nA typ	$V_{S} = V_{D} = 1 \text{ V/30 V}$, see Figure 25
	±1.3	±3	+13/-3	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.3	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} , or I _{INH}	0.01			µA typ	Input voltage (V_{IN}) = GND voltage (V_{GND}) or 5 V
			±0.15	µA max	
Digital Input Capacitance, C _{IN}	4.6			pF typ	
DYNAMIC CHARACTERISTICS					
On Time, t _{ON}	216			ns typ	Load resistance (R _L) = 300 Ω , load capacitance (C _L) = 35 pF
	256	276	299	ns max	V _S = 18 V, see Figure 32
Off Time, t _{OFF}	261			ns typ	R _L = 300 Ω, C _L = 35 pF
	309	319	329	ns max	V _S = 18 V, see Figure 32
Charge Injection, Q _{INJ}	-2.0			nC typ	V_S = 18 V, R_S = 0 Ω , C_L = 1 nF, see Figure 33
Off Isolation	-64			dB typ	R_L = 50 Ω, C_L = 5 pF, frequency = 100 kHz, see Figure 28
Channel-to-Channel Crosstalk	-105			dB typ	R_L = 50 Ω, C_L = 5 pF, frequency = 100 kHz, see Figure 27
Total Harmonic Distortion + Noise, THD + N	0.005			% typ	R_L = 1 kΩ, 18 V p-p, frequency = 20 Hz to 20 kHz, see Figure 30
Total Harmonic Distortion, THD	-113			dB typ	R_L = 1 kΩ, 18 V p-p, frequency = 1 kHz
	-87			dB typ	R_L = 1 kΩ, 18 V p-p, frequency = 20 kHz
	-73			dB typ	R _L = 1 kΩ, 18 V p-p, frequency = 100 kHz
−3 dB Bandwidth	134			MHz typ	R_L = 50 Ω, C_L = 5 pF, signal = 0 dBm, see Figure 31
Insertion Loss	-0.05			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, frequency = 1 MHz, see Figure 31
Source Off Capacitance, C _S (Off)	72			pF typ	V _S = 18 V, frequency = 1 MHz
Drain Off Capacitance, C _D (Off)	72			pF typ	V _S = 18 V, frequency = 1 MHz
Drain On Capacitance, C_D (On), Source On Capacitance, C_S (On)	26			pF typ	$V_{\rm S}$ = 18 V, frequency = 1 MHz
Match On Capacitance, C _{MATCH} (On)	0.84			pF typ	V _S = 18 V, frequency = 1 MHz
POWER REQUIREMENTS					V _{DD} = 39.6 V
Power Supply Current, I _{DD}	170			µA typ	Digital inputs = 0 V or 5 V
UU - UU	260		260	µA max	5 1 2 2 2 2
	225			µA typ	Digital inputs = 1.3 V
	330		330	µA max	9
Negative Supply Current, I _{SS}	85			µA typ	Digital inputs = 0 V or 5 V
rioganio ouppiy ourion, 155	140		140	μΑ τyp μΑ max	

CONTINUOUS CURRENT PER CHANNEL, SX OR DX

Table 4. One Channel On, Per Channel Specifications

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					
V_{DD} = +20 V, V_{SS} = -20 V					
LFCSP ($\theta_{JA} = 44^{\circ}C/W$)	847	325	123	mA maximum	V_{S} = V_{SS} to V_{DD} – 3.5 V
V _{DD} = 36 V, V _{SS} = 0 V					
LFCSP (θ _{JA} = 44°C/W)	847	325	123	mA maximum	$V_{S} = V_{SS}$ to V_{DD} – 3.5 V

Table 5. Two Channels On, Per Channel Specifications

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, SX OR DX					
V_{DD} = +20 V, V_{SS} = -20 V					
LFCSP (θ_{JA} = 44°C/W)	646	289	120	mA maximum	$V_{\rm S}$ = $V_{\rm SS}$ to $V_{\rm DD}$ – 3.5 V
V _{DD} = 36 V, V _{SS} = 0 V					
LFCSP ($\theta_{JA} = 44^{\circ}C/W$)	646	289	120	mA maximum	V_{S} = V_{SS} to V_{DD} – 3.5 V

Table 6. Three Channels On, Per Channel Specifications

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					
V_{DD} = +20 V, V_{SS} = -20 V					
LFCSP ($\theta_{JA} = 44^{\circ}C/W$)	548	265	117	mA maximum	$V_{\rm S}$ = $V_{\rm SS}$ to $V_{\rm DD}$ – 3.5 V
V _{DD} = 36 V, V _{SS} = 0 V					
LFCSP (θ_{JA} = 44°C/W)	548	265	117	mA maximum	V_{S} = V_{SS} to V_{DD} – 3.5 V

Table 7. Four Channels On, Per Channel Specifications

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					
V_{DD} = +20 V, V_{SS} = -20 V					
LFCSP (θ _{JA} = 44°C/W)	488	248	115	mA maximum	$V_{S} = V_{SS}$ to $V_{DD} - 3.5$ V
V _{DD} = 36 V, V _{SS} = 0 V					
LFCSP (θ _{JA} = 44°C/W)	488	248	115	mA maximum	$V_{S} = V_{SS}$ to $V_{DD} - 3.5$ V

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 8. Absolute Maximum Ratings

Parameter	Rating
V _{DD} to V _{SS}	46 V
V _{DD} to GND	-0.3 V to +46 V
V _{SS} to GND	+0.3 V to -46 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND - 0.3 V to +6 V or 30 mA, whichever occurs first
Peak Current, Sx or Dx Pins ²	2.6 A (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or Dx ²	Data ³ + 15%
Temperature	
Operating Range	-40°C to +125°C
Storage Range	-65°C to +150°C
Junction	150°C
Reflow Soldering Peak, Pb-Free	As per JEDEC J-STD-020

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.

- ² Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.
- ³ See Table 4 to Table 7.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{JCB} is the junction to the bottom of the case value.

Table 9. Thermal Resistance

Package Type	θ _{JA}	θ _{JCB}	Unit
CP-16-17 ¹	44	17.4	°C/W

¹ Thermal impedance simulated values are based on JEDEC 2S2P thermal test board without thermal vias. See JEDEC JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

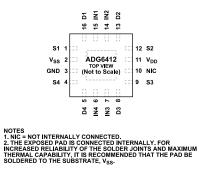
The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Field induced charged-device model (FICDM) per ANSI/ESDA/JE-DEC JS-002.

ESD Ratings for the ADG6412

Table 10. ADG6412, 16-Lead LFCSP


ESD Model	Withstand Threshold (V)	Class
НВМ	±2000	2
FICDM	±1250	C3

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

002

Pin Number	Mnemonic	Description
1	S1	Source Terminal 1. This pin can be an input or output.
2	V _{SS}	Most Negative Power-Supply Potential. Decouple the V _{SS} pin using a 0.1 µF capacitor to GND.
3	GND	Ground (0 V) Reference.
ļ	S4	Source Terminal 4. This pin can be an input or output.
5	D4	Drain Terminal 4. This pin can be an input or output.
5	IN4	Logic Control Input 4.
7	IN3	Logic Control Input 3.
3	D3	Drain Terminal 3. This pin can be an input or output.
9	S3	Source Terminal 3. This pin can be an input or output.
0	NIC	Not Internally Connected.
1	V _{DD}	Most Positive Power-Supply Potential. Decouple the V _{DD} pin using a 0.1 µF capacitor to GND.
2	S2	Source Terminal 2. This pin can be an input or output.
13	D2	Drain Terminal 2. This pin can be an input or output.
4	IN2	Logic Control Input 2.
5	IN1	Logic Control Input 1.
6	D1	Drain Terminal 1. This pin can be an input or output.
EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V _{SS} .

Table 12. ADG6412 Truth Table

INx	Switch Condition
1	On
0	Off



Figure 3. R_{ON} as a Function of V_S, V_D (Dual Supply)

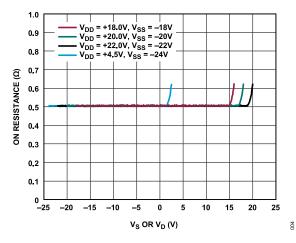


Figure 4. R_{ON} as a Function of V_S, V_D (Dual Supply)

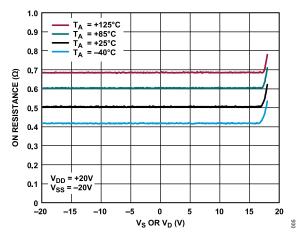


Figure 5. R_{ON} as a Function of V_S (V_D) for Different Temperatures, ±20 V Dual Supply

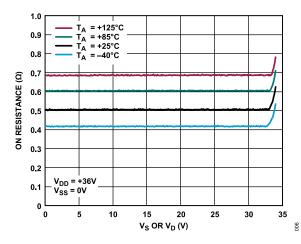


Figure 6. R_{ON} as a Function of V_S (V_D) for Different Temperatures, 36 V Single Supply

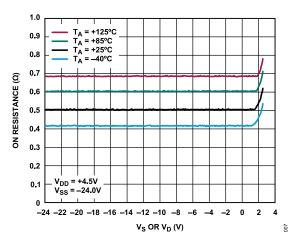


Figure 7. R_{ON} as a Function of V_S (V_D) for Different Temperatures, Asymmetric Single Supply

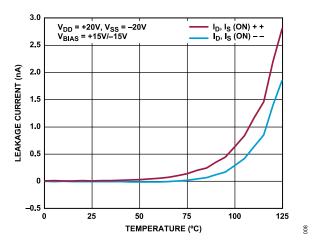


Figure 8. On Leakage Currents vs. Temperature, ±20 V Dual Supply

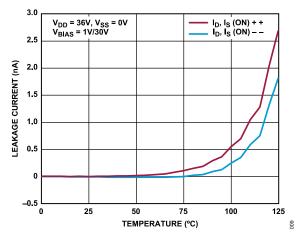


Figure 9. On Leakage Currents vs. Temperature, +36 V Single Supply

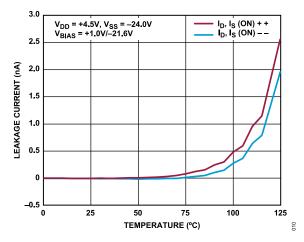


Figure 10. On Leakage Currents vs. Temperature, +4.5 V, -24 V Dual Supply

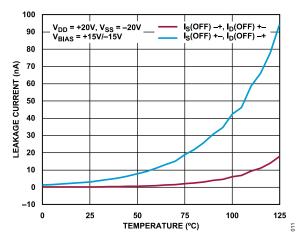


Figure 11. Off Leakage Currents vs. Temperature, ±20 V Dual Supply

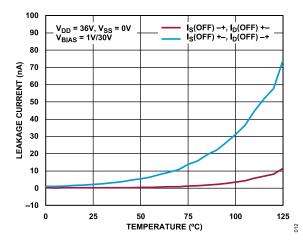


Figure 12. Off Leakage Currents vs. Temperature, +36 V Single Supply

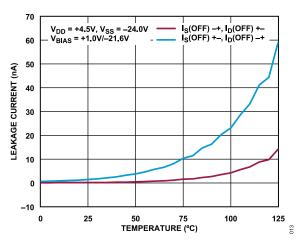


Figure 13. Off Leakage Currents vs. Temperature, +4.5 V, -24 V Dual Supply

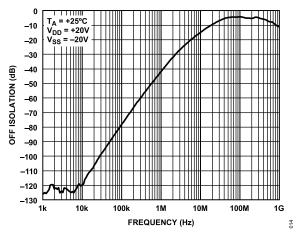


Figure 14. Off Isolation vs. Frequency, ±20 V Dual Supply

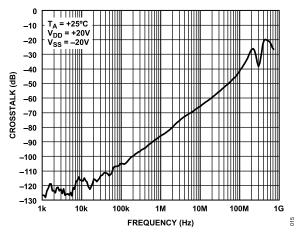


Figure 15. Crosstalk vs. Frequency, ±20 V Dual Supply

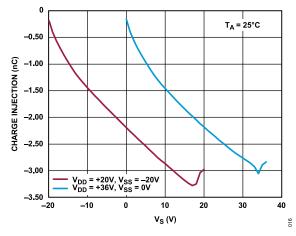


Figure 16. Charge Injection vs. V_S

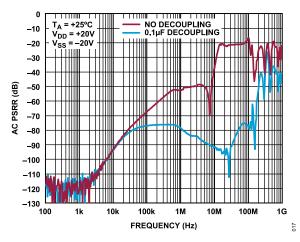


Figure 17. AC PSRR vs. Frequency, ±20 V Dual Supply

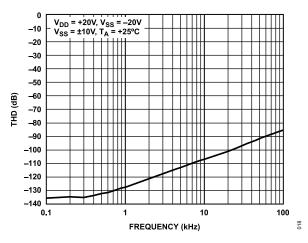


Figure 18. THD vs. Frequency, ±20 V Dual Supply

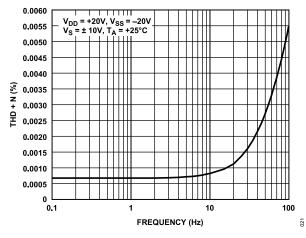


Figure 19. THD + N vs. Frequency, ±20 V Dual Supply

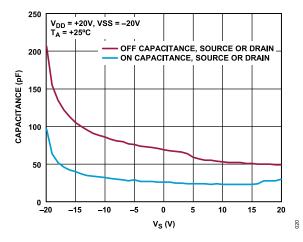
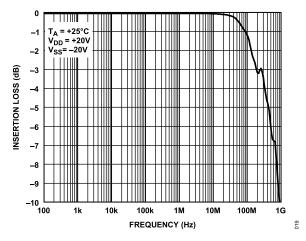
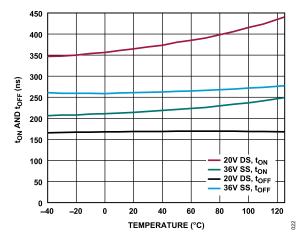




Figure 20. Capacitance vs. V_S, ±20 V Dual Supply

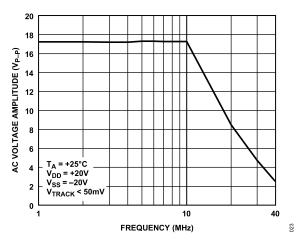


Figure 23. Large AC Signal Voltage vs. Frequency

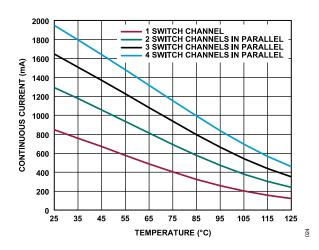
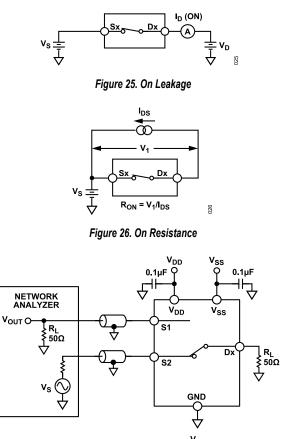



Figure 24. Continuous Current vs. Temperature, Various Number of Switch Channels in Parallel

TEST CIRCUITS

CHANNEL-TO-CHANNEL CROSSTALK = 20 log $\frac{V_{OUT}}{V_S}$

Figure 27. Channel-to-Channel Crosstalk

027

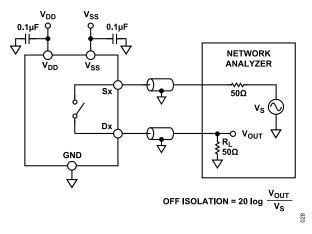
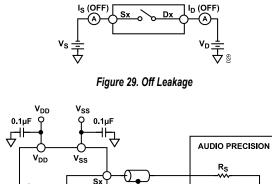



Figure 28. Off Isolation

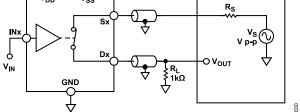


Figure 30. THD + Noise

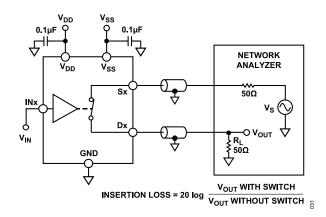
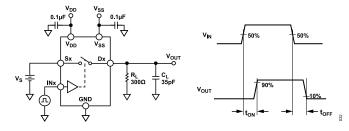



Figure 31. Bandwidth

TEST CIRCUITS

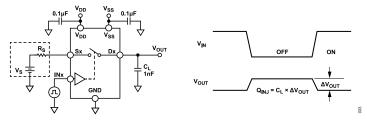


Figure 33. Charge Injection

TERMINOLOGY

I_{DD}

The positive supply current.

I_{SS}

The negative supply current.

V_D and V_S

The analog voltage on Terminal D and Terminal S, respectively.

VTRACK

The difference between V_S and V_D .

R_{ON}

The ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

The difference between the R_{ON} of any two channels.

R_{FLAT(ON)}

The difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

I_S (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

I_{D} (On) and I_{S} (On)

The channel leakage current with the switch on.

V_{INL}

The maximum input voltage for Logic 0.

V_{INH}

The minimum input voltage for Logic 1.

I_{INL} and I_{INH}

The input current of the digital input when high or when low.

C_S (Off) and C_D (Off)

The off switch source and drain capacitance for the off condition, which is measured with reference to ground.

C_D (On) and C_S (On)

The on switch drain and source capacitance for the on condition, which is measured with reference to ground.

CIN

The digital input capacitance.

t_{ON}

The delay between applying the digital control input and the output switching on.

t_{OFF}

The delay between applying the digital control input and the output switching off.

t_D

The off-time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (AC PSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The DC voltage on the device is modulated by a sine wave of 0.62 V p-p.

THEORY OF OPERATIONS

SWITCH ARCHITECTURE

The ADG6412 contains four independent SPST, N-channel diffused metal-oxide semiconductor (NDMOS) switches, which allows for an excellent R_{ON} performance. Using an NDMOS only architecture results in a reduction of signal headroom, meaning signals are limited to $V_{DD} - 2$ V. To achieve the lowest on resistance, on-resistance flatness, and total harmonic distortion, it is recommended the signal stays below $V_{DD} - 3.5$ V.

To guarantee correct operation of the ADG6412, a minimum of 0.1 μF decoupling capacitors are required on both the V_{DD} and V_{SS} supply pins.

The ADG6412 is compatible with single-supply systems that have a V_{DD} of up to 40 V, dual-supply systems of up to ± 22 V, as well as asymmetric power supplies.

1.8 V LOGIC COMPATIBILITY

For ease of use, the ADG6412 does not have a V_L logic reference voltage. The digital inputs are compatible with 1.8 V logic levels over the full-operating supply range. The limits for 1.8 V logic are: $V_{INH} = 1.3 \text{ V}$, $V_{INL} = 0.8 \text{ V}$. 1.8 V logic-level inputs enable the ADG6412 to be compatible with processors that have lower supply rails, eliminating the need for an external voltage translator.

If full 1.8 V and 1.2 V JEDEC compliance is required, refer to the Analog Devices, Inc., L range part numbers, such as the ADG1412L.

APPLICATIONS INFORMATION

LARGE VOLTAGE, HIGH FREQUENCY SIGNAL TRACKING

Figure 23 shows the voltage range and corresponding frequencies that the ADG6412 can reliably convey. The tracking voltage (V_{TRACK}) in the figure shows the source voltage and the drain voltage difference, which is less than 50 mV for a given amplitude and frequency. For large voltage, high frequency signals, the frequency must be kept below 10 MHz. If the required frequency is greater than 10 MHz, decrease the signal range appropriately to ensure signal integrity.

POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products to meet the requirements of high performance signal chains.

An example of a bipolar power solution is shown in Figure 34. The LT3463 (a dual switching regulator) generates a positive and negative supply rail for the ADG6412, an amplifier, and/or a precision converter in a typical signal chain. Also, two optional low-dropout regulators (LDOs), the ADP7142 and ADP7182 (positive and negative LDOs, respectively) are shown in Figure 34, which can reduce the output ripple of the LT3463 in ultra-low noise sensitive applications.

Figure 34. Bipolar Power Solution

Table 13.	Recommended	Power	Management	Devices
-----------	-------------	-------	------------	---------

Product	Description
LT3463	Dual micropower, DC to DC converter with Schottky diodes
ADP7142	40 V, 200 mA, low noise, CMOS, LDO linear regulator
ADP7182	−28 V, −200 mA, low noise, LDO linear regulator

HIGH-CURRENT DRIVE AND PRECISION CURRENT-SENSE

Figure 35 shows an example application for the ADG6412. In automated test equipment (ATE) and instrumentation applications, when driving a current to a device under test (DUT), there is a requirement to have multiple sense resistors for multiple current ranges to facilitate large current output ranges from micro amps to amps. The low on-resistance of the ADG6412 is ideally suited to switching the force current output path in this application because it allows for high continuous current carrying as seen in Table 4 to Table 7.

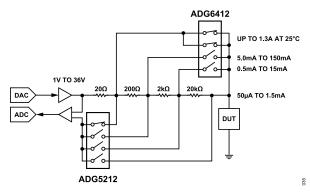


Figure 35. High-Current Drive and Precision Current-Sense Application

DIGITAL AUDIO CHANNEL TO ULTRA-LOW THD

Figure 36 shows an example application for the ADG6412. For precision audio signal chains, THD is a key specification. The THD performance of a switch is related to the on-resistance flatness, and the ADG6412 has exceptionally low on-resistance flatness of approximately 3 m Ω . Here, the ADG6412 is set up as a gain selection switch for an audio preamplifier to allow flexibility for user to select multiple gain ranges. The THD performance of the ADG6412 maximizes the signal fidelity and the low on-resistance minimizes any gain error in the system.

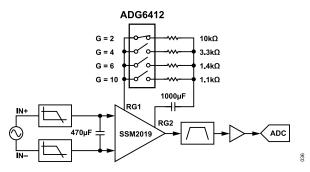


Figure 36. Digital Audio Channel to Ultra-Low THD Application