

RT7250BZSP Evaluation Board

Purpose

The RT7250B is a high-efficiency current mode synchronous step-down regulator that can deliver up to 2A output current from a wide input voltage range of 4V to 17V. This document explains the function and use of the RT7250B evaluation board (EVB) and provides information to enable operation and modification of the evaluation board and circuit to suit individual requirements.

Table of Contents

Purpose	1
Introduction	2
Key Performance Summary Table	2
Bench Test Setup Conditions	3
Schematic, Bill of Materials & Board Layout	5
More Information	10
Important Notice for Richtek Evaluation Board	10

1

Introduction

General Product Information

The RT7250B is a high efficiency, monolithic synchronous step-down DC/DC converter that operates at 800kHz and delivers up to 2A output current from a 4V to 17V input supply. The RT7250B's current mode architecture allows the transient response to be optimized. Cycle-by-cycle current limit provides protection against shorted outputs and soft-start eliminates input current surge during start-up. Fault conditions also include output under voltage protection, output over voltage protection, and thermal shutdown. The low current (<5µA) shutdown mode provides output disconnect, enabling easy power management in battery-powered systems. The RT7250B is available in a SOP-8 (Exposed Pad) package.

Product Feature

- 4V to 17V Input Voltage Range
- 2A Output Current
- Internal N-MOSFETs
- Current Mode Control
- Fixed Frequency Operation: 800kHz
- Output Adjustable from 0.8V to 12V
- Up to 95% Efficiency
- Internal Compensation
- Stable with Low ESR Ceramic Output Capacitors
- Cycle-by-Cycle Over Current Protection
- Input Under Voltage Lockout
- Output Under Voltage Protection
- Output Over Voltage Protection
- Power Good Indicator
- Thermal Shutdown Protection
- RoHS Compliant and Halogen Free

Key Performance Summary Table

Key Features	Evaluation Board Number: PCB009_V1
Default Input Voltage	12V
Max Output Current	2A
Default Output Voltage	3.3V
Default Marking & Package Type	RT7250BZSP (SOP-8 (Exposed Pad))
Operation Frequency	Steady 800kHz at all load currents
Other Key Features	4V to 17V Input Voltage Range
	Power Good Indicator
Protection	Over Current Protection
	Hiccup Mode Output Under-Voltage & Over-Voltage Protection
	Thermal Shutdown

Bench Test Setup Conditions

Headers Description and Placement

Please carefully inspect the EVB IC and external components, comparing them to the following Bill of Materials, to ensure that all components are installed and undamaged. If any components are missing or damaged during transportation, please contact the distributor or send e-mail to evb_service@richtek.com

Test Points

The EVB is provided with the test points and pin names listed in the table below.

Test point/ Pin name	Signal	Comment (expected waveforms or voltage levels on test points)
VIN	Input voltage	Input voltage range= 4V to 17V
VOUT	Output voltage	Default output voltage = 3.3V Output voltage range= 0.8V to 12V
sw	Switching node test point	(see "Output Voltage Setting" section for changing output voltage level) SW waveform
EN	Enable test point	Enable signal. EN is automatically pulled high (by R4) to enable operation. Connect EN low to disable operation.
BS	Boot strap supply test point	Floating supply voltage for the high-side N-MOSFET switch
PG	Power Good test point	Power Good Indicator
V1	External Voltage for PG	External voltage terminal for PG pull-up voltage.
GND	Ground	Ground

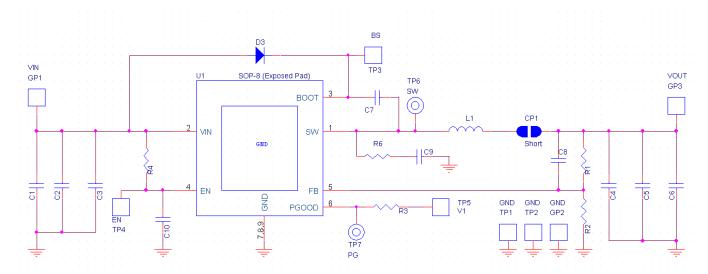
Power-up & Measurement Procedure

- 1. Apply a 12V nominal input power supply $(4V < V_{IN} < 17V)$ to the VIN and GND terminals.
- 2. The EN voltage is pulled to logic high by R4 (100k Ω to VIN) to enable operation. Drive EN high (>2.5V) to enable operation or low (<0.4V) to disable operation.
- 3. Verify the output voltage (approximately 3.3V) between VOUT and GND.
- 4. Connect an external load up to 2A to the VOUT and GND terminals and verify the output voltage and current.

Output Voltage Setting

Set the output voltage with the resistive divider (R1, R2) between VOUT and GND with the midpoint connected to FB. The output is set by the following formula:

VOUT =
$$0.8 \times (1 + \frac{R1}{R2})$$
 VOUT = $0.8 \times (1 + \frac{R1}{R2})$


The installed V_{OUT} capacitors (C4, C5) are $22\mu F$, 16V X5R ceramic types. Do not exceed their operating voltage range and consider their voltage coefficient (capacitance vs. bias voltage) and ensure that the capacitance is sufficient to maintain stability and provide sufficient transient response for your application. This can be verified by checking the output transient response as described in the RT7250 IC datasheet.

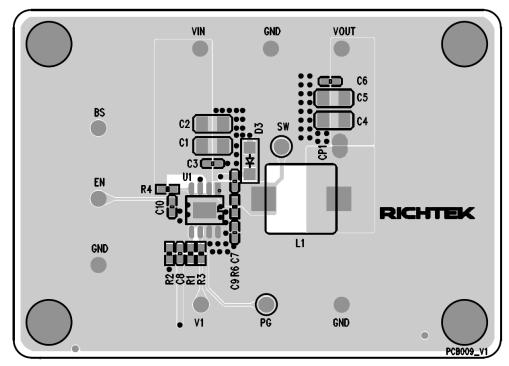
UG7250BZSP-00 January 2015 4 http://www.richtek.com

Schematic, Bill of Materials & Board Layout

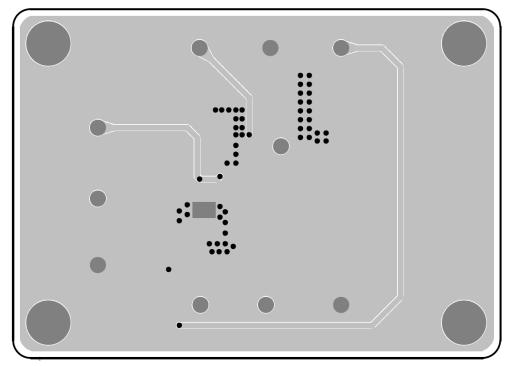
EVB Schematic Diagram

C1, C2: $10\mu F/50V/X5R$, 1206, TDK C3216X5R1H106K C4, C5: $22\mu F/16V/X5R$, 1210, Murata GRM32ER61C226K

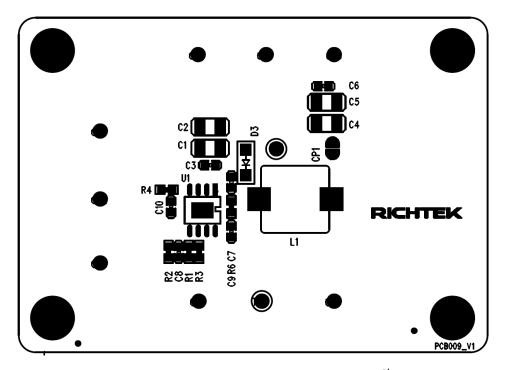
L1: $6.8\mu H$ TAIYO YUDEN NR8040T6R8N, DCR=25m Ω



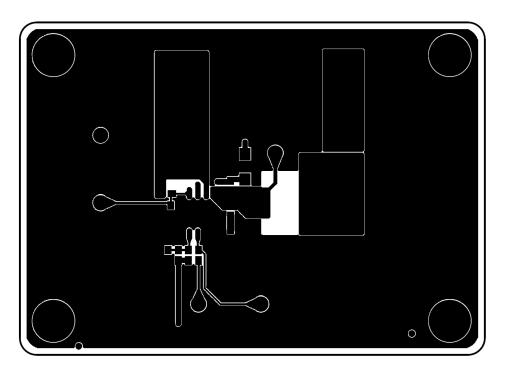
Bill of Materials


Reference	Qty	Part number	Description	Package	Manufacture
U1 1	1	1 RT7250BZSP	DC-DC Converter	SOP-8	Richtek
				(Exposed Pad)	
C1, C2 2	2	C3216X5R1H106K160AB	10µF/±10%/50V/X5R	1206	TDK
	_	OSZ TOXOR TITTOOR TOOME	Ceramic Capacitor		
C4 CE	0	2 GRM32ER61C226KE20#	22μF/±10%/16V/X5R	1210	Murata
C4, C5	2		Ceramic Capacitor		
07	4	ODMOOMDZALIAOOKAOA#	10nF/±10%/50V/X7R	0603	Murata
C 7	1	1 GRM32MR71H103KA01#	Ceramic Capacitor		
	0	2 C1608X7R1H104K080AA	0.1µF/±10%/50V/X7R	0000	TDK
C3, C6	2		Ceramic Capacitor	0603	
C8, C9,	0		Not Installed	0603	
C10	U		Not installed		
L1	1	NR8040T6R8N	6.8µH/3.7A/±30%,	8mmx8mmx4mm	nm TAIYO YUDEN
L'	'	141700401017014	DCR=25m Ω , Inductor		
R1	1		47kΩ/±1%, Resistor	0603	
R2	1		15kΩ/±1%, Resistor	0603	
R3, R4	1		100kΩ/±1%, Resistor	0603	
CP1	1		Short		
D3, R6	0		Not Installed		
TP	4		Test Pin		
GP	6		Golden Pin		

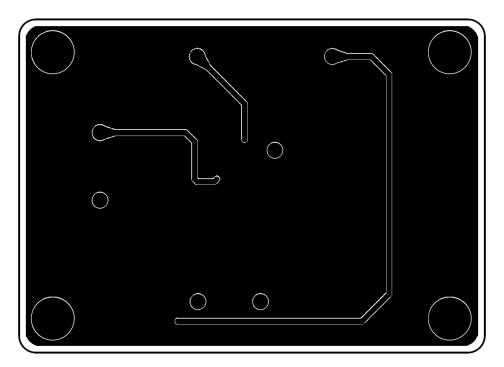
EVB Layout



Top View (1st layer)



Bottom View (4th Layer)



Component Placement Guide—Component Side (1st layer)

PCB Layout—Component Side (1st Layer)

PCB Layout—Bottom Side (4th Layer)