

Mini-Circuits

Vector Network Analyzer

- 2-port, 300 kHz to 6 GHz s-parameter measurements
- -50 dBm to +10 dBm variable port power
- Integrated Bias-Tee
- Standard Time Domain Analysis with Gating

Table of Contents

Product Overview	3
Key Features	3
Applications	4
Block Diagram	5
Definitions	5
Electrical Specifications at 25°C	6
Port Connections	9
Regulatory Compliance	10
Environmental Specifications	10
Mechanical Specifications	11
eVNA Studio Software	12
Software Specifications	13
Recommended Mechanical Calibration Kits	14
Recommended Test Accessories	15
Ordering Information	16

eVNA-6

300 kHz to 6 GHz

Product Overview

Mini-Circuits' eVNA-63+ is a high performance, externally PC-controlled vector network analyzer (VNA). By moving the complex data processing and calculation required of vector network measurements out of the instrument and into an advanced software environment, Mini-Circuits is able to offer a fully-featured, cost effective VNA for every test bench. In applications where high throughput is needed, the eVNA-63+ used with a separate PC, completely replaces expensive and bulky production test systems saving on space and overall cost of ownership.

The product ships with Mini-Circuits' eVNA User Interface (UI) software, providing a powerful and intuitive control application which will feel familiar to any engineer with experience on modern VNA instruments. The software also includes the eVNA Application Programming Interface (API) and support for a standardized SCPI command-set, allowing easy automation of VNA calibrations, measurements, trace displays and data exports from a wide range of programming environments.

Download the eVNA Studio software from www.minicircuits.com/WebStore/Vector-Network Analyzer.html to explore the full eVNA measurement capabilities prior to purchase.

Key Features

FULL 2-PORT S-PARAMETER MEASUREMENTS

Full characterization of 1 port and 2 port devices with options to analyze S11, S12, S21, and S22 s-parameters. Vector phase and magnitude data can be visualized in rectangular, Smith chart or polar plot formats, or exported as a Touchstone snp data file.

TIME DOMAIN ANALYSIS & GATING

Extend measurement capabilities to include time domain transformation, allowing analysis of the time or distance to impedance changes and discontinuities in a transmission line. This is a highly versatile measurement technique that supports applications such as fault finding in cables (distance to fault & time to fault) and optimizing PCB assemblies (analysis of discontinuities at each stage of the circuit).

Time domain gating adds the ability to mathematically remove undesirable responses from a DUT or test fixture by isolating a section of the circuit that is at a known distance from the measurement port. For example, the effects of a poor connector transition on a test fixture can be easily removed with gating resulting in a more accurate device characterization. These powerful time domain capabilities are included in the eVNA UI software at no extra cost!

SIMULATION MODE

Work with a fully operational VNA with no up-front cost, hardware, or even a DUT (device under test). Connect to an internal simulator in the same way as you would connect to the real hardware and then explore the eVNA-63+'s capability around a built-in band pass filter measurement. The software also accepts imported Touchstone s-parameter files to allow simulated vector network analysis of a wide range of RF components.

- Explore the full eVNA-63+ capability prior to purchase
- Educate yourself on proper eVNA configuration and usage
- Design and practice measurement sequences in advance of DUT availability
- Visualize and interact with standard Touchstone s-parameter data files to properly analyze new RF component choices
- Mini-Circuits has 1000s of s-parameter files available on our website www.minicircuits.com

FLEXIBLE USER CALIBRATION OPTIONS

Support for SOLT (Short, Open, Load, Thru) calibration methods with full calibration kits available for SMA and N-Type DUTs (see accessories). Use any industry standard SOLT calibration kit or define your own calibration standards.

300 kHz to 6 GHz

REMOTE API CONTROL & AUTOMATION

The eVNA system is comprised of the eVNA-63+ hardware connected by USB to a host PC with the eVNA UI software installed. The system can be automated using a series of standardized SCPI commands from most common programming environments, including LabVIEW and Python. Automation programs can be created on the host PC or from a remote PC, connected to the host PC via a TCP / IP network.

INTERNAL BIAS-TEES

Two bias-tee inputs allow provision of up to ± 24 V DC / 200 mA max on either measurement port (or both), ideal for powering amplifiers in-line for gain / P1 dB characterization.

PORT EXTENSION

Correct measurement results to exclude the effect of any test fixture by mathematically moving the reference planes up to the DUT input and output.

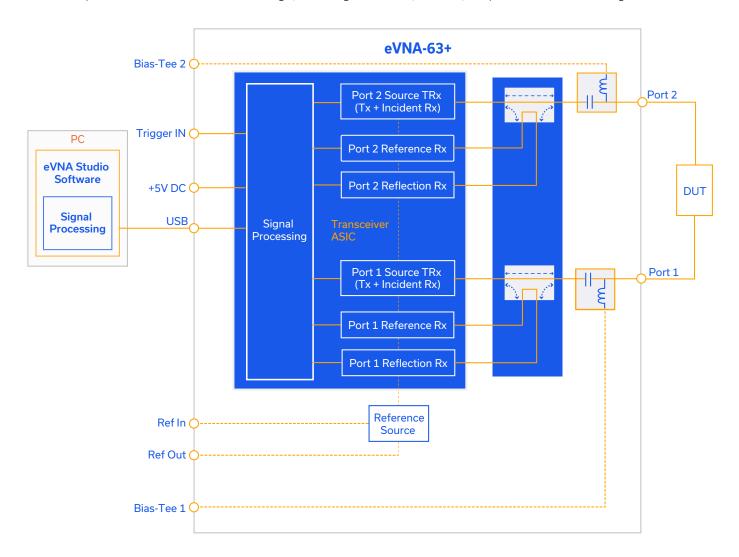
BANDWIDTH, LIMIT & RIPPLE TESTS

Automate common measurement activities with powerful marker functions, including filter bandwidth and ripple calculations, and display of pass / fail test results.

POWER SWEEP

Configure an automated power sweep sequence at a fixed frequency, ideal for measurement of linearity or compression of amplifiers and other 2 port devices. Calibrate the power accuracy with support for external USB power meters

Applications


- Production test systems
- RF & microwave product design
- · University lab test benches
- Active/passive component characterization
- · Antenna tuning / VSWR measurement
- Amplifier P1dB measurement
- Distance to fault testing

300 kHz to 6 GHz

Block Diagram

Functional representation of the eVNA-63+ design, including the source, receiver, coupler and bias-tee routing.

Definitions

Minimum (Min) and Maximum (Max) electrical specifications are warranted performance over a temperature range of +25 °C ±5 °C after a 60 minute warm up time with VNA application running.

Typical (Typ) specifications are expected performance of an average unit and are not covered by product warranty.

All specifications are under Normal sweep mode operation unless otherwise noted.

300 kHz to 6 GHz

Electrical Specifications

DYNAMIC RANGE, CROSSTALK & NOISE FLOOR

Parameter	Conditions	Frequency (MHz)	Min	Тур	Max	Units
		0.3-1	108	116		
	IF D\A\ 1011-	1-10	122	132		
Dynamic Range ¹	IF BW = 10 Hz Pout = +10dBm	10-200	125	132		dB
(Max Output Power - Noise Floor)	averaging enabled	200-2000	125	141		ab
	(10 averages)	2000-4500	125	137		
		4500-6000	121	134		
		0.3-1		-121	-110	
	IF BW = 10 Hz; Pout = +10 dBm; averaging enabled (10 averages)	1-10		-129	-117	dBm/Hz
Noise Floor		10-200		-126	-117	
Noise Floor		200-2000		-135	-117	abm/HZ
		2000-4500		-132	-117	
		4500-6000		-129	-115	
		0.3-1		-101	-85	
	JE DV4 - 10 LI-	1-10		-131	-105	
Crosstelly?	IF BW = 10 Hz; Pout = +10dBm	10-200		-120	-105	dB
Crosstalk ²	averaging enabled (10 averages)	200-2000		-124	-110	uB
	(±0 averages)	2000-4500		-128	-112	
		4500-6000		-131	-115	

DYNAMIC ACCURACY

Parameter	Conditions	Frequency (MHz)	Min	Тур	Max	Units
	Rx level = +5 to +10 dBm	10-200		0.35		
	VX I6A61 – +2 (0 +10 dQIII	200-6000		0.15		
	Rx level = 0 to +5 dBm	10-200		0.25	0.5	
	AX level – 0 to +3 dBill	200-6000		0.1	0.4	
	Rx level = -20 to 0 dBm	10-200		0.1	0.4	
Dynamic Accuracy Magnitude	Ax level – -20 to 0 dBIII	200-6000		0.05	0.3	dB
(Referenced to -10 dBm Rx Level)	Rx level = -34 to -20 dBm	10-200		0.15	0.45	uв
	11X level = -34 to -20 dbi11	200-6000		0.1	0.35	
	Rx level = -50 to -34 dBm	10-200		0.2		
	Rx level = -50 to -34 dBm	200-6000		0.15		
	Rx level = -60 to -50 dBm	10-200		0.25		
	11x level = 00 to 50 dbill	200-6000		0.2		

TRACE NOISE

Parameter	Conditions	Frequency (MHz)	Min	Тур	Max	Units
Trace Noise Magnitude	Pout: +10 dBm, IF BW : 10 Hz	0.3-200		0.004	0.009	dB rms
Trace Noise Magrittude		200-6000		0.005	0.009	UDIIIIS
Trans Naiss Phase		0.3-200		0.02	0.05	° rma
Trace Noise Phase		200-6000		0.03	0.05	° rms

^{1.} Dynamic range does not include the effect of crosstalk 2. Ports terminated with Loads. (System Correction ON, User Correction OFF)

300 kHz to 6 GHz

TEST PORT OUTPUT

Parameter	Conditions	Frequency (MHz)	Min	Тур	Max	Units
Output Power	Settable range		-50		10	dBm
		0.3 - 10		5		
Max Output Power ³	Output level set to 110 dPm	10 - 200	7	10		dBm
Wax Output Power	Output level set to +10 dBm	200 - 4500	7	10		ubiii
		4500 - 6000	6.5	9		
Devices A courses.	Output = 0 to +5 dBm	5 - 6000	-2.5	±1	2.5	dB
Power Accuracy	Output = -25 to 0 dBm	ut = -25 to 0 dBm		±1	2.5	ив
Hamania 9 Carrainna	Outrout of all Des	0.3 - 200		-20		4D-
Harmonic & Spurious	Output ≤ 0 dBm	200 - 6000		-30		dBc

^{3.} Use the "Normal Sweep" Mode for maximum power at 0.3-10MHz

FREQUENCY

Parameter	Min	Тур	Max	Units		
Frequency Range	0.3		6000	MHz		
Frequency Resolution		1		Hz		
Frequency Accuracy			±7	ppm		
IF Bandwidth	0.001		500	kHz		
External Ref Frequency (Ref In)		10 MHz (±50 Hz)				
Internal Ref Frequency (Ref Out)		10 MHz (±10 Hz typ)				

UNCORRECTED PERFORMANCE

System Correction: ON User Correction: OFF

Frequency (MHz)	Directivity (dB)	Source Match (dB)	Load Match (dB)	Reflection Tracking (dB)	Transmission Tracking (dB)
, , , , , , , , , , , , , , , , , , , ,	Тур	Тур	Тур	Тур	Тур
0.3-1	-42	-47	-6	±0.1	±0.1
1-10	-43	-45	-10	±0.1	±0.1
10-200	-45	-44	-20	±0.1	±0.1
200-2000	-40	-38	-14	±0.2	±0.2
2000-4500	-35	-34	-12	±0.2	±0.2
4500-6000	-32	-32	-10	±0.2	±0.3

CORRECTED PERFORMANCE

Conditions: IF BW = 1 kHz; using KSOLT-63-S+ cal kit with 1 x CBL-2FT-SMNM+ and 1 x CBL-2FT-SFNM+ 2FT Cables. Load match and transmission tracking values apply for insertable device calibrations

Frequency (MHz)	Directivity (dB)		Source Match (dB)		Load Match (dB)	Reflection Tracking (dB)	Transmission Tracking (dB)
	Тур	Max	Тур	Max	Тур	Тур	Тур
0.3-1	-50	-40	-45	-38	-35	±0.06	±0.04
1-10	-51	-42	-46	-38	-35	±0.07	±0.03
10-200	-50	-40	-44	-36	-37	±0.07	±0.03
200-2000	-48	-37	-41	-33	-36	±0.09	±0.02
2000-4500	-39	-36	-40	-30	-33	±0.10	±0.04
4500-6000	-39	-36	-38	-29	-32	±0.13	±0.06

eVNA-63+

300 kHz to 6 GHz

CORRECTED PERFORMANCE

Conditions: IF BW = 1 kHz; using KSOLT-63-N+ cal kit with 1 x CBL-2FT-SMNM+ and 1 x CBL-2FT-SFNM+ 2FT Cables. Load match and transmission tracking values apply for insertable device calibrations

Frequency (MHz)	Directiv	rity (dB)	Source Match (dB)		Load Match (dB)	Reflection Tracking (dB)	Transmission Tracking (dB)
, , , , , , , , , , , , , , , , , , , ,	Тур	Max	Тур	Max	Max	Тур	Тур
0.3-1	-50	-40	-45	-39	-36	±0.06	±0.04
1-10	-51	-42	-45	-38	-36	±0.07	±0.03
10-200	-50	-40	-43	-37	-37	±0.08	±0.03
200-2000	-48	-37	-42	-32	-36	±0.11	±0.03
2000-4500	-39	-36	-41	-29	-33	±0.13	±0.05
4500-6000	-38	-35	-38	-28	-32	±0.18	±0.08

MEASUREMENT SPEED (ms)¹

Typical time per point. 1000 MHz-1200 MHz; One Path; Fast Sweep Mode; Display ON

IF DM/(kLl=)		Points	
IF BW (kHz)	201	2001	20001
100	0.44	0.40	0.39
10	0.58	0.53	0.52
1	2.04	2.00	1.92

Typical time per point. 300 kHz-6 GHz (Full Span); One Path; Fast Sweep Mode; Display ON

IF BW (kHz)		Points	
IF DVV (KMZ)	201	2001	20001
100	0.61	0.42	0.41
10	0.82	0.61	0.57
1	3.05	2.56	2.42

^{1.} System Correction ON, User Correction OFF, S11, S21 traces displayed. Measurement time is typically doubled when measuring both directions and all four S-Parameters.

300 kHz to 6 GHz

Port Connections

FRONT PANEL

FRONT PANEL CONNECTIONS

Port Name	Description	Operating range	Connector Type	
Port 1, 2	VNA Measurement Ports	-50 dBm to +10 dBm	N-Type Female, Brass	

REAR PANEL

REAR PANEL CONNECTIONS

Port Name	Description	Operating range	Connector Type	
Bias 1, 2	Bias Tee DC Ports	± 24 VDC, ± 200 mA	BNC	
Ref In	External Reference Input	10 MHz ± 50 Hz, -5 dBm to + 10 dBm	BNC	
Ref Out	External Reference Output	10 MHz ± 50 Hz, > +5 dBm	BNC	
Trigger In	External Trigger Input	5V TTL	BNC	
Aux Sync	Auxiliary Trigger	5V TTL	BNC	
USB 2.0	USB Connection to PC		USB type B	
DC Input	Power Supply DC Input	5 ± 0.25 VDC, 2 A nominal	2.5 x 5.5 x 9.5 mm barrel	

eVNA-63+

300 kHz to 6 GHz

Regulatory Compliance

The +Suffix identifies RoHS Compliance. See our website for RoHS Compliance methodologies and qualifications

Meets the requirements of the following applicable European directives and carries the CE marking accordingly:

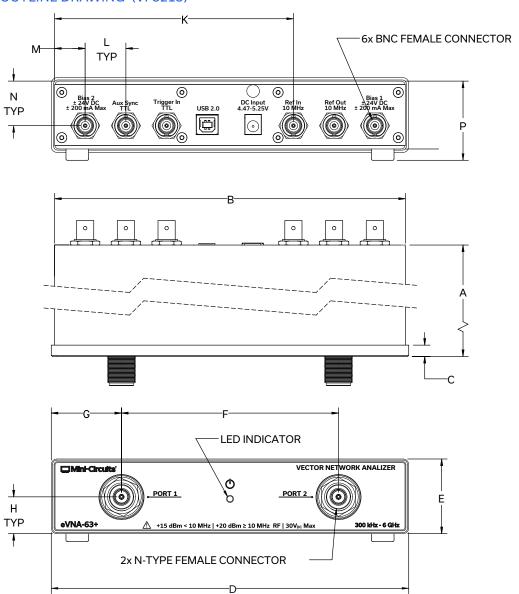
- Low Voltage Directive 2014/35
- Electromagnetic Compatibility Directive 2014/30/EU
- Restriction of the Use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS)

Meets the requirements of the following applicable UK directives and carries the UKCA marking accordingly:

- Electrical Equipment (Safety) Regulations 2016
- Electromagnetic Compatibility Regulations 2016
- The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Environmental Specifications

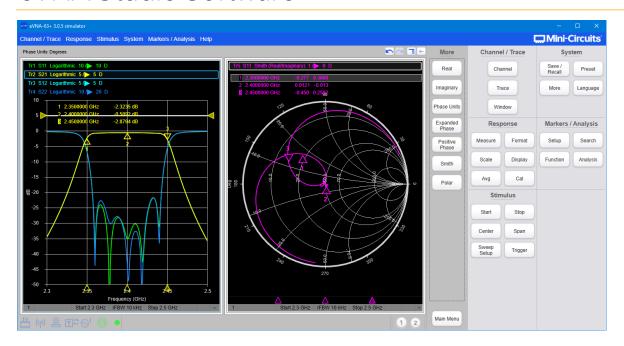

MAXIMUM RATINGS

Parameter	Conditions	Frequency (MHz)	Min	Тур	Max	Units	
Operating Temperature			5	-	50	°C	
Storage Temperature			-35	-	75	°C	
Test Ports 1 & 2	Input Power	0.3-10		-	15	dBm	
		10-6000		-	20		
	DC Voltage			-	30	V	
Bias-Tee Input	Voltage		-30	-	30	V	
bias-ree iriput	Current		-200	-	200	mA	
Trigger Input	Voltage			-	5	V	
DC Supply	Voltage			5	5.25	V	

300 kHz to 6 GHz

Mechanical Specifications

OUTLINE DRAWING (VF3213)



Dimensions are in inches (mm). Tolerances: 2 Pl. \pm .03; 3 Pl. \pm .015

Α	В	C	D	E	F	G	Н	К	L	M	N	Р	wt
10.02	7.75	0.25	7.90	1.65	4.80	1.55	0.81	5.28	0.90	0.67	0.98	1.75	grams
254.5	196.9	6.4	200.7	41.9	121.9	39.4	20.6	134	22.9	17.02	25	44.5	2360

300 kHz to 6 GHz

eVNA Studio Software

MEASUREMENT AND DISPLAY CAPABILITIES

- Full two Port S-Parameters $(S_{11}, S_{21}, S_{12}, S_{22})$
- Absolute receiver quantities from reference and reflection receivers
- Up to 16 independent measurement channels
- Up to 16 display traces per channel
- Up to 9 markers per trace
- Store traces for recall or trace math operations: Data + Mem, Data - Mem, Data * Mem, Data / Mem
- Flexible trace format options: Log Mag, Phase (Deg), Phase (Rad), Group Delay, Lin Mag, SWR, Real, Imaginary, Unwrapped Phase, Positive Phase, Smith, Polar

SWEEP STIMULUS

- · Sweep Type: Lin Freq, Log Freq, Power, Segmented
- Sweep Mode: Normal or Fast
- Number of points: Up to 20,001
- IF Bandwidth: 1 Hz to 500 kHz
- Port Power Setting: -50 dBm to +10 dBm
- Power Slope Setting: -2 to +2 dB/GHz

ANALYSIS AND MARKER FUNCTIONS

- Marker Search: Max, Min, Peak, Target
- Marker Function: Set sweep and scaling settings using markers as reference

- · Limit and Bandwidth Tests: Integrated Pass/Fail testing for Min/Max, ripple, and bandwidth limits
- Time Domain Transform: Lowpass and Bandpass Time Domain transform
- · Time Domain Gating: Fixture De-Embedding using timedomain techniques

DATA EXPORT OPTIONS

- S-parameter File
- CSV trace data
- Trace screenshot
- Instrument / calibration / data states

CALIBRATION AND CORRECTION CAPABILITIES

- Response
- Enhanced Response
- 1-port SOL
- 2-Port SOLT
- Electronic Calibration
- Port Extension
- Power Calibration

300 kHz to 6 GHz

Software Specifications

SOFTWARE & DOCUMENTATION DOWNLOAD:

- Mini-Circuits' eVNA software package, user guide, programming manual and examples can be downloaded from www.minicircuits.com/softwaredownload/evna.html
- Ready To Learn More

MINIMUM SYSTEM REQUIREMENTS:

Parameter	Required			
Interface	USB 2.0 or later			
System Requirements (Host PC)	Windows 7, 10			
Hardware	Intel i3 6th Gen CPU or Equivalent. 8GB RAM			

APPLICATION PROGRAMMING INTERFACE (API)

The eVNA software suite incorporates an API which allows custom automation programs to be created for the eVNA. Most common programming environments are supported, including Python, LabVIEW, C# and MatLab.

SCPI CONTROL

eVNA-63+ Studio supports a comprehensive set of SCPI control commands which should be familiar to anyone that has previously programmed with a VNA. These commands expose the full range of eVNA capabilities, from calibration to display configuration, to measurement, to data processing.

API CONTROL FROM THE HOST PC

The host PC has the eVNA software package installed and is connected by USB to the eVNA-63+. The API can be used to create custom automation programs running on the host PC, using SCPI commands to control the eVNA.

API CONTROL FROM A REMOTE PC

The complete eVNA system (host PC + eVNA software + eVNA-63+ instrument) can be configured to allow remote control over a network connection. The remote PC connects to the eVNA host PC using a TCP/IP connection and then has access to the full range of SCPI commands for eVNA control.

300 kHz to 6 GHz

Recommended Mechanical Calibration Kits

KSOLT-63-N+

N-type mechanical calibration kit, comprising:

Quantity	Model Name Description		
1	SOL-63 NF+	Short / Open / Load (N female)	
1	SOL-63-NM+	Short / Open / Load (N male)	
1	MTH-63-NFNF+	Phase Matched Thru (N female to female)	
1	MTH-63-NFNM+	Phase Matched Thru (N female to male)	
1	MTH-63-NMNM+	Phase Matched Thru (N male to male)	
1	TRQ-N20-8	N-type break-over torque wrench	

KSOLT-63-S+

SMA mechanical calibration kit, comprising:

Quantity	Model Name	Description
1	SOL-63 SF+	Short / Open / Load (SMA female)
1	SOL-63-SM+	Short / Open / Load (SMA male)
1	MTH-63-SFSF+	Phase Matched Thru (SMA female to female)
1	MTH-63-SFSM+	Phase Matched Thru (SMA female to male)
1	MTH-63-SMSM+	Phase Matched Thru (SMA male to male)
1	TRQ-516-08	SMA break-over torque wrench

300 kHz to 6 GHz

Recommended Test Accessories

Model	Cables
CBL-2FT-NMNM+	N Male to N Male, Precision Test
CBL-2FT-SMNM+	N Male to SMA Male, Precision Test
CBL-2FT-SFNM+	N Male to SMA Female, Precision Test
Model	Adapters
SF-SM50+	Adapter SMA-M to SMA-F
SM-SM50+	Adapter SMA-M to SMA-M
SF-SF50+	Adapter SMA-F to SMA-F
NF-NM50+	Adapter N-M to N-F
NM-NM50+	Adapter N-M to N-M
NF-NF50+	Adapter N-F to N-F
NF-SF50+	Adapter N-F to SMA-F
NF-SM50+	Adapter N-F to SMA-M
NM-SF50+	Adapter N-M to SMA-F
NM-SM50+	Adapter N-M to SMA-M
Model	Terminations
ANNE-50+	Termination SMA Male
ANNEF-50+	Termination SMA Female
KARN-50+	Termination N Male
Model	Wrenches
TRQ-516-08	SMA Torque Wrench
TRQ-N34-8	N-Type Torque Wrench 3/4" 8 lb-in
TRQ-N20-8	N-Type Torque Wrench 20 mm 8 lb-in
Model	Calibration Kits
KSOLT-63-S+	SMA calibration kit
KSOLT-63-N+	N-type calibration kit
Model	Connector Gauges
ACUDIAL-SMA	SMA connector gauge kit
ACUDIAL-N	N-type connector gauge kit