onsemi

600 V / 4 A, High-Side Automotive Gate Driver IC

FAN7171-F085

Description

The FAN7171-F085 is a monolithic high-side gate drive IC that can drive high-speed MOSFETs and IGBTs that operate up to +600 V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction.

onsemi's high–voltage process and common–mode noise-canceling techniques provide stable operation of the high–side driver under high-dv/dt noise circumstances. An advanced level–shift circuit offers high–side gate driver operation up to $V_S = -9.8 \text{ V}$ (typical) for $V_{BS} = 15 \text{ V}$.

The UVLO circuit prevents malfunction when V_{BS} is lower than the specified threshold voltage.

The high-current and low-output voltage-drop feature make this device suitable for sustaining switch drivers and energy-recovery switch drivers in automotive motor drive inverters, switching power supplies, and high-power DC-DC converter applications.

Features

- Floating Channel for Bootstrap Operation to +600 V
- 4 A Sourcing and 4 A Sinking Current Driving Capability
- Common-Mode dv/dt Noise-Cancelling Circuit
- 3.3 V and 5 V Input Logic Compatible
- Output In-phase with Input Signal
- Under- Voltage Lockout for VBs
- 25 V Shunt Regulator on VDD and VBS
- 8–SOIC Package, Case 751EB (JEDEC MS–012, 0.150 inch Narrow Body)
- Automotive Qualified to AEC Q100 for Ambient Operating Temperature from -40°C to 125°C

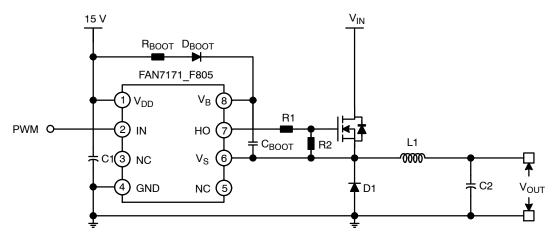
Applications

- Common Rail Injection Systems
- DC-DC Converter
- Motor Drive (Electric Power Steering, Fans)

Related Product Resources

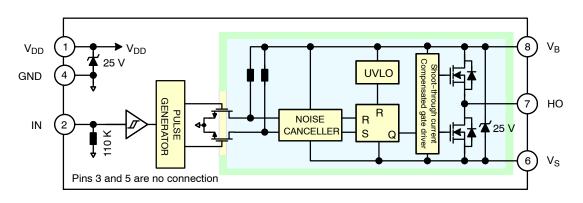
- FAN7171-F085 Product Folder
- AN-6076 Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
- AN-8102 200 Recommendations to Avoid Short Pulse Width Issues in HVIC Gate Driver Applications
- AN-9052 Design Guide for Selection of Bootstrap Components
- AN-4171 FAN7085 High-Side Gate Driver- Internal Recharge Path Design Considerations

SOIC8 CASE 751EB


ORDERING INFORMATION

Device	Package	Shipping†
FAN7171M-F085	Case 751EB	Tube
FAN7171MX-F085	(Pb-Free /	Tape & Reel
FAN7171MX-F085-1	Halogen Free)	Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


- 1. These devices passed wave soldering test by JESD22A-111.
- A suffix as "...F085P" has been temporarily introduced in order to manage a double source strategy as **onsemi** has officially announced in Aug 2014.

TYPICAL APPLICATION

Figure 1. Typical Application

BLOCK DIAGRAM

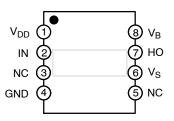


Figure 3. Pin Assignment (Top Through View)

Table 1. PIN DESCRIPTIONS

Pin #	Name	Description
1	V _{DD}	Supply Voltage
2	IN	Logic Input for High-Side Gate Driver Output
3	NC	No Connection
4	GND	Ground
5	NC	No Connection
6	V _S	High-Voltage Floating Supply Return
7	НО	High-Side Driver Output
8	V _B	High-Side Floating Supply

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Floating Offset Voltage	V _B -V _{SHUNT}	V _B +0.3	V
V _B	High-Side Floating Supply Voltage (Note 3)	-0.3	625.0	V
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{DD}	Low-Side and Logic Supply Voltage (Note 3)	-0.3	V _{SHUNT}	V
V _{IN}	Logic Input Voltage	-0.3	V _{DD} +0.3	V
dV _S /dt	Allowable Offset Voltage Slew Rate		±50	V/ns
PD	Power Dissipation (Notes 4, 5, 6)		0.625	W
θ_{JA}	Thermal Resistance		200	°C/W
TJ	Junction Temperature	-55	150	°C
T _{STG}	Storage Temperature	-55	150	°C
T _A	Operating Ambient Temperature	-40	125	°C
FOD	Human Body Model (HBM)		2000	
ESD	Charge Device Model (CDM)		500	- V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This IC contains a shunt regulator on V_{DD} and V_{BS} with a normal breakdown voltage of 25 V. Please note that this supply pin should not be driven by a low-impedance voltage source greater than the V_{SHUNT} specified in the Electrical Characteristics section.

4. Mounted on 76.2 x 114.3 x 1.6 mm PCB (FR-4 glass epoxy material).

5. Refer to the following standards:

JESD51-2: Integral circuits thermal test method environmental conditions, natural convection, and

JESD51-3: Low effective thermal conductivity test board for leaded surface-mount packages.

6. Do not exceed power dissipation (P_D) under any circumstances.

Table 3. RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min.	Max.	Unit
V _{BS}	High-Side Floating Supply Voltage	V _S +10	V _S +20	V
V _S	High-Side Floating Supply Offset Voltage (DC)	6-V _{DD}		
	High-Side Floating Supply Offset Voltage (Transient)	–15 (~170)	600	V
		-7 (~400)		
V _{HO}	High-Side Output Voltage	V _S	VB	V
V _{IN}	Logic Input Voltage	GND	V _{DD}	V
V _{DD}	Supply Voltage	10	20	V
T _{PULSE}	Minimum Input Pulse Width (Note 7)	80	-	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

7. Input pulses shorter than the minimum recommendation can cause abnormal output. Short input pulses can be turn on pulses (i.e., rising edge to the adjacent falling edge), turn off pulses (i.e., falling edge to the adjacent rising edge) but also parasitic pulses induced by noise. Refer to Figure 24 and Figure 25. Value guaranteed by design.

Table 4. ELECTRICAL CHARACTERISTICS

 $(V_{BIAS} (V_{DD}, V_{BS}) = 15 \text{ V}, -40^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are relative to V_S and are applicable to the respective output HO)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
POWER S	UPPLY SECTION			-	-	-
I _{QDD}	Quiescent V _{DD} Supply Current	$V_{IN} = 0 V \text{ or } 5 V$		25	70	μA
I _{PDD}	Operating V _{DD} Supply Current	f _{IN} = 20 kHz, No Load		35	100	μΑ
BOOTSTR	APPED SUPPLY SECTION					
V_{BSUV+}	V _{BS} Supply Under-Voltage Positive-Going Threshold Voltage	V _{BS} = Sweep	8.2	9.2	10.2	V
V _{BSUV-}	V _{BS} Supply Under-Voltage Negative-Going Threshold Voltage	V _{BS} = Sweep	7.5	8.5	9.5	V
V _{BSHYS}	V _{BS} Supply UVLO Hysteresis Voltage	V _{BS} = Sweep		0.6		V
I _{LK}	Offset Supply Leakage Current	$V_{B} = V_{S} = 600 V$			50	μA
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} = 0 V or 5 V		60	120	μA
I _{PBS}	Operating V _{BS} Supply Current	C _{LOAD} = 1 nF, f _{IN} = 20 kHz, RMS Value		0.73	2.80	mA
SHUNT RE	EGULATOR SECTION					
V _{SHUNT}	V_{DD} and V_{BS} Shunt Regulator Clamping Voltage	I _{SHUNT} = 5 mA	23	25		V
INPUT LO	GIC SECTION (IN)					
V _{IH}	Logic "1" Input Voltage		2.5			V
V _{IL}	Logic "0" Input Voltage				0.8	V
I _{IN+}	Logic Input High Bias Current	V _{IN} = 5 V		45	125	μA
I _{IN-}	Logic Input Low Bias Current	V _{IN} = 0 V			2	μA
R _{IN}	Input Pull-down Resistance		40	110		kΩ
GATE DRI	VER OUTPUT SECTION (HO)					
V _{OH}	High Level Output Voltage (V _{BIAS} – V _O)	No Load			1.5	V
V _{OL}	Low Level Output Voltage	No Load			35	mV
I _{O+}	Output High, Short-Circuit Pulsed Current (Note 8)	$\begin{array}{l} V_{HO} = 0 \ V, \\ V_{IN} = 5 \ V, \\ PW \leq 10 \ \mu s \end{array}$	3.0	4.0		A
I _{O-}	Output Low, Short-Circuit Pulsed Current (Note 8)	$\begin{array}{l} V_{HO} = 15 \text{ V}, \\ V_{IN} = 0 \text{ V}, \\ PW \leq 10 \ \mu s \end{array}$	3.0	4.0		A
VS	Allowable Negative V_{S} Pin Voltage for IN Signal Propagation to HO			-9.8	-7.0	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

8. These parameters guaranteed by design.

Table 5. DYNAMIC ELECTRICAL CHARACTERISTICS

(V_{BIAS} (V_{DD}, V_{BS}) = 15 V, V_S = GND = 0 V, C_L =1000 pF, and -40°C \leq T_A \leq 125°C, unless otherwise specified)

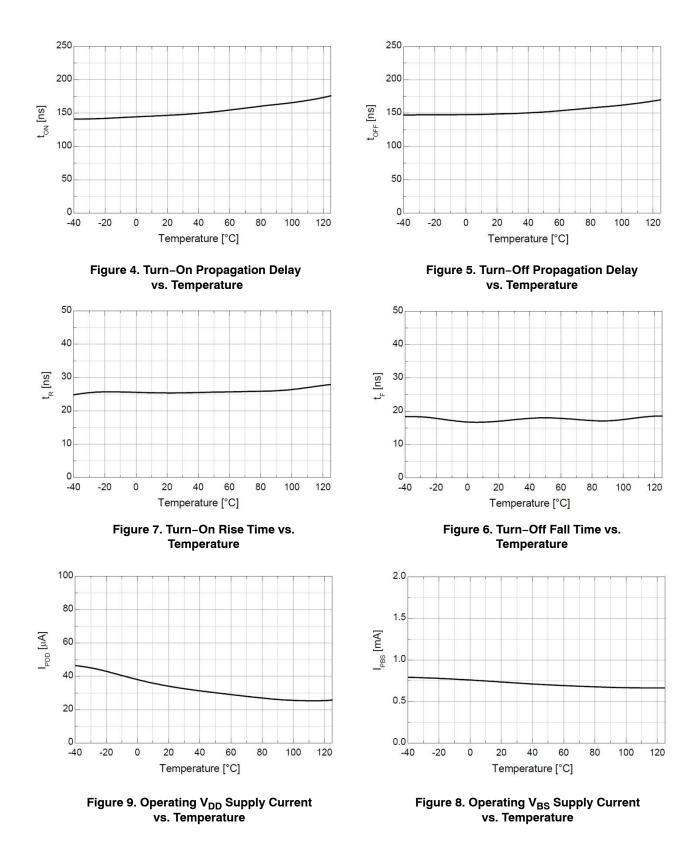

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{ON}	Turn-On Propagation Delay	V _S = 0 V		150	210	ns
t _{OFF}	Turn-Off Propagation Delay	V _S = 0 V		150	210	ns

Table 5. DYNAMIC ELECTRICAL CHARACTERISTICS (continued)

(V_{BIAS} (V_{DD}, V_{BS}) = 15 V, V_S = GND = 0 V, C_L =1000 pF, and -40°C \leq T_A \leq 125°C, unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _R	Turn-On Rise Time			25	50	ns
t _F	Turn-Off Fall Time			15	45	ns

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

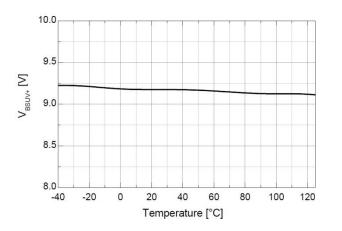


Figure 10. V_{BS} UVLO+ vs. Temperature

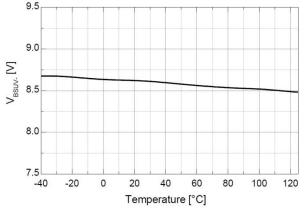
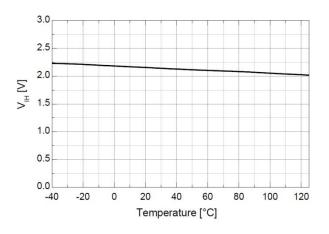
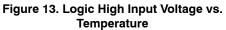
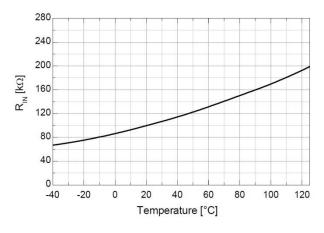





Figure 11. V_{BS} UVLO- vs. Temperature

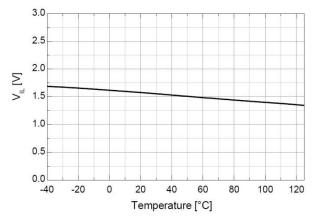
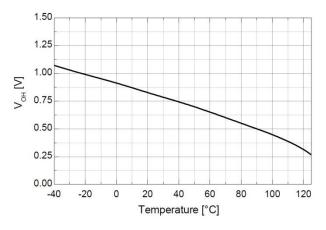
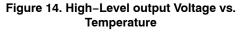
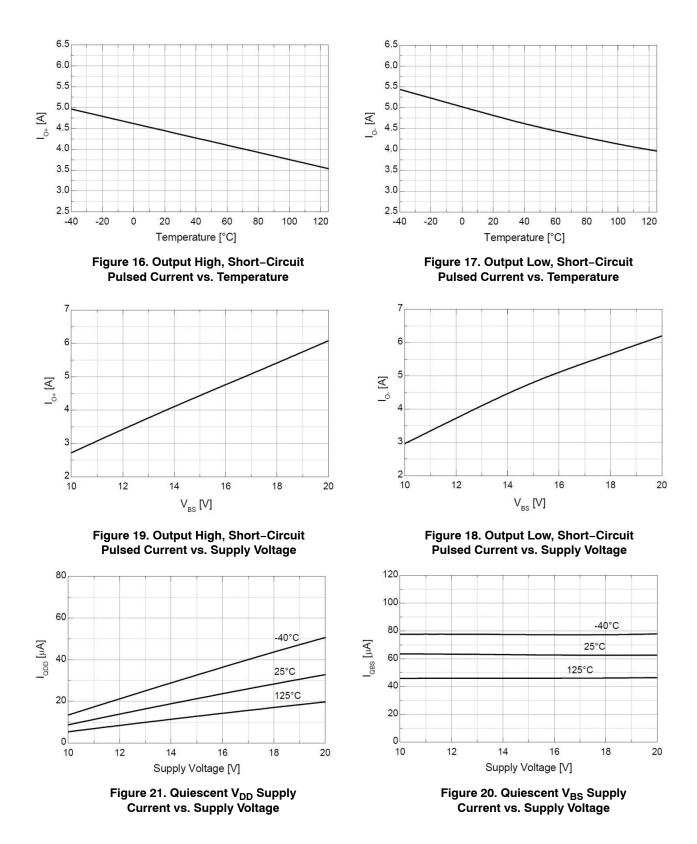
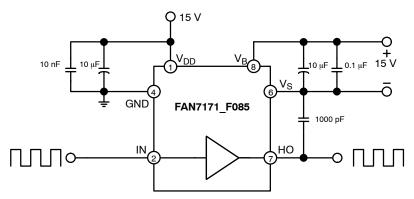
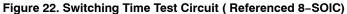





Figure 12. Logic Low Input Voltage vs. Temperature





TYPICAL PERFORMANCE CHARACTERISTICS (continued)

SWITCHING TIME DEFINITIONS

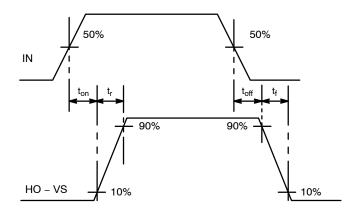


Figure 23. Switching Time Waveform Definitions

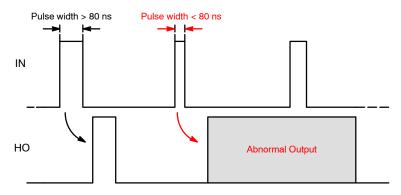
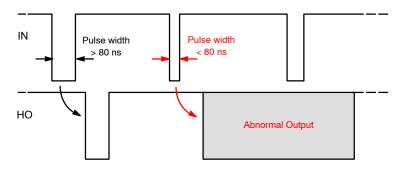
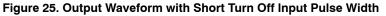
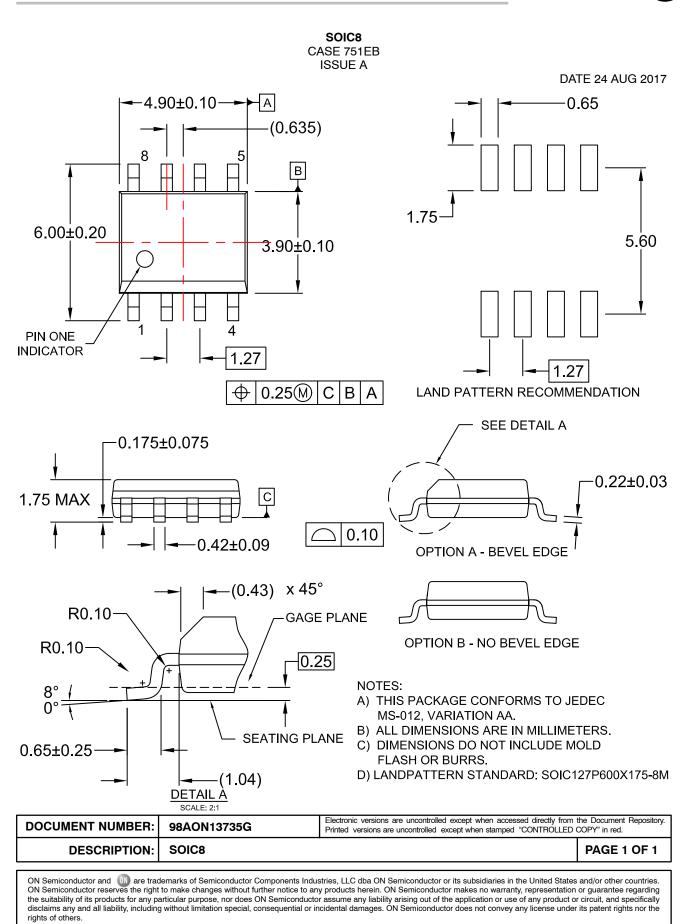





Figure 24. Output Waveform with Short Turn On Input Pulse Width

© Semiconductor Components Industries, LLC, 2019