onsemi

EcoSPARK[®] Ignition IGBT

20 mJ, 360 V, N-Channel Ignition IGBT

FGB3236-F085, FGI3236-F085

Features

- Industry Standard D²PAK Package
- SCIS Energy = 330 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC-Q101 Qualified and PPAP Capable
- RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Value	Units
BV _{CER}	Collector to Emitter Breakdown Voltage $(I_{C} = 1 \text{ mA})$	360	V
BV _{ECS}	Emitter to Collector Voltage – Reverse Battery Condition (I _C = 10 mA)	24	V
E _{SCIS25}	Self Clamping Inductive Switching Energy ($I_{SCIS} = 14.7 \text{ A}, L = 3.0 \text{ mHy}, T_J = 25^{\circ}\text{C}$)	320	mJ
E _{SCIS150}	Self Clamping Inductive Switching Energy ($I_{SCIS} = 10.4 \text{ A}, L = 3.0 \text{ mHy}, T_J = 150^{\circ}\text{C}$)	160	mJ
I _{C25}	Collector Current Continuous at V_{GE} = 4.0 V, T_{C} = 25°C	44	A
I _{C110}	Collector Current Continuous at V _{GE} = 4.0 V, T _C = 110°C	27	А
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
PD	Power Dissipation Total, at $T_C = 25^{\circ}C$	187	W
	Power Dissipation Derating, for $T_C > 25^{\circ}C$	1.25	W/°C
TJ	Operating Junction Temperature Range	-40 to +175	°C
T _{STG}	Storage Junction Temperature Range	-40 to +175	°C
TL	Max. Lead Temperature for Soldering (Leads at 1.6 mm from case for 10 s)	300	°C
T _{PKG}	Max. Lead Temperature for Soldering (Package Body for 10 s)	260	°C
ESD	Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

D²PAK-3 CASE 418AJ

I2PAK (TO-262 3 LD) CASE 418AV

MARKING DIAGRAM

Collector (Flange)

SYMBOL

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

Symbol	Parameter	Test Conditions		Min	Тур	Мах	Units
OFF STATE	CHARACTERISTICS	•					
BV _{CER}	Collector to Emitter Breakdown Voltage	$\label{eq:lce} \begin{array}{l} I_{CE} = 2 \text{ mA}, \ V_{GE} = 0 \ V, \\ R_{GE} = 1 \ \mathrm{k}\Omega, \ \text{see Figure 15} \\ T_J = -40 \ \text{to } 150^\circ C \end{array}$		330	363	390	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$\begin{split} I_{CE} &= 10 \text{ mA}, \text{ V}_{GE} = 0 \text{ V}, \\ R_{GE} &= 0, \\ T_{J} &= -40 \text{ to } 150^{\circ}\text{C} \end{split}$		350	378	410	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	I_{CE} = -75 mA, V_{GE} = 0 V, T _J = 25°C		30	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2 \text{ mA}$		±12	±14	-	V
I _{CES}	Collector to Emitter Leakage Current	V _{CES} = 250 V,	$T_J = 25^{\circ}C$	-	-	25	μΑ
		see Figure 11	$T_J = 150^{\circ}C$	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24 V,	$T_J = 25^{\circ}C$	-	-	1	mA
		see Figure 11	$T_J = 150^{\circ}C$	-	-	40	
R ₁	Series Gate Resistance			-	120	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω
ON STATE C	HARACTERISTICS						
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 6 A, V_{GE} = 4 V, T_{C} = 25°C, see Figure 3		-	1.14	1.4	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10 A, V_{GE} = 4.5 V, T_{C} = 150°C, see Figure 4		-	1.32	1.7	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 15 A, V_{GE} = 4.5 V, T_{C} = 150°C		-	1.61	2.05	V
I _{CE(ON)}	Collector to Emitter On State Current	$V_{GE} = 5 V, V_{CE} = 5 V$		50	-	-	А
DYNAMIC C	HARACTERISTICS						
Q _{G(ON)}	Gate Charge	I_{CE} = 10 A, V_{CE} = 12 V, V_{GE} = 5 V, see Figure 14		-	20	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1 mA,	$T_{C} = 25^{\circ}C$	1.3	1.6	2.2	V
		V _{CE} = V _{GE} , see Figure 10	T _C = 150°C	0.75	1.1	1.8	
VGER	Gate to Emitter Plateau Voltage	$V_{CE} = 12 V_{.} I_{CE} = 1$	10 A	_	2.6	_	V
SWITCHING							
t _{d(ON)R}	Current Turn-On Delay Time-Resistive			-	0.65	4	μs
t _{rR}	Current Rise Time-Resistive			_	1.7	7	
t _{d(OFF)L}	Current Turn–Off Delay Time–Inductive	$\begin{array}{l} V_{CE} = 300 \; V, \; L = 500 \; \mu Hy, \\ V_{GE} = 5 \; V, \; R_{G} = 1 \; k\Omega, \\ T_{J} = 25^{\circ}C, \; see \; Figure \; 12 \end{array}$		-	5.4	15	
t _{fL}	Current Fall Time-Inductive			-	1.64	15	
SCIS	Self Clamped Inductive Switching	T_J = 25°C, L = 3.0 mHy, I_{CE} = 14.7 A, V_{GE} = 5 V, R_G = 1 k $\Omega,$ see Figures 1 & 2		-	-	320	mJ
THERMAL C	HARACTERISTICS	•			-	-	<u> </u>
$R_{\theta JC}$	Thermal Resistance Junction to Case	e Junction to Case All Packages			-	0.8	°C/W

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise specified)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Marking	Package	${\sf Shipping}^{\dagger}$
FGB3236-F085	FGB3236	D ² PAK (Pb–Free)	800 units / Tape & Reel
FGB3236-F085C	FGB3236	D ² PAK (Pb-Free)	800 units / Tape & Reel
FGI3236-F085	FGI3236	I2PAK (TO-262 3 LD) (Pb-Free)	400 units / Tube

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature

Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

Figure 2. Self Clamped Inductive Switching Current vs. Inductance

Figure 4. Collector to Emitter On–State Voltage vs. Junction Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 11. Leakage Current vs. Junction Temperature

Figure 10. Threshold Voltage vs. Junction Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

Figure 17. Inductive Switching Test Circuit

Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

Figure 19. Energy Test Circuit

Figure 20. Energy Waveforms

ECOSPARK is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

rights of others.

Onsemi

- F. LOCATION OF PIN HOLE MAY VARY (LOWER LEFT CORNER,
- LOWER CENTER AND CENTER OF PACKAGE)
- G. MAXIMUM WIDTH FOR F102 DEVICE = 1.35 MAX.

device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13814G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	I2PAK (TO-262 3 LD)		PAGE 1 OF 1		
- ansami and OOSEMU are trademarke of Somioanductor Components Inductries LLC day ansami or its subsidiaries in the United States and/or other countries ansami resources					

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.