EcoSPARK® 2 Ignition IGBT

300 mJ, 500 V, N-Channel Ignition IGBT

Features

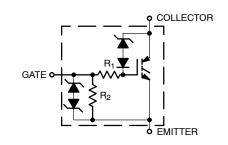
- SCIS Energy = 300 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC-Q101 Qualified and PPAP Capable
- These Device is Pb-Free and are RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Application

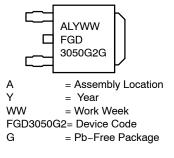
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1 mA)	500	٧
BV _{ECS}	Emitter to Collector Voltage – Reverse Battery Condition (I _C = 10 mA)	20	V
E _{SCIS25}	Self Clamping Inductive Switching Energy (Note 1)	300	mJ
E _{SCIS150}	Self Clamping Inductive Switching Energy (Note 2)	180	mJ
I _{C25}	Collector Current Continuous at V _{GE} = 4.0 V, T _C = 25°C	32	Α
I _{C110}	Collector Current Continuous at V _{GE} = 4.0 V, T _C = 110°C	27	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
P _D	Power Dissipation Total, T _C = 25°C	150	W
	Power Dissipation Derating, for $T_C > 25^{\circ}C$	1.1	W/°C
TJ	Operating Junction Temperature Range	-40 to +175	°C
T _{STG}	Storage Junction Temperature Range	-40 to +175	°C
T_L	Max. Lead Temperature for Soldering (Leads at 1.6 mm from case for 10 s)	300	ç
T _{PKG}	Max. Lead Temperature for Soldering (Package Body for 10 s)	260	°C
ESD	Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Self clamped inductive Switching Energy (ESCIS25) of 335 mJ is based on the test conditions that is starting $T_J = 25^{\circ}C$, L = 3 mHy, ISCIS = 14.2 A, $R_{GE} = 1$ k Ω , VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.
- 2. Self Clamped inductive Switching Energy (ESCIS150) of 180 mJ is based on the test conditions that is starting $T_J=150^{\circ}C$, L = 3mHy, ISCIS = 11 A, $R_{GE}=1~k\Omega, VCC$ = 100 V during inductor charging and VCC = 0 V during time in clamp.

ON Semiconductor®


www.onsemi.com

DPAK (SINGLE GAUGE) CASE 369C

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Units
Junction-to-Case - Steady State (Drain)		0.9	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Test C	Min	Тур.	Max.	Units	
FF CHARA	ACTERISTICS			•			
BV _{CER}	Collector to Emitter Breakdown Voltage	$I_{CE} = 2 \text{ mA}, V_{GE} = 0 \text{ V},$ $R_{GE} = 1 \text{ k}\Omega, T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		470	-	530	V
BV _{CES}	Collector to Emitter Breakdown Voltage	I _{CE} = 10 mA, V _G R _{GE} = 0, T _J = -4	E = 0 V, 40 to 150°C	495	_	555	٧
BV _{ECS}	Emitter to Collector Breakdown Voltage	$I_{CE} = -75 \text{ mA}, V_0$ $T_J = 25^{\circ}\text{C}$	_{GE} = 0 V,	20	_	-	٧
BV _{GES}	Gate to Emitter Breakdown Voltage	I _{GES} = ±5 mA		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	V _{CE} = 250 V	T _J = 25°C	-	-	25	μΑ
		$R_{GE} = 1 k\Omega$	T _J = 150°C	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 15 V	T _J = 25°C	-	-	1	mA
			T _J = 150°C	-	-	40	
R ₁	Series Gate Resistance	•		-	111	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω
N CHARA	CTERISTICS (Note 5)			•			
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 6 A, V_{GE} = 4 V, T_J = 25°C		-	1.1	1.2	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I _{CE} = 10 A, V _{GE} = 4.5 V, T _J = 150°C		-	1.3	1.45	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I _{CE} = 15 A, V _{GE} = 4.5 V, T _J = 150°C		-	1.6	1.75	V
YNAMIC C	HARACTERISTICS	•			•	•	
Q _{G(ON)}	Gate Charge	I _{CE} = 10 A, V _{CE}	= 12 V, V _{GE} = 5 V	_	22	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1 mA	T _J = 25°C	1.3	1.6	2.2	V
		V _{CE} = V _{GE}	T _J = 150°C	0.75	1.1	1.8	
V_{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12 V, I _{CE} = 10 A		-	2.7	-	V
WITCHING	CHARACTERISTICS						
td _{(ON)R}	Current Turn-On Delay Time-Resistive	V_{CE} = 14 V, R_L = 1 Ω , V_{GE} = 5 V, R_G = 1 K Ω ,		_	0.9	4	μS
t _{rR}	Current Rise Time-Resistive			_	1.6	7	
td _{(OFF)L}	Current Turn-Off Delay Time-Inductive	V_{CE} = 300 V, L = 2 mH, V_{GE} = 5 V, R_{G} = 1 K Ω ,		-	5.4	15	1
t _{fL}	Current Fall Time-Inductive	1		-	1.4	15	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Diameter	Tape Width	Qty [†]
FGD3050G2	FGD3050G2V	DPAK (Pb-Free)	330 mm	16 mm	2500

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

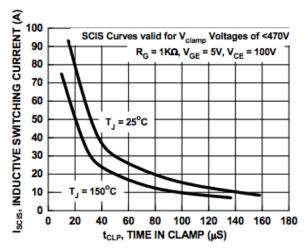


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

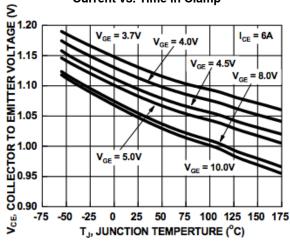


Figure 3. Collector to Emitter On-State Voltage vs. Junction Temperature

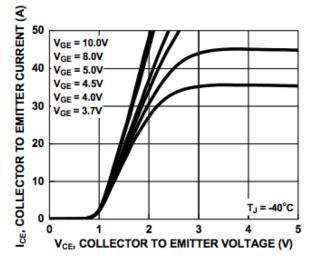


Figure 5. Collector to Emitter On-State Voltage vs. Collector Current

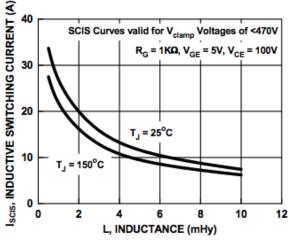


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

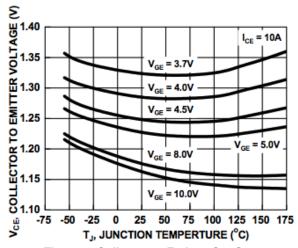


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

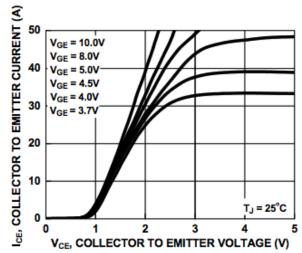


Figure 6. Collector to Emitter On-State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

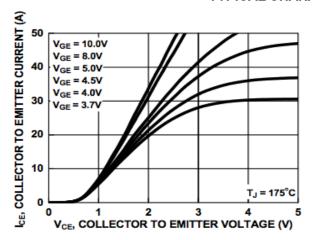


Figure 7. Collector to Emitter On-State Voltage vs.
Collector Current

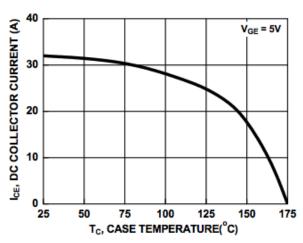


Figure 9. DC Collector Current vs. Case Temperature

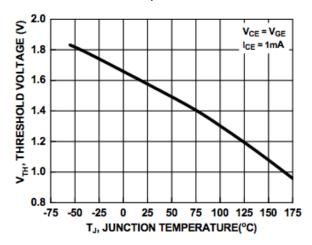


Figure 11. Threshold Voltage vs. Junction Temperature

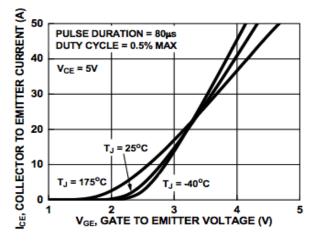


Figure 8. Transfer Characteristics

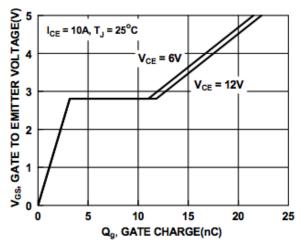


Figure 10. Gate Charge

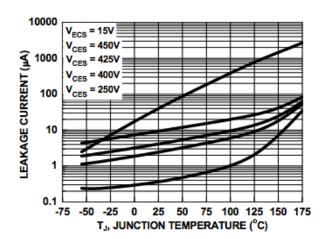
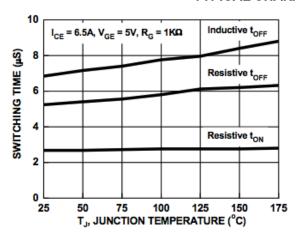



Figure 12. Leakage Current vs. Junction Temperature Temperature

TYPICAL CHARACTERISTICS (continued)

2000 f = 1MHz V_{GE} = 0V 1600 CAPACITANCE (pF) CIES 1200 800 CRES 400 COES 0 5 10 15 20 25 30 V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

Figure 13. Switching Time vs. Junction Temperature

Figure 14. Capacitance vs. Collector to Emitter Voltage

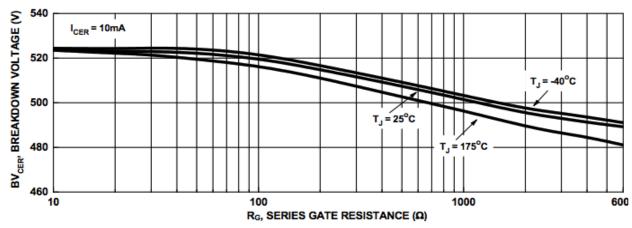


Figure 15. Break down Voltage vs. Series Resistance

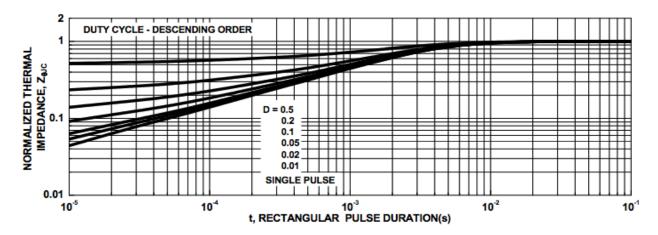


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

SPICE Thermal Model

CTHERM1	th 6	5.7337E-05
CTHERM2	6 5	5.3736E-03
CTHERM3	5 4	1.1141E-03
CTHERM4	4 3	2.8690E-04
CTHERM5	3 2	7.4429E-04
CTHERM6	2 tl	3.7019E-03
RTHERM1	th 6	6.6403E-03
RTHERM2	6 5	5.8449E-01
RTHERM3	5 4	5.3930E-02
RTHERM4	4 3	9.2492E-03
RTHERM5	3 2	1.5794E-02
RTHERM6	2 tl	1.7974E-01

ECOSPARK is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

В

NOTE 7

| \oplus | 0.005 (0.13) lacktriangledown C

Ħ

Α1

- h3

Ո

TOP VIEW

L3

b₂ e

L2 GAUGE

DPAK (SINGLE GAUGE) CASE 369C **ISSUE F** SCALE 1:1 Α

DETAIL A

C SEATING

C-

SIDE VIEW

DATE 21 JUL 2015

NOTES:

z

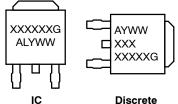
BOTTOM VIEW

- OTLO:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

ALTERNATE CONSTRUCTIONS **DETAIL A** ROTATED 90° CW **GENERIC** STYLE 1: STYLE 2: STYLE 3: STYLE 4: STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE PIN 1. GATE 2. DRAIN

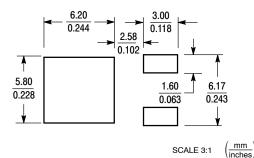

Z

BOTTOM VIEW

С

3. EMITTE 4. COLLE	ER .	3. SOURCE 4. DRAIN	3. ANC 4. CAT	DE	3. GATE 4. ANODE	3.	CATHODE ANODE
STYLE 6: PIN 1. MT1 2. MT2 3. GATE	STYLE 7: PIN 1. GATE 2. COLLE 3. EMITT	ECTOR	E 8: 1. N/C 2. CATHODE 3. ANODE	STYLE 9: PIN 1. ANO 2. CATI 3. RES		2. /	0: CATHODE ANODE CATHODE
4. MT2	4. COLLE		4. CATHODE	4. CATI			ANODE

MARKING DIAGRAM*


XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking.

= Pb-Free Package

G

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1		

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others