EcoSPARK[®] 2 Ignition IGBT

320 mJ, 450 V, N-Channel Ignition IGBT

Features

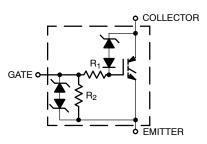
- SCIS Energy = 320 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- Low Saturation Voltage
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Application

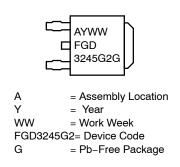
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Symbol	Parameter	Value	Unit	
BV _{CER}	Collector to Emitter Breakdown Voltage (IC = 1 mA)	450	V	
BV _{ECS}	Emitter to Collector Voltage – Reverse Battery Condition (IC = 10 mA)	28	V	
E _{SCIS25}	ISCIS = 14.6 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 25°C (Note 1)	320	mJ	
E _{SCIS150}	ISCIS = 10.9 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 150°C (Note 2)	180	mJ	
IC25	Collector Current Continuous at VGE = 4.0 V, T_C = 25°C	23	A	
IC110	Collector Current Continuous at VGE = 4.0 V, T _C = 110°C	23	A	
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V	
PD	Power Dissipation Total, $T_{C} = 25^{\circ}C$	150	W	
	Power Dissipation Derating, $T_C > 25^{\circ}C$	1.1	W/∘C	
T _J , T _{STG}	J, T _{STG} Operating Junction and Storage Temperature		°C	
ΤL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	300	°C	
T _{PKG}	T _{PKG} Reflow Soldering according to JESD020C		°C	
ESD	HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV	
	CDM–Electrostatic Discharge Voltage at 1 Ω	2	kV	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Self clamped inductive Switching Energy (ESCIS25) of 320 mJ is based on the test conditions that is starting $T_J = 25^{\circ}C$, L = 3 mHy, ISCIS = 14.6 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.
- Self Clamped inductive Switching Energy (ESCIS150) of 180 mJ is based on the test conditions that is starting T_J = 150°C, L = 3mHy, ISCIS = 10.9 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.

ON Semiconductor®


www.onsemi.com

DPAK (SINGLE GAUGE) CASE 369C

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

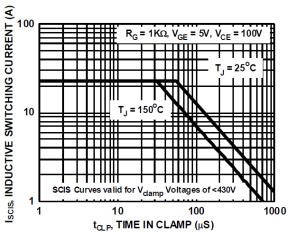
THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Мах	Units
Junction-to-Case – Steady State (Drain)		0.9	°C/W

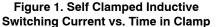
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

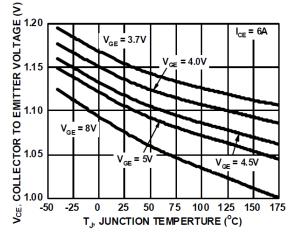
Symbol	Parameter	Test Conditions		Min	Тур.	Max.	Units
OFF CHARA	ACTERISTICS						
BV _{CER}	Collector to Emitter Breakdown Voltage	$\label{eq:lce} \begin{array}{l} I_{CE} = 2 \text{ mA}, V_{GE} = 0 \text{V}, \text{R}_{GE} = 1 \text{k} \Omega, \\ T_{J} = -40 \text{ to } 150^\circ \text{C} \end{array}$		420	-	480	V
BV _{CES}	Collector to Emitter Breakdown Voltage	I_{CE} = 10 mA, V_{GE} = 0 V, R_{GE} = 0, T_{J} = –40 to 150°C		440	-	500	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	I_{CE} = -75 mA, V_{GE} = 0 V, T_{J} = 25°C		28	-	-	V
BV _{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2 \text{ mA}$		±12	±14	-	V
ICER	Collector to Emitter Leakage Current	V_{CE} = 175 V R _{GE} = 1 k Ω	$T_J = 25^{\circ}C$	-	-	25	μΑ
			T _J = 150°C	-	-	1	
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24 V	$T_J = 25^{\circ}C$	-	-	1	mA
			$T_{\rm J}$ = 150°C	-	-	40	
R ₁	Series Gate Resistance			-	120	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω
ON CHARAG	CTERISTICS						
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{CE} = 6 \text{ A}, \text{ V}_{GE} = 4 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$		-	1.13	1.25	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10 A, V_{GE} = 4.5 V, T_{J} = 150°C		-	1.32	1.50	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 15 A, V_{GE} = 5 V, T_{J} = 150°C		-	1.64	1.85	V
OYNAMIC C	HARACTERISTICS						
Q _{G(ON)}	Gate Charge	I_{CE} = 10 A, V_{CE} = 12 V, V_{GE} = 5 V		-	23	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	$I_{CE} = 1 \text{ mA} \qquad T_{J} = 25^{\circ}\text{C}$ $V_{CE} = V_{GE} \qquad T_{J} = 150^{\circ}\text{C}$	$T_J = 25^{\circ}C$	1.3	1.6	2.2	V
			T _J = 150°C	0.75	1.1	1.8	1
V _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12 V, I _{CE} = 10 A		-	2.7	-	V

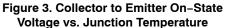
SWITCHING CHARACTERISTICS


td _{(ON)R}	Current Turn-On Delay Time-Resistive	$V_{CE} = 14 V, R_L = 1 \Omega,$	-	0.9	4	μs
t _{rR}	Current Rise Time-Resistive	V _{GE} = 5 V, R _G = 470 Ω, T _J = 25°C	-	2.6	7	
td _{(OFF)L}	Current Turn-Off Delay Time-Inductive	V _{CE} = 300 V, L = 1 mH, V _{GE} = 5 V, R _G = 470 Ω,	-	5.4	15	
t _{fL}	Current Fall Time-Inductive	$I_{CE} = 6.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$	_	2.7	15	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


PACKAGE MARKING AND ORDERING INFORMATION


Device Marking	Device	Package	Reel Diameter	Tape Width	Qty†
FGD3245G2	FGD3245G2-F085V	DPAK (Pb-Free)	330 mm	16 mm	2500


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

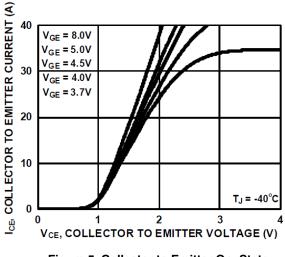


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

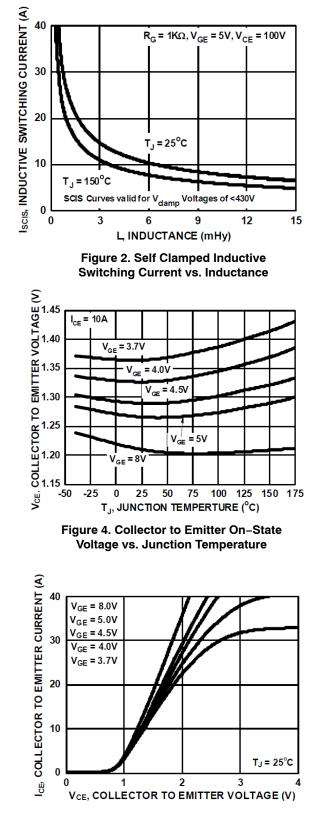
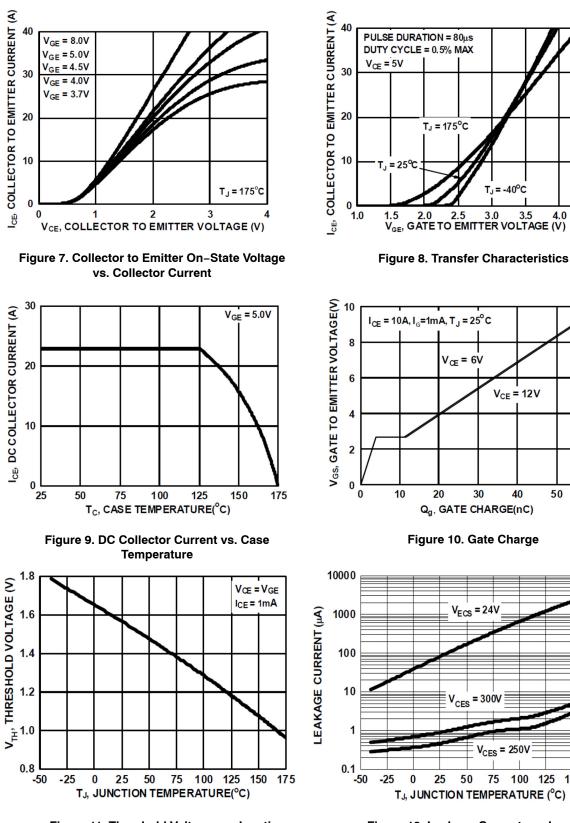
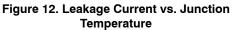




Figure 6. Collector to Emitter On–State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

4.5

50

125

150

175

60

TYPICAL CHARACTERISTICS (continued)

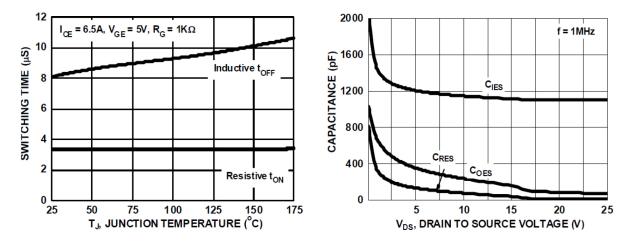


Figure 13. Switching Time vs. Junction Temperature

Figure 14. Capacitance vs. Collector to Emitter

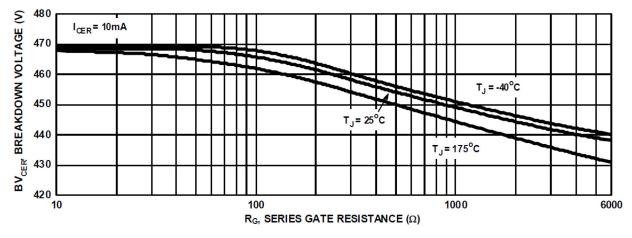


Figure 15. Break Down Voltage vs. Series Resistance

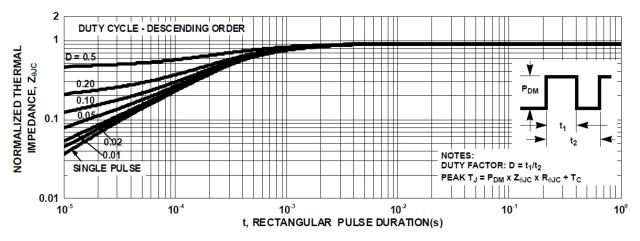


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

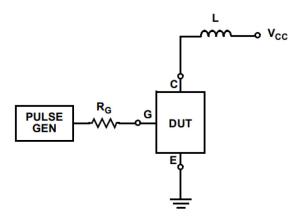


Figure 17. Inductive Switching Test Circuit

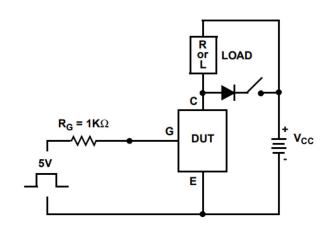


Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

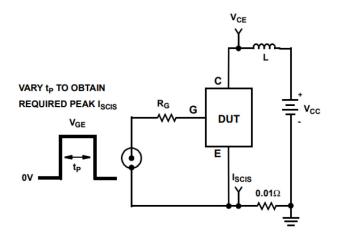


Figure 19. Energy Test Circuit

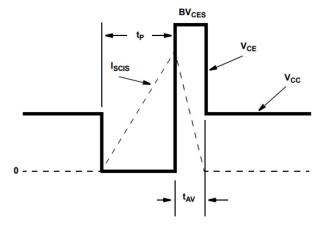
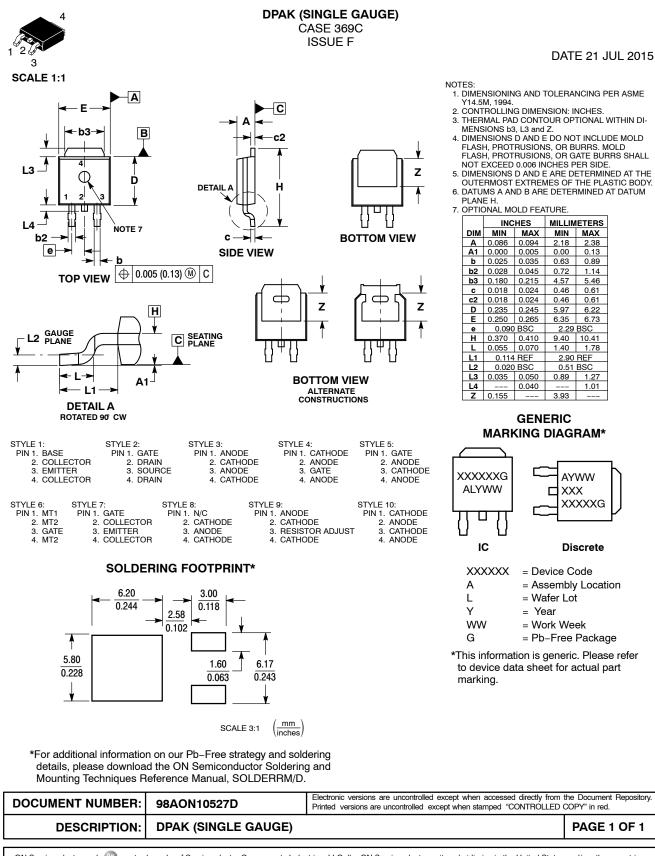



Figure 20. Energy Waveforms

ECOSPARK is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for the res.

© Semiconductor Components Industries, LLC, 2018