IGBT - Field Stop, Trench

1200 V, 40 A

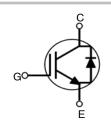
FGH40T120SMD, FGH40T120SMD-F155

Description

Using innovative field stop trench IGBT technology, ON Semiconductor's new series of field stop trench IGBTs offer the optimum performance for hard switching application such as solar inverter, UPS, welder and PFC applications.

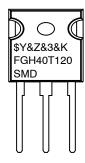
Features

- FS Trench Technology, Positive Temperature Coefficient
- High Speed Switching
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_C = 40 \text{ A}$
- 100% of the Parts tested for $I_{LM}(1)$
- High Input Impedance
- These Devices are Pb-Free and are RoHS Compliant


Applications

• Solar Inverter, Welder, UPS & PFC applications

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CK TO-247-3LD CASE 340CH

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code

&3 = Numeric Date Code

kK = Lot Code

1

FGH40T120SMD = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25$ °C unless otherwise noted)

Descrip	Description			Unit
Collector to Emitter Voltage		V _{CES}	1200	V
Gate to Emitter Voltage		V _{GES}	±25	V
Transient Gate to Emitter Voltage			±30	V
Collector Current	T _C = 25°C	I _C	80	Α
Collector Current	T _C = 100°C		40	Α
Clamped Inductive Load Current	T _C = 25°C	I _{LM} (Note 1)	160	Α
Pulsed Collector Current		I _{CM} (Note 2)	160	Α
Diode Continuous Forward Current	T _C = 25°C	I _F	80	Α
Diode Continuous Forward Current	T _C = 100°C		40	Α
Diode Maximum Forward Current		I _{FM}	240	Α
Maximum Power Dissipation	T _C = 25°C	P_{D}	555	W
Maximum Power Dissipation	T _C = 100°C		277	W
Operating Junction Temperature		TJ	-55 to +175	°C
Storage Temperature Range		T _{stg}	-55 to +175	°C
Maximum Lead Temp. for soldering Purpo	ses, 1/8" from case for 5 seconds	T_L	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. $Vcc = 600 \text{ V}, V_{GE} = 15 \text{ V}, I_{C} = 160 \text{ A}, R_{G} = 10 \text{ W}$, Inductive Load
2. Limited by Tjmax

THERMAL CHARACTERISTICS

Parameter	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$ (IGBT)	-	0.27	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$ (Diode)	_	0.89	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	-	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGH40T120SMD	FGH40T120SMD	TO-247-3 (PB-Free)	-	-	30
FGH40T120SMD	FGH40T120SMD-F155	TO-247-3 (Pb-Free)	-	-	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector to Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	1200	-	-	V
Collector Cut-Off Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μΑ
G-E Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICs						
G-E Threshold Voltage	V _{GE(th)}	I _C = 40 mA, V _{CE} = V _{GE}	4.9	6.2	7.5	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 40 A, V _{GE} = 15 V, T _C = 25°C	-	1.8	2.4	V
		I _C = 40 A, V _{GE} = 15 V, T _C = 175°C	-	2.0	-	V

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{ies}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	4300	_	pF
Output Capacitance	C _{oes}	1	-	180	-	pF
Reverse Transfer Capacitance	C _{res}	7	-	100	_	pF
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	V _{CC} = 600 V, I _C = 40 A,	-	40	_	ns
Rise Time	t _r	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25$ °C	-	47	_	ns
Turn-Off Delay Time	t _{d(off)}		-	475	_	ns
Fall Time	t _f		-	10	_	ns
Turn-On Switching Loss	E _{on}		-	2.7	-	mJ
Turn-Off Switching Loss	E _{off}		-	1.1	-	mJ
Total Switching Loss	E _{ts}		-	3.8	-	mJ
Turn-On Delay Time	t _{d(on)}	V _{CC} = 600 V, I _C = 40 A,	-	40	-	ns
Rise Time	tr	R_G = 10 Ω, V_{GE} = 15 V, Inductive Load, T_C = 175°C	-	55	-	ns
Turn-Off Delay Time	t _{d(off)}	1	-	520	-	ns
Fall Time	t _f	7	-	50	_	ns
Turn-On Switching Loss	E _{on}	7	-	3.4	_	mJ
Turn-Off Switching Loss	E _{off}	1	-	2.5	_	mJ
Total Switching Loss	E _{ts}		-	5.9	-	mJ
Total Gate Charge	Qg	V _{CE} = 600 V, I _C = 40 A, V _{GE} = 15 V	-	370	-	nC
Gate to Emitter Charge	Q_{ge}		-	23	-	nC
Gate to Collector Charge	Q _{gc}	1	-	210	_	nC

ELECTRICAL CHARACTERISTICS OF THE DIODE (T_J = 25°C unless otherwise noted)

Parametr	Symbol	Test Conditions	Min	Тур	Max	Unit
Diode Forward Voltage	V_{FM}	I _F = 40 A, T _C = 25°C	-	3.8	4.8	V
		I _F = 40 A, T _C = 175°C	-	2.7	_	V
Diode Reverse Recovery Time	t _{rr}	$V_R = 600 \text{ V}, I_F = 40 \text{ A},$ $di_F/dt = 200 \text{ A}/\mu\text{s}, T_C = 25^{\circ}\text{C}$	-	65	_	ns
Diode Peak Reverse Recovery Current	I _{rr}		-	7.2	_	Α
Diode Reverse Recovery Charge	Q _{rr}		-	234	_	nC
Diode Reverse Recovery Time	t _{rr}	$V_R = 600 \text{ V}, I_F = 40 \text{ A}, \\ di_F/dt = 200 \text{ A/}\mu\text{s}, T_C = 175^{\circ}\text{C}$	-	200	-	ns
Diode Peak Reverse Recovery Current	I _{rr}		-	18.0	-	Α
Diode Reverse Recovery Charge	Q _{rr}	7	-	1800	_	nC

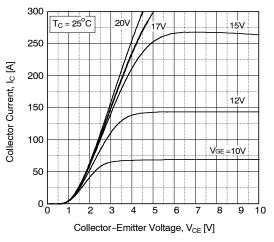


Figure 1. Typical Output Characteristics

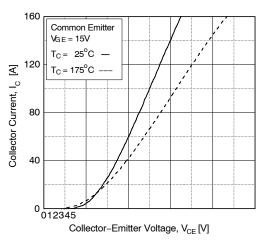


Figure 3. Typical Saturation Voltage Characteristics

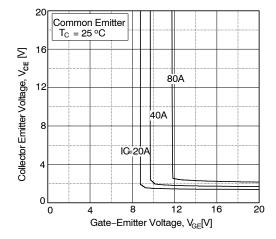


Figure 5. Saturation Voltage vs V_{GE}

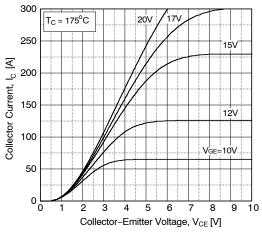


Figure 2. Typical Output Characteristics

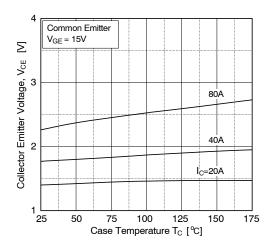


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

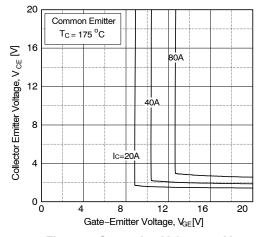


Figure 6. Saturation Voltage vs V_{GE}

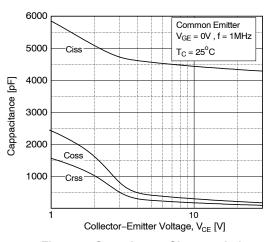


Figure 7. Capacitance Characteristics

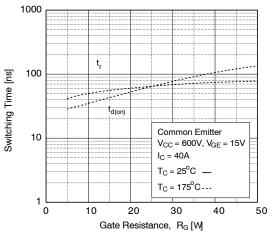


Figure 9. Turn-On Characteristics vs. Gate Resistance

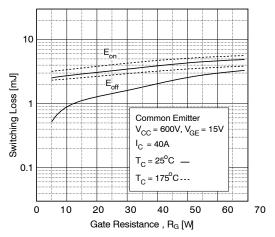


Figure 11. Switching Loss vs. Gate Resistance

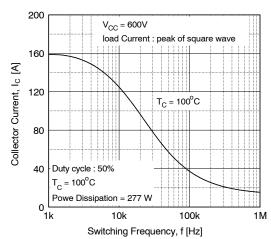


Figure 8. Load Current vs. Frequency

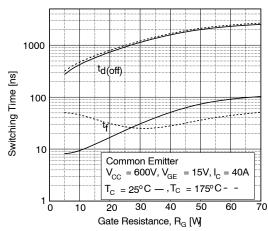


Figure 10. Turn-Off Characteristics vs.
Collector Current



Figure 12. Turn-On Characteristics vs.
Collector Current

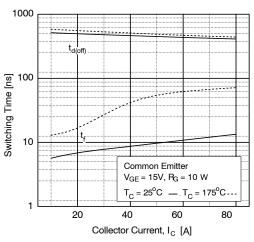


Figure 13. Turn-Off Characteristics vs.
Collector Current

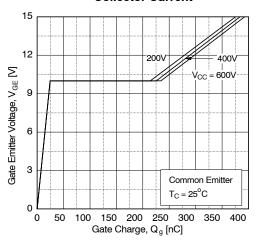


Figure 15. Gate Charge Characteristics

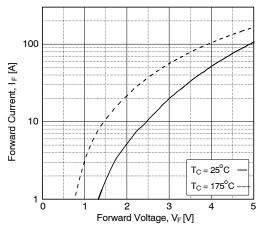


Figure 17. Forward Characteristics

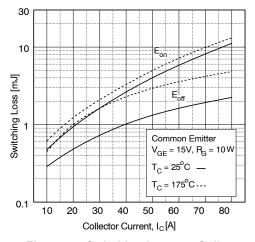


Figure 14. Switching Loss vs. Collector Current

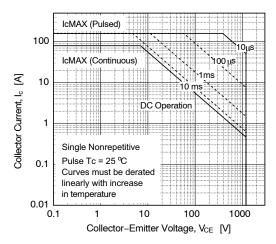


Figure 16. SOA Characteristics

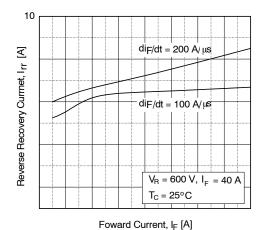


Figure 18. Reverse Recovery Current

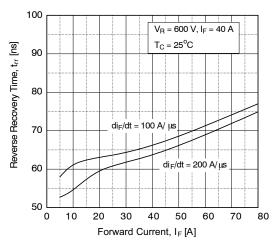


Figure 19. Reverse Recovery Time

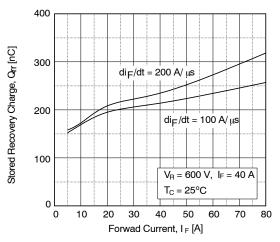


Figure 20. Stored Charge

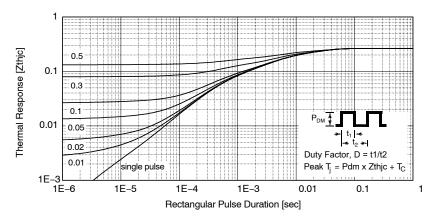
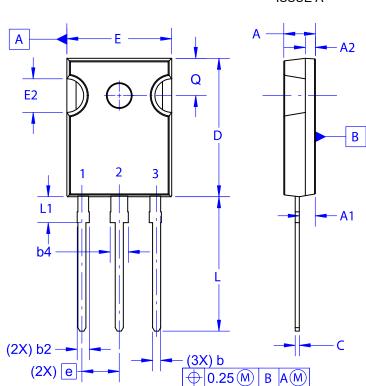
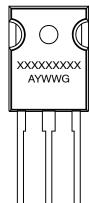



Figure 21. Transient Thermal Impedance of IGBT


TO-247-3LD CASE 340CH **ISSUE A**

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
 D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC **MARKING DIAGRAM***

XXXX = Specific Device Code

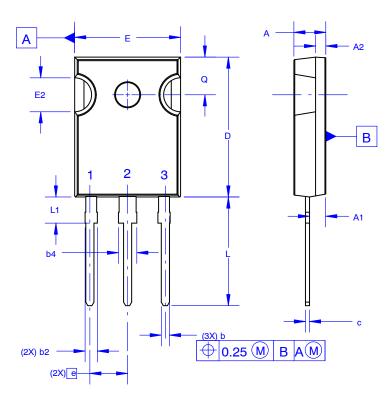
= Assembly Location

WW = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

	D	ATE 0	9 OCT 2019
ØP —	,		Ø P1 D2
S E1 —			D1
21	2		
,			9


DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.29	2.475	2.66		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
ØP1	6.61	6.73	6.85		

DOCUMENT NUMBER:	98AON13853G	Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

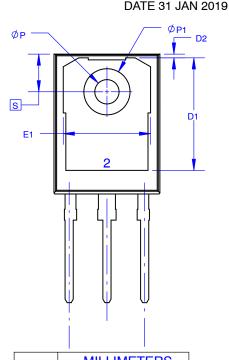
TO-247-3LD SHORT LEAD

CASE 340CK ISSUE A

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code


A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIIVI	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D	20.32	20.57	20.82		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E	15.37	15.62	15.87		
E1	12.81	~	~		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	15.75	16.00	16.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Ø P1	6.60	6.80	7.00		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-247-3LD SHORT LEAD		PAGE 1 OF 1		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.