IGBT - Field Stop, Trench

650 V, 40 A

FGH40T65SHD

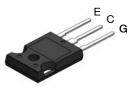
Description

Using novel field stop IGBT technology, ON Semiconductor's new series of field stop 3rd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

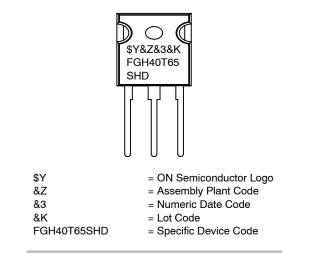
Features

- Maximum Junction Temperature: T_J =175°C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.6 V(Typ.) @ I_C = 40 A$
- 100% of the Parts Tested for I_{LM} (Note 1)
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- This Device is Pb-Free and is RoHS Compliant

Applications


• Solar Inverter, UPS, Welder, Telecom, ESS, PFC

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CH

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS	(T _C = 25°C, unless otherwise specified)
--------------------------	---

Parameter	Symbol	FGH40T65SHD-F155	Unit	
Collector to Emitter Voltage			650	V
Gate to Emitter Voltage		V _{GES}	±20	V
Transient Gate to Emitter Voltage			±30	V
Collector Current	$T_{C} = 25^{\circ}C$	Ι _C	80	А
Collector Current	T _C = 100°C		40	А
Pulsed Collector Current (Note 1) $T_{C} = 25^{\circ}C$		I _{LM}	120	А
Pulsed Collector Current (Note 2)		I _{CM}	120	А
Diode Forward Current	$T_{C} = 25^{\circ}C$		40	А
Diode Forward Current $T_{\rm C} = 100^{\circ}{\rm C}$			20	А
Pulsed Diode Maximum Forward Current (Note 2)		I _{FM}	120	А
Maximum Power Dissipation	$T_{C} = 25^{\circ}C$	PD	268	W
Maximum Power Dissipation $T_{C} = 100^{\circ}C$			134	W
Operating Junction Temperature		TJ	–55 to +175	°C
Storage Temperature Range		T _{stg}	–55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds			300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. $V_{CC} = 400 \text{ V}$, $V_{GE} = 15 \text{ V}$, $I_C = 120 \text{ A}$, $R_G = 30 \Omega$, Inductive Load 2. Repetitive Rating: Pulse width limited by max. junction temperature.

THERMAL CHARACTERISTICS

Characteristic		FGH40T65SHD-F155	Unit	
Thermal Resistance, Junction to Case, Max. (IGBT)	$R_{\theta JC}$	0.56	°C/W	
Thermal Resistance, Junction to Case, Max. (Diode)	$R_{\theta JC}$	1.71	°C/W	
Thermal Resistance, Junction to Ambient, Max.	R_{\thetaJA}	40	°C/W	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH40T65SHD-F155	FGH40T65SHD	TO-247-3	Tube	-	-	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector to Emitter Breakdown Voltage	BV _{CES}	V_{GE} = 0 V, I _C = 1 mA	650	-	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_{CES}/\Delta T_{J}$	I_{C} = 1 mA, Reference to 25°C		0.6		V/°C
Collector Cut-Off Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
G-E Leakage Current	I _{GES}	V_{GE} = V_{GES} , V_{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS						
G-E Threshold Voltage	V _{GE(th)}	I_{C} = 40 mA, V_{CE} = V_{GE}	4.0	5.5	7.5	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 40 A, V _{GF} = 15 V	-	1.6	2.1	V

 I_{C} = 40 A, V_{GE} = 15 V, T_{C} = 175°C

2.14

_

_

ELECTRICAL CHARACTERISTICS OF THE IGBT	Γ (T _C = 25°C unless otherwise noted) (continued)
--	---

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS		-				
Input Capacitance	C _{ies}	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	-	1995	-	pF
Output Capacitance	C _{oes}		-	70	-	pF
Reverse Transfer Capacitance	C _{res}		-	23	-	pF
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$\label{eq:CC} \begin{array}{l} V_{CC} = 400 \text{ V}, \text{ I}_{C} = 40 \text{ A}, \\ R_{G} = 6 \ \Omega, \text{ V}_{GE} = 15 \text{ V}, \\ \text{Inductive Load, } T_{C} = 25^{\circ}\text{C} \end{array}$	-	19.2	-	ns
Rise Time	t _r		-	34.4	_	ns
Turn-Off Delay Time	t _{d(off)}	1	-	65.6	_	ns
Fall Time	t _f		-	9.6	_	ns
Turn–On Switching Loss	E _{on}		-	1010	_	μJ
Turn-Off Switching Loss	E _{off}		-	297	-	μJ
Total Switching Loss	E _{ts}	1	-	1307	-	μJ
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 40 \text{ A},$	-	18.4	-	ns
Rise Time	t _r	$R_G = 6 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 175$ °C	-	32.8	-	ns
Turn-Off Delay Time	t _{d(off)}	1	-	71.2	-	ns
Fall Time	t _f	1	-	14.4	-	ns
Turn-On Switching Loss	E _{on}	1	-	1390	-	μJ
Turn-Off Switching Loss	E _{off}]	-	541	-	μJ
Total Switching Loss	E _{ts}	7	-	1931	-	μJ
Total Gate Charge	Qg	V_{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	-	72.2	-	nC
Gate to Emitter Charge	Q _{ge}	1	-	13.5	-	nC
Gate to Collector Charge	Q _{gc}		-	28.5	-	nC

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Diode Forward Voltage	V _{FM}	I _F = 20 A	$T_{C} = 25^{\circ}C$	-	2.2	2.8	V
			T _C = 175°C	-	1.94	-	
Reverse Recovery Energy	E _{rec}	$I_{\rm F} = 20 {\rm A},$	T _C = 175°C	-	50	-	μJ
Diode Reverse Recovery Time	t _{rr}	dI _F /dt = 200 A/µs	$T_C = 25^{\circ}C$	-	31.8	-	ns
			T _C = 175°C	-	192	-	
Diode Reverse Recovery Charge	Q _{rr}		$T_{C} = 25^{\circ}C$	-	50.6	-	nC
			T _C = 175°C	-	699	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

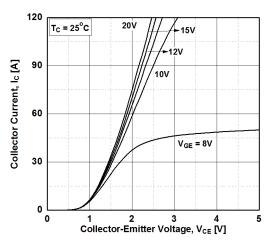


Figure 1. Typical Output Characteristics

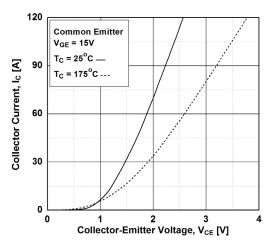


Figure 3. Typical Saturation Voltage Characteristics

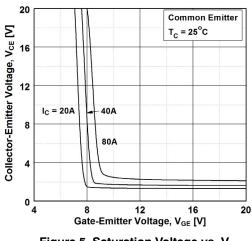
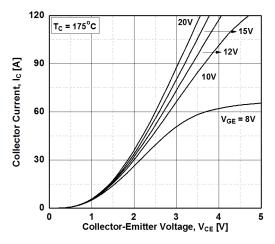



Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Output Characteristics

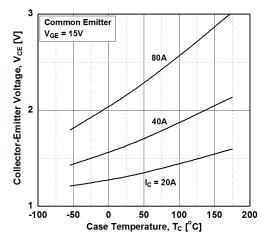


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current

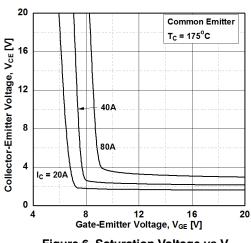


Figure 6. Saturation Voltage vs V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

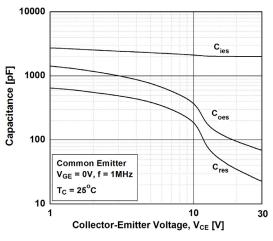


Figure 7. Capacitance Characteristics

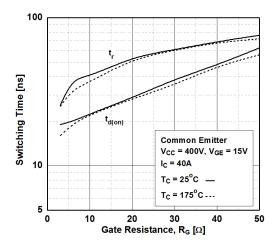


Figure 9. Turn-On Characteristics vs. Gate Resistance

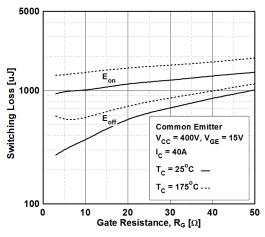
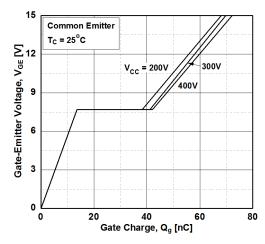
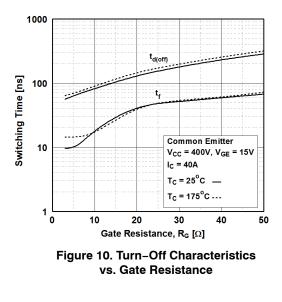
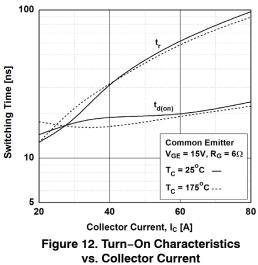
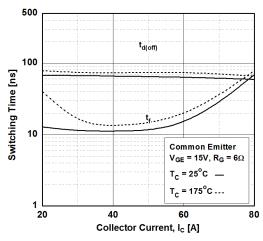
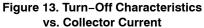


Figure 11. Switching Loss vs. Gate Resistance


Figure 8. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

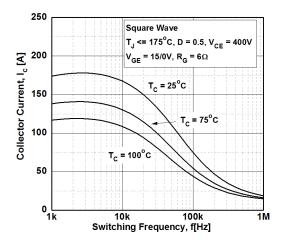


Figure 15. Load Current vs. Frequency

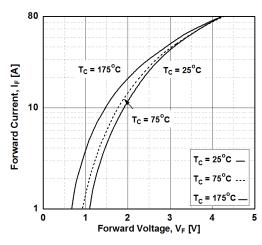


Figure 17. Forward Characteristics

Figure 14. Switching Loss vs. Collector Current

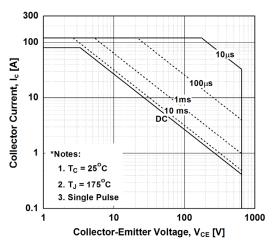
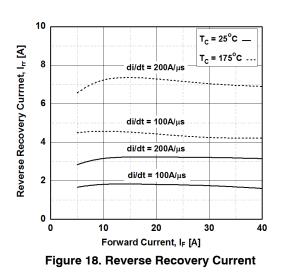



Figure 16. SOA Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

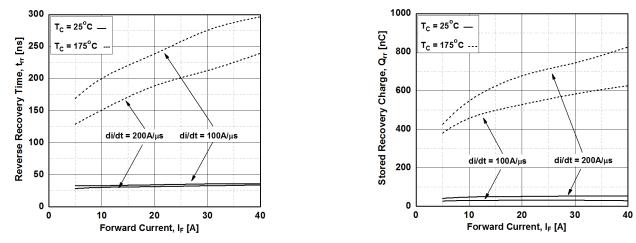


Figure 19. Reverse Recovery Time

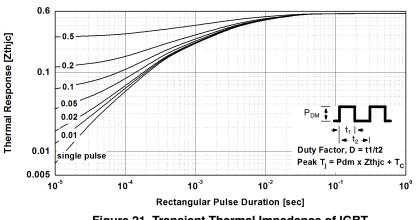
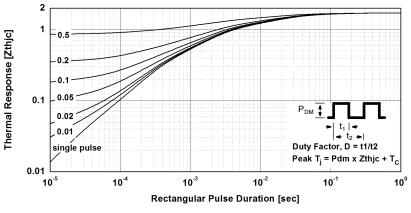
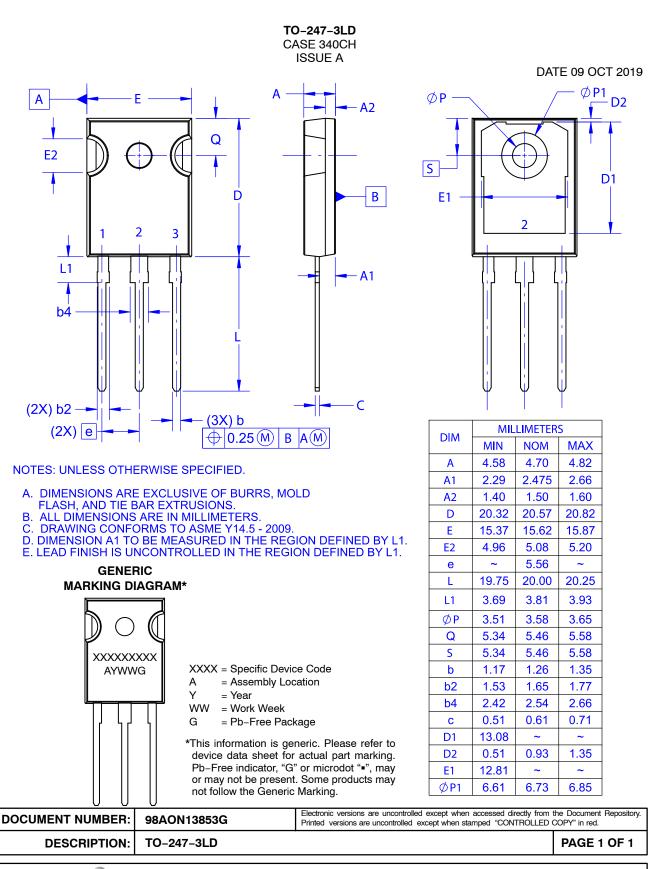




Figure 21. Transient Thermal Impedance of IGBT

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.