# **Ultra Field Stop IGBT,** 1200 V, 60 A

# FGY60T120SQDN

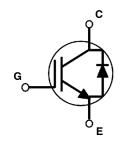
### **General Description**

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Ultra Field Stop Trench construction, and provides superior performance in demanding switching applications, offering both low on-state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

## Features

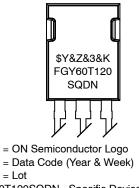
- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature  $T_J = 175^{\circ}C$
- Low Saturation Voltage:  $V_{CE(sat)} = 1.7 \text{ V} (Typ.) @ I_C = 60 \text{ A}$
- 100% of the Parts Tested for I<sub>LM</sub> (Note 1)
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- RoHS Compliant

#### Applications


• Solar Inverter, UPS

| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25°C unless otherwise noted) |                                                                            |             |      |  |  |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|------|--|--|--|
| Symbol                                                                  | Description                                                                | Value       | Unit |  |  |  |
| V <sub>CES</sub>                                                        | Collector to Emitter Voltage                                               | 1200        | V    |  |  |  |
| V <sub>GES</sub>                                                        | Gate to Emitter Voltage                                                    | ±25         | V    |  |  |  |
|                                                                         | Transient Gate to Emitter Voltage                                          | ±30         | V    |  |  |  |
| Ι <sub>C</sub>                                                          | Collector Current @ (T <sub>C</sub> = 25°C)                                | 120         | А    |  |  |  |
|                                                                         | Collector Current @ (T <sub>C</sub> = 100°C)                               | 60          | А    |  |  |  |
| I <sub>LM</sub> (1)                                                     | Pulsed Collector Current @ (T <sub>C</sub> = 25°C)                         | 240         | А    |  |  |  |
| I <sub>CM</sub> (2)                                                     | Pulsed Collector Current                                                   | 240         | А    |  |  |  |
| ١ <sub>F</sub>                                                          | Diode Forward Current @ (T <sub>C</sub> = $25^{\circ}$ C)                  | 120         | А    |  |  |  |
|                                                                         | Diode Forward Current @ (T <sub>C</sub> =100°C)                            | 60          | А    |  |  |  |
| I <sub>FM</sub>                                                         | Pulsed Diode Max. Forward Current                                          | 240         | А    |  |  |  |
| PD                                                                      | Maximum Power Dissipation                                                  | 517         | W    |  |  |  |
|                                                                         | @ (T <sub>C</sub> = 25°C)<br>@ (T <sub>C</sub> =100°C)                     | 259         | W    |  |  |  |
| TJ                                                                      | Operating Junction Temperature                                             | –55 to +175 | °C   |  |  |  |
| T <sub>stg</sub>                                                        | Storage Temperature Range                                                  | –55 to +175 | °C   |  |  |  |
| TL                                                                      | Maximum Lead Temp. For soldering<br>Purposes, 1/8" from case for 5 seconds | 300         | °C   |  |  |  |
|                                                                         |                                                                            |             |      |  |  |  |




# **ON Semiconductor®**

www.onsemi.com





# MARKING DIAGRAM



&K FGY60T120SQDN= Specific Device Code

&Y

&3

# **ORDERING INFORMATION**

See detailed ordering and shipping information on page 3 of this data sheet.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. VCC = 800 V, V<sub>GE</sub> = 15 V, I<sub>C</sub> = 240 A,  $\dot{R}_{G}$  = 68  $\Omega$ , Inductive Load

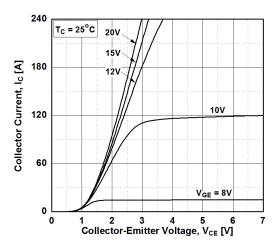
2. Repetitive rating: Pulse width limited by max. Junction temperature

#### THERMAL CHARACTERISTICS

| Symbol                  | Parameter                                     | FGY60T120SQDN | Unit |
|-------------------------|-----------------------------------------------|---------------|------|
| R <sub>θJC</sub> (IGBT) | Thermal Resistance, Junction to Case, Max.    | 0.29          | °C/W |
| $R_{\theta JC}$ (Diode) | Thermal Resistance, Junction to Case, Max.    | 0.42          |      |
| $R_{\theta JA}$         | Thermal Resistance, Junction to Ambient, Max. | 40            | °C/W |

# **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = $25^{\circ}$ C unless otherwise noted)

| Symbol               | Parameter                               | Test Condition                                                                             | Min. | Тур.  | Max. | Unit |
|----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|------|-------|------|------|
| OFF CHARA            | ACTERISTICS                             |                                                                                            | •    | •     |      |      |
| BV <sub>CES</sub>    | Collector to Emitter Breakdown Voltage  | $V_{GE}$ = 0V, $I_C$ = 500 $\mu$ A                                                         | 1200 | -     | -    | V    |
| I <sub>CES</sub>     | Collector Cut-Off Current               | $V_{CE} = V_{CES}, V_{GE} = 0 V$                                                           | -    | -     | 400  | μA   |
| I <sub>GES</sub>     | G-E Leakage Current                     | $V_{GE} = V_{GES}, V_{CE} = 0 V$                                                           | -    | -     | ±200 | nA   |
| ON CHARAC            | CTERISTICS                              |                                                                                            |      |       |      |      |
| V <sub>GE(th)</sub>  | G-E Threshold Voltage                   | $I_C$ = 400 $\mu$ A, $V_{CE}$ = $V_{GE}$                                                   | 4.5  | 5.5   | 6.5  | V    |
|                      |                                         | I <sub>C</sub> = 60 A <sub>,</sub> V <sub>GE</sub> = 15 V                                  | -    | 1.7   | 1.95 | V    |
| V <sub>CE(sat)</sub> | Collector to Emitter Saturation Voltage | $I_{C} = 60 \text{ A}, \text{ V}_{GE} = 15 \text{ V}, \text{ T}_{C} = 175^{\circ}\text{C}$ | -    | 2.3   | -    | v    |
|                      | HARACTERISTICS                          |                                                                                            | +    | •     |      | 1    |
| C <sub>ies</sub>     | Input Capacitance                       |                                                                                            | -    | 7147  | -    | pF   |
| Coes                 | Output Capacitance                      | V <sub>CE</sub> = 20 V, V <sub>GE</sub> = 0 V,<br>f = 1 MHz                                | -    | 203   | -    | pF   |
| C <sub>res</sub>     | Reverse Transfer Capacitance            |                                                                                            | -    | 114   | -    | pF   |
| SWITCHING            | CHARACTERISTICS                         |                                                                                            |      |       |      |      |
| t <sub>d(on)</sub>   | Turn-On Delay Time                      |                                                                                            | -    | 52    | -    | ns   |
| tr                   | Rise Time                               | $V_{CC}$ = 600 V, I <sub>C</sub> = 60 A, R <sub>G</sub> = 10 Ω,                            | -    | 84    | -    | ns   |
| td(off)              | Turn-Off Delay Time                     | V <sub>GE</sub> = 15 V,                                                                    | -    | 296   | -    | ns   |
| t <sub>f</sub>       | Fall Time                               | Inductive Load, T <sub>C</sub> = 25°C                                                      | -    | 56    | -    | ns   |
| Eon                  | Turn-On Switching Loss                  |                                                                                            | -    | 5.15  | -    | mJ   |
| Eoff                 | Turn–Off Switching Loss                 |                                                                                            | -    | 1.82  | -    | mJ   |
| Ets                  | Total Switching Loss                    |                                                                                            | -    | 6.97  | -    | mJ   |
| td(on)               | Turn-On Delay Time                      |                                                                                            | -    | 40    | -    | ns   |
| tr                   | Rise Time                               | $V_{CC}$ = 600 V, I <sub>C</sub> = 60 A, R <sub>G</sub> = 10 Ω,                            | -    | 72    | -    | ns   |
| td(off)              | Turn-Off Delay Time                     | V <sub>GE</sub> = 15 V,                                                                    | -    | 324   | -    | ns   |
| t <sub>f</sub>       | Fall Time                               | Inductive Load, T <sub>C</sub> = 175°C                                                     | -    | 144   | -    | ns   |
| Eon                  | Turn-On Switching Loss                  |                                                                                            | -    | 7.18  | -    | mJ   |
| Eoff                 | Turn-Off Switching Loss                 |                                                                                            | -    | 3.1   | -    | mJ   |
| Ets                  | Total Switching Loss                    |                                                                                            | -    | 10.28 | -    | mJ   |
| Qg                   | Total Gate Charge                       |                                                                                            | -    | 311   | -    | nC   |
| Qge                  | Gate to Emitter Charge                  | $V_{CE}$ = 600 V, $I_{C}$ = 60 A, $V_{GE}$ = 15 V                                          | -    | 57    | -    | nC   |
| Qgc                  | Gate to Collector Charge                |                                                                                            | _    | 153   | _    | nC   |


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

# **ELECTRICAL CHARACTERISTICS OF THE DIODE** (T<sub>C</sub> = $25^{\circ}$ C unless otherwise noted)

| Symbol           | Parameter                      | Test Condition        |                        | Min. | Тур. | Max. | Unit |
|------------------|--------------------------------|-----------------------|------------------------|------|------|------|------|
|                  |                                |                       | T <sub>C</sub> = 25°C  | -    | 3.4  | 4    |      |
| V <sub>FM</sub>  | Diode Forward Voltage          |                       | T <sub>C</sub> = 175°C | -    | 3.2  | -    | V    |
| t <sub>rr</sub>  | Diode Reverse Recovery Time    |                       | T <sub>C</sub> = 25°C  | -    | 91   | -    |      |
|                  |                                |                       | T <sub>C</sub> = 175°C | -    | 309  | -    | ns   |
| Q <sub>rr</sub>  | Diode Reverse Recovery Charge  | I <sub>F</sub> = 60 A | $T_{C} = 25^{\circ}C$  | _    | 860  | -    | nC   |
|                  |                                |                       | T <sub>C</sub> = 175°C | -    | 4902 | -    |      |
| I <sub>rrm</sub> | Diode Reverse Recovery Current |                       | T <sub>C</sub> = 25°C  | _    | 19   | _    | А    |
|                  |                                |                       | T <sub>C</sub> = 175°C | -    | 32   | _    |      |

#### PACKAGE MARKING AND ORDERING INFORMATION

| Part Number   | Top Marking   | Package                 | Quantity |
|---------------|---------------|-------------------------|----------|
| FGY60T120SQDN | FGY60T120SQDN | TO-247-3LD<br>(Pb-Free) | 30/Tube  |



**Figure 1. Typical Output Characteristics** 

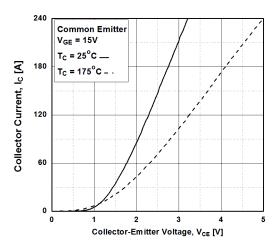
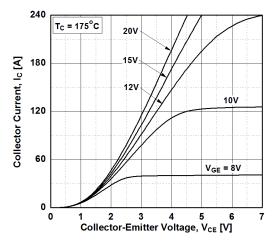




Figure 3. Typical Saturation Voltage Characteristics



Figure 5. Saturation Voltage vs.  $V_{GE}$ 



**Figure 2. Typical Output Characteristics** 

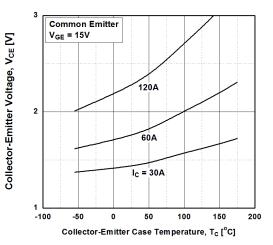



Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

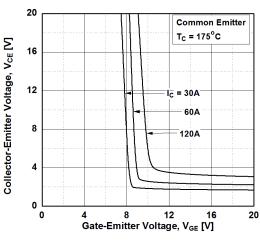
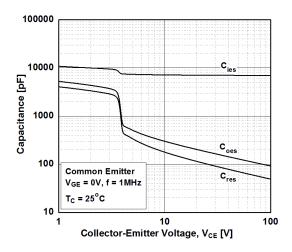




Figure 6. Saturation Voltage vs. V<sub>GE</sub>





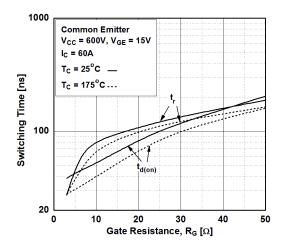



Figure 9. Turn-on Characteristics vs. Gate Resistance

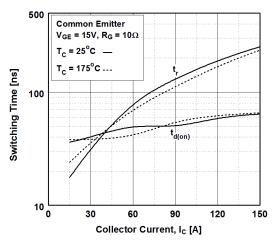



Figure 11. Turn-on Characteristics vs. Collector Current

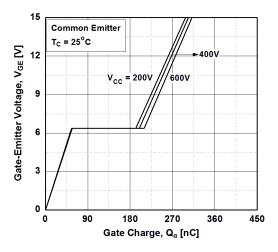



Figure 8. Gate charge Characteristics

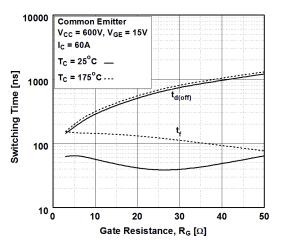



Figure 10. Turn-off Characteristics vs. Gate Resistance

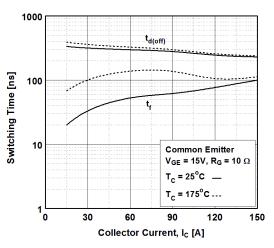
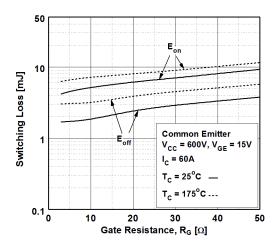
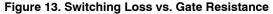





Figure 12. Turn-off Characteristics vs. Collector Current





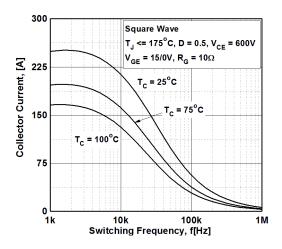



Figure 15. Load Current vs. Frequency

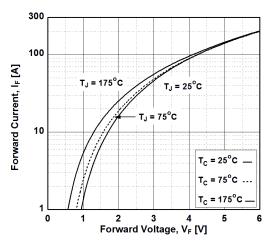



Figure 17. Forward Characteristics

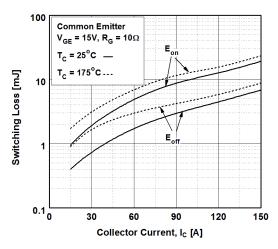
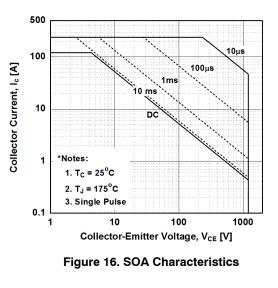




Figure 14. Switching Loss vs. Collector Current



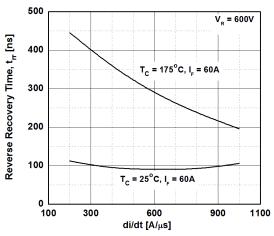



Figure 18. Reverse Recovery Time vs. di<sub>F</sub>/dt

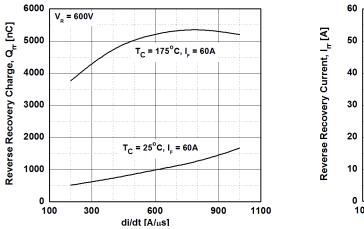



Figure 19. Reverse Recovery Charge vs. di<sub>F</sub>/dt

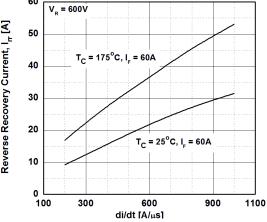



Figure 20. Reverse Recovery Current vs. di<sub>F</sub>/dt

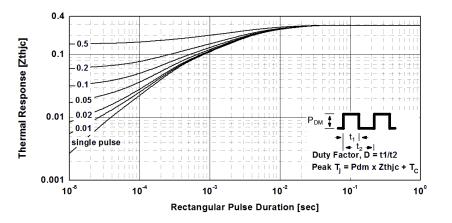



Figure 21. Transient Thermal Impedance if IGBT

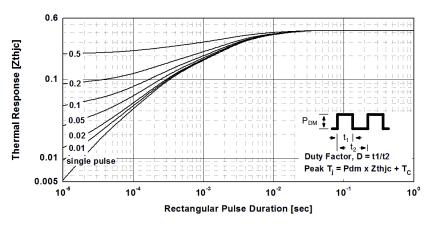
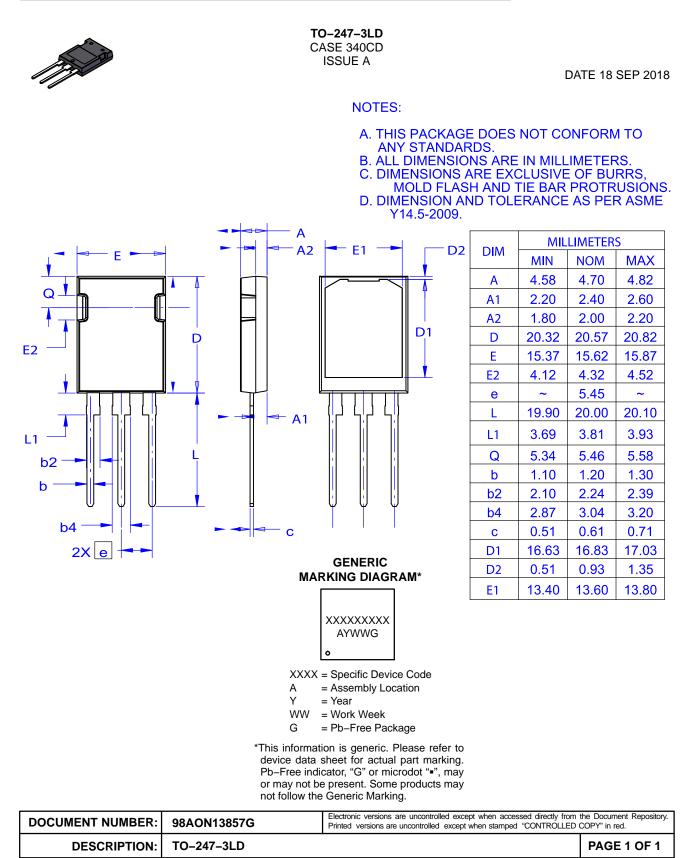




Figure 22. Transient Thermal Impedance if Diode





ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.