

Ultra Field Stop IGBT, 1200 V, 75 A

FGY75T120SQDN

General Description

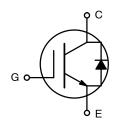
This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Ultra Field Stop Trench construction, and provides superior performance in demanding switching applications, offering both low on-state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co-packaged free wheeling diode with a low forward voltage.

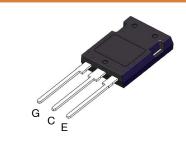
Features

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature: $T_J = 175$ °C
- Low Saturation Voltage: $V_{CE(sat)} = 1.7 \text{ V (Typ.)}$ @ $I_C = 75 \text{ A}$
- 100% of the Parts Tested for I_{LM}(1)
- Soft Fast Reverse Recovery Diode
- Optimized for High Speed Switching
- RoHS Compliant

Applications

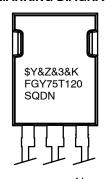
• Solar Inverter, UPS


ABSOLUTE MAXIMUM RATINGS


(T_J = 25°C unless otherwise stated)

Symbol	Parameter	Value	Unit
V _{CES}	Collector to Emitter Voltage	1200	V
V_{GES}	Gate to Emitter Voltage	±20	V
	Transient Gate to Emitter Voltage	±30	V
I _C	Collector Current @ T _C = 25°C	150	Α
	Collector Current @ T _C = 100°C	75	Α
I _{LM} (1)	Pulsed Collector Current @ T _C = 25°C	300	Α
I _{CM} (2)	Pulsed Collector Current	300	Α
I _F	Diode Forward Current @ T _C = 25°C	150	Α
	Diode Forward Current @ T _C = 100°C	75	Α
I _{FM}	Pulsed Diode Max. Forward Current	300	Α
P _D	Maximum Power Dissipation @ T _C = 25°C @ T _C = 100°C	790 395	W
T _J	Operating Junction Temperature	-55 to +175	°C
T _{stg}	Storage Temperature Range	-55 to +175	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 s	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. V_{CC} = 800 V, V_{GE} = 15 V, I_{C} = 300 A, R_{G} = 68 Ω , Inductive Load.
- 2. Repetitive rating: Pulse width limited by max. junction temperature.

TO-247-3LD CASE 340CD

MARKING DIAGRAM

&Y = onsemi Logo &Z = Assembly Plant Code &3 = Date Code (Year & Week) &K = Lot Run Traceability Code FGY75T120SQDN = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
R _{θJC} (IGBT)	Thermal Resistance, Junction to Case, Max.	0.19	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case, Max.	0.38	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

ELECTRICAL CHARACTERISTICS OF THE IGBT ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS				•	•
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0 V, I_C = 500 μ A	1200	_	_	V
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	400	μΑ
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	±200	nA
ON CHARAC	TERISTICS				•	•
V _{GE(th)}	G-E Threshold Voltage	$I_C = 400 \mu A, V_{CE} = V_{GE}$	4.5	5.5	6.5	V
V _{CE(sat)}	Collector to Emitter Saturation	I _C = 75 A, V _{GE} = 15 V	-	1.7	1.95	V
	Voltage	I _C = 75 A, V _{GE} = 15 V, T _C = 175°C	-	2.3	_	V
DYNAMIC CH	ARACTERISTICS					
C _{ies}	Input Capacitance	V _{CE} = 20 V _, V _{GE} = 0 V, f = 1 MHz	-	9060	_	pF
C _{oes}	Output Capacitance	7 1	-	242	-	pF
C _{res}	Reverse Transfer Capacitance	7 1	-	137	-	pF
SWITCHING (CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 75 \text{ A},$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$	-	64	_	ns
t _r	Rise Time		-	96	-	ns
t _{d(off)}	Turn-Off Delay Time		-	332	-	ns
t _f	Fall Time	7 1	-	28	-	ns
E _{on}	Turn-On Switching Loss	7 1	-	6.25	-	mJ
E _{off}	Turn-Off Switching Loss	7 1	-	1.96	-	mJ
E _{ts}	Total Switching Loss	7 1	-	8.21	-	mJ
t _{d(on)}	Turn-On Delay Time	V _{CC} = 600 V, I _C = 75 A,	-	56	-	ns
t _r	Rise Time	R_G = 10 Ω, V_{GE} = 15 V, Inductive Load, T_C = 175°C	-	80	-	ns
t _{d(off)}	Turn-Off Delay Time	7 1	-	364	-	ns
t _f	Fall Time	7 1	-	88	-	ns
E _{on}	Turn-On Switching Loss	- - -	_	8.67	-	mJ
E _{off}	Turn-Off Switching Loss		_	3.2	-	mJ
E _{ts}	Total Switching Loss		-	11.87	-	mJ
Qg	Total Gate Charge	V _{CE} = 600 V, I _C = 75 A, V _{GE} = 15 V	-	399	-	nC
Q _{ge}	Gate to Emitter Charge		-	74	-	nC
Q _{gc}	Gate to Collector Charge	7 1	_	192	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V_{FM}	Diode Forward Voltage	I _F = 75 A	T _C = 25°C	-	3.4	4	V
			T _C = 175°C	-	2.7	-	
t _{rr}	Diode Reverse Recovery	V _R = 600 V, I _F = 75 A, dI _F /	T _C = 25°C	-	99	-	ns
	Time	dt = 500 A/μs	T _C = 175°C	-	329	-	
Q_{rr}	Diode Reverse Recovery		T _C = 25°C	-	1001	-	nC
	Charge		T _C = 175°C	-	5696	-	
I _{rrm}	Diode Reverse Recovery Current		T _C = 25°C	-	20	-	Α
	Current		T _C = 175°C	ı	34	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Shipping
FGY75T120SQDN	FGY75T120SQDN	TO-247-3LD (Pb-Free)	30 / Tube

TYPICAL CHARACTERISTICS

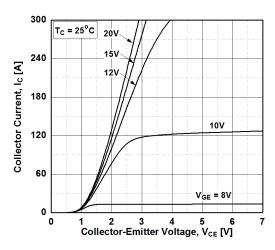


Figure 1. Typical Output Characteristics (25°C)

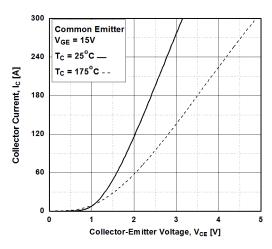


Figure 3. Typical Saturation Voltage Characteristics

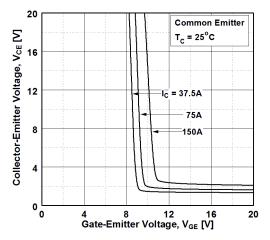


Figure 5. Saturation Voltage vs. V_{GE} (25°C)

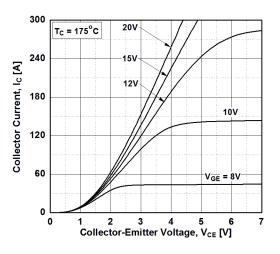


Figure 2. Typical Output Characteristics (175°C)

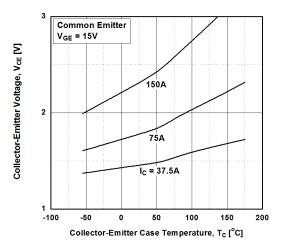


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

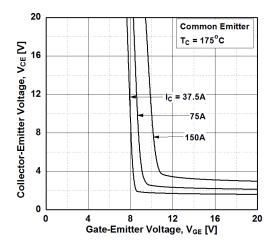


Figure 6. Saturation Voltage vs. V_{GE} (175°C)

TYPICAL CHARACTERISTICS

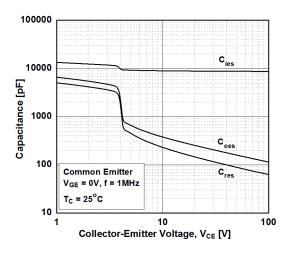
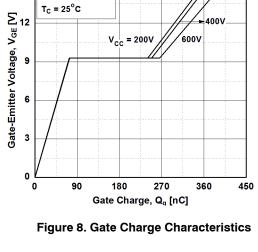



Figure 7. Capacitance Characteristics

Common Emitter

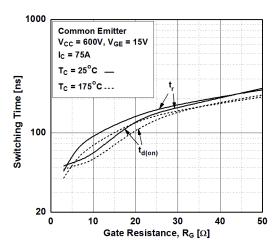


Figure 9. Turn-On Characteristics vs.

Gate Resistance

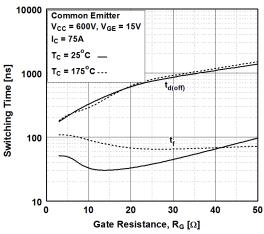


Figure 10. Turn-Off Characteristics vs.
Gate Resistance

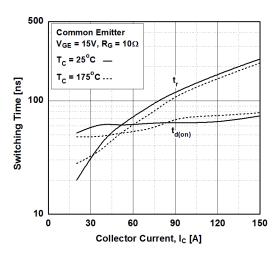


Figure 11. Turn-On Characteristics vs.
Collector Current

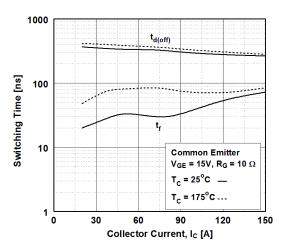


Figure 12. Turn-Off Characteristics vs.
Collector Current

TYPICAL CHARACTERISTICS

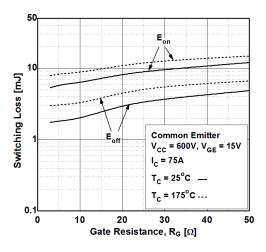


Figure 13. Switching Loss vs. Gate Resistance

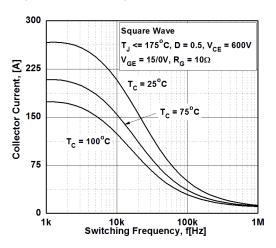


Figure 15. Load Current vs. Frequency

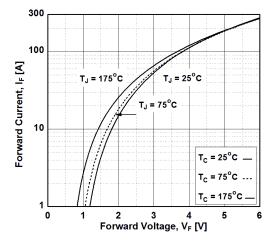


Figure 17. Forward Characteristics

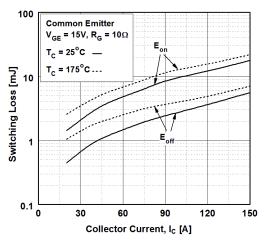


Figure 14. Switching Loss vs. Collector Current

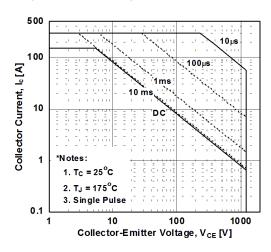


Figure 16. SOA Characteristics

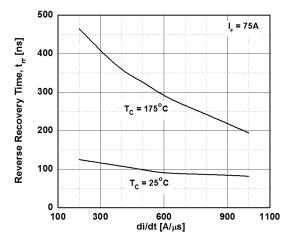
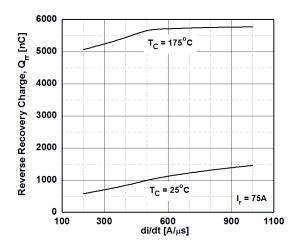



Figure 18. Reverse Recovery Time vs. di_F/dt

TYPICAL CHARACTERISTICS

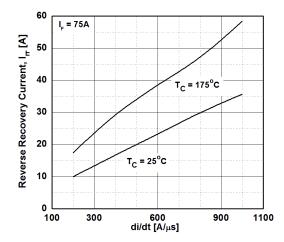


Figure 19. Reverse Recovery Charge vs. di_F/dt

Figure 20. Reverse Recovery Current vs. di_F/dt

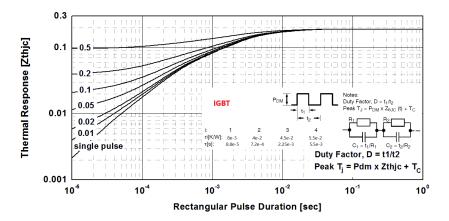


Figure 21. Transient Thermal Impedance of IGBT

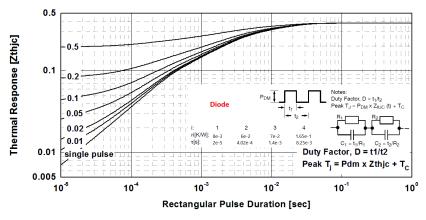
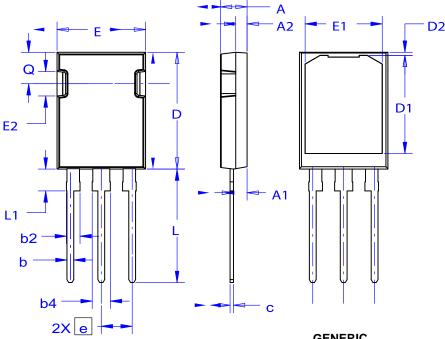


Figure 22. Transient Thermal Impedance of Diode



TO-247-3LD CASE 340CD ISSUE A

DATE 18 SEP 2018

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY STANDARDS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	4.58	4.70	4.82	
A 1	2.20	2.40	2.60	
A2	1.80	2.00	2.20	
D	20.32	20.57	20.82	
Е	15.37	15.62	15.87	
E2	4.12	4.32	4.52	
е	~	5.45	~	
L	19.90	20.00	20.10	
L1	3.69	3.81	3.93	
Q	5.34	5.46	5.58	
b	1.10	1.20	1.30	
b2	2.10	2.24	2.39	
b4	2.87	3.04	3.20	
С	0.51	0.61	0.71	
D1	16.63	16.83	17.03	
D2	0.51	0.93	1.35	
E1	13.40	13.60	13.80	

GENERIC MARKING DIAGRAM*

XXXXXXXX AYWWG

XXXX = Specific Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13857G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.