ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

ON Semiconductor®

FJP13007 High Voltage Fast-Switching NPN Power Transistor

Features

- High Voltage High Speed Power Switch Application
- High Voltage Capability
- · High Switching Speed
- Suitable for Electronic Ballast and Switching Mode Power Supply

1.Base 2.Collector 3.Emitter

Ordering Information

Part Number	Top Mark	Package	Packing Method
FJP13007TU	J13007	TO-220 3L (Dual Gauge)	Rail
FJP13007H1TU	J13007-1	TO-220 3L (Single Gauge)	Rail
FJP13007H1TU-F080	J13007-1	TO-220 3L (Dual Gauge)	Rail
FJP13007H2TU	J13007-2	TO-220 3L (Dual Gauge)	Rail
FJP13007H2TU-F080	J13007-2	TO-220 3L (Dual Gauge)	Rail

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	700	V
V _{CEO}	Collector-Emitter Voltage	400	V
V _{EBO}	Emitter-Base Voltage	9	V
I _C	Collector Current (DC)	8	Α
I _{CP}	Collector Current (Pulse)	16	Α
I _B	Base Current (DC)	4	Α
P _C	Collector Dissipation (T _C = 25°C)	80	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-65 to 150	°C

Electrical Characteristics

Values are at $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_C = 10 \text{ mA}, I_B = 0$	400			V
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 9 V, I _C = 0			1	mA
h _{FE} 1	DC Current Gain ⁽¹⁾	V _{CE} = 5 V, I _C = 2 A	8		60	
h _{FE} 2	DC Current Gain ⁽¹⁾	$V_{CE} = 5 \text{ V}, I_{C} = 5 \text{ A}$	5		30	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_C = 2 \text{ A}, I_B = 0.4 \text{ A}$			1.0	V
		I _C = 5 A, I _B = 1 A			2.0	
		I _C = 8 A, I _B = 2 A			3.0	
\/ (cat)	Collector Page Saturation Voltage	$I_C = 2 A, I_B = 0.4 A$			1.2	V
V _{BE} (sat) Collector-Ba	Collector-Base Saturation Voltage	I _C = 5 A, I _B = 1 A			1.6	v
f _T	Current Gain Bandwidth Product	$V_{CE} = 10 \text{ V}, I_{C} = 0.5 \text{ A}$	4			MHz
C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V, } f = 0.1 \text{ MHz}$		110		pF
t _{ON}	Turn-On Time	$V_{CC} = 125 \text{ V}, I_{C} = 5 \text{ A},$			1.6	μs
t _{STG}	Storage Time	$I_{B1} = -I_{B2} = 1 A,$			3.0	μs
t _F	Fall Time	$R_L = 25 \Omega$			0.7	μs

Note:

1. Pulse test: pw \leq 300 μ s, duty cycle \leq 2%.

h_{FE} Classification

Classification	H1	H2
h _{FE} 1	15 ~ 28	26 ~ 39

Typical Performance Characteristics

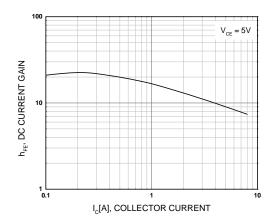


Figure 1. DC Current Gain

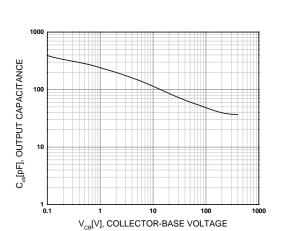


Figure 3. Collector Output Capacitance

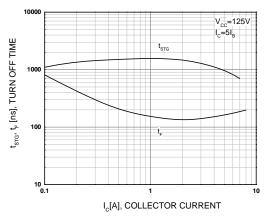


Figure 5. Turn-Off Time

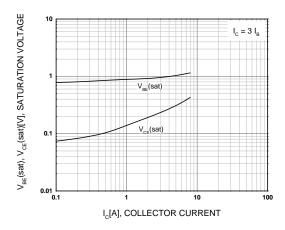


Figure 2. Saturation Voltage

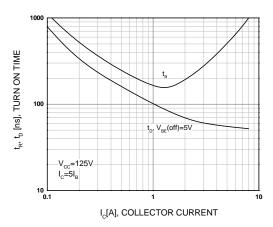


Figure 4. Turn-On Time

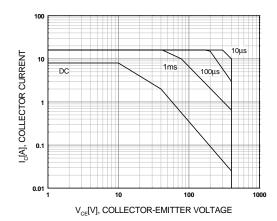


Figure 6. Forward Biased Safe Operating Area

Typical Performance Characteristics (Continued)

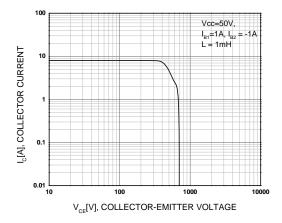


Figure 7. Reverse Biased Safe Operating Area

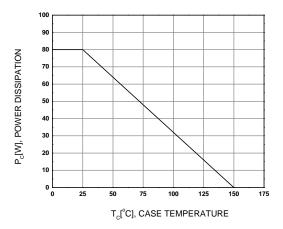


Figure 8. Power Derating