HiBay LED Heat Sink

Wakefield-Vette's HiBay LED Heat Sink is the optimal choice for any of the industries LED array's that require a natural convection cooling method.

The unique mounting puck allows for machining patterns for historical, current, and future LED Module Hole Patterns for manufacturers such as Bridgelux, Cree, Dialight, Lumileds, etc.

The HiBay Series is available in different lengths as well as pre-machined for your specific array.

Part Number	x xx Length Dimension	(in
1 art Number	A.AA LUNGUI DIIIIUIISIOII	

	0	•
124212	6	
124213	8	
124214	10	
124215	12	

*Other Lengths Available Upon Request

50

80

60 50 40

67 (C) 61 (C)

rise above ambi

료 30 프 20

0

Contact Wakefield-Vette for Custom Machining Patterns

*Thermal Performance based on a 40mm LED device.

---6in ---8in ----10in ----12in

Power (W)

100

150

Thermal Performance

Thermal Cooling Solutions from Smart to Finish

200

www.wakefield-vette.com

250

HiBay LED Heat Sink Assembly are identical with the exception of the overall extrusion length as identified with the x.xx dimension.

DUAL LED Heat Sink- Active & Passive w/ Fan Attachment

Wakefield- Vette's DUAL LED Series heat sinks are extremely versatile for a customer's application whether they require either an active or passive solutions. Each DUAL LED Heat Sink has a built-in option which lets the customer add a standard, silent fan in less than a minute, with just four screws, and get more than a *five-times improvement* in thermal resistance and wattage rating up to 750 watts.

Features:

- Single-Piece Forged-Aluminum Construction For Low Thermal Resistance & Compact Form-Factor
- Eleven Models Ranging from 58 mm to 225 mm Diameter with Thermal Resistance As Low As 0.35 Deg C/W For Passive Cooling up to 150 Watts
- Compatible with all SMD LED arrays, COBs, and "Driverless" AC-LED's From All Major LED manufacturers

WKV Part Number	Diameter (mm)	Height (mm)	Passive Thermal Resistance (C/W)	Maximum LED Watts (@25C Ambient)	Active Thermal Res (C/W)*	Active Watts (@25C Ambient)
DUALLED-5830	58	30	5.90	6	1.18	48
DUALLED-5850	58	50	3.90	13	0.78	70
DUALLED-5880	58	80	3.35	15	0.67	85
DUALLED-6830	68	30	4.00	12	0.80	72
DUALLED-6850	68	50	3.20	16	0.64	90
DUALLED-6880	68	80	2.70	19	0.54	105
DUALLED-13030	130	30	2.80	18	0.56	102
DUALLED-13050	130	50	1.05	33	0.21	260
DUALLED-13080	130	80	0.83	60	0.17	340
DUALLED-19037	190	37	0.70	75	0.14	400
DUALLED-22560	225	60	0.35	150	0.08	750

*Contact Wakefield-Vette for Active Cooling Conditions and Recommendations

See following pages for High Performance Active Solutions

DUAL LED Heat Sink- Active & Passive w/ Fan Attachment

All DUAL LED heatsinks have pre-drilled and tapped holes in the baseplate so that a fan can be attached to the pin side (blowing air <u>into</u> the pins) with just four 6-62 screws of proper length (or longer screws with appropriate washers or spacers. Wakefield-Vette lists the DUAL LED heat sinks and suggested fan type to achieve silent operation and life expectancy approaching 100,000 hours. Please note that we recommend fans with dualball-bearing and DC brushless type motors.

For Use in Active Cooling Mode ...

The heat sinks are manufactured to accept four 6-32 screws, which can be inserted through the four fanmounting holes and into the four tapped holes in the baseplate. Fan power to achieve the rated thermal resistance should be < 1 Watt. Please contact Wakefield-Vette to discuss power supply and fan options.

Please take into consideration the heat sink total height and fan thickness when selecting the length of 6-32 screws to be used. If slightly longer screws are purposely used to ensure extension beyond the heat sink baseplate (>1/4"), then standard 6-32 hex standoffs can be employed to enable a variety of enclosure attachment/mounting methods.

Recommended hardware for fan mounting in active-cooling mode:

WKV Part Number	Diameter (mm)	Height (mm)	Base Thickness (mm)	Fan Diameter (mm)	Active Thermal Res (C/W)*	Active Watts (@25C Ambient)
DUALLED-5830	58	30	5	40	1.18	48
DUALLED-5850	58	50	5	40	0.78	70
DUALLED-5880	58	80	5	40	0.67	85
DUALLED-6830	68	30	5	40	0.80	72
DUALLED-6850	68	50	5	40	0.64	90
DUALLED-6880	68	80	5	40	0.54	105
DUALLED-13030	130	30	10	80	0.56	102
DUALLED-13050	130	50	10	80	0.21	260
DUALLED-13080	130	80	10	80	0.17	340
DUALLED-19037	190	37	5	120	0.14	400
DUALLED-22560	225	60	10	120	0.08	750

DUAL LED Heat Sink- Active & Passive w/ Fan Attachment

Fan-attachment –-Hole locations::

DUAL LED Heat Sink- Active & Passive w/ Fan Attachment

Fan-attachment -- Hole locations (holes tapped for 6-32 thread:

190 mm diameter/120mm fan

FLOWLED Heat Sink

Features:

- Thermal resistance range Rth(7.69℃/W; 5.0℃/W; 4.17℃/W).
- Radial design with mounting holes foreseen for direct mounting of a wide range of LED modules and COB's: Diameter 48mm -110mm
- Extruded from highly conductive aluminum.
- Black anodized

Compatible with:

- Xicato XSM, XIM,XTM;
- Bridgelux ESS, ESR, Vero 10, Vero 13, Vero 18 V-series;
- Citizen CLL022-CLU024, CLL032-CLU034;
- Cree XLamp CXA13xx, CXA15xx, CSA18xx;
- Lumileds Luxeon COB's 1203, 1204, 1205, Luxeon K arrays K12, K16;
- Osram PrevaLED Core, SOLERIQ P and SOLERIQ S LED engines.
- Seoul Semiconductor ZC6, ZC12, ZC18, ZC25;
- Tridonic TALEXXmodule SLE modules;
- LG Innotek LEMWM18 10W, 13W, 17W
- Edison EdiLex SLM and EdiLex II COB LED engines.
- Lustrous LUSTRON 6 series LL604F, LL608D, LL613F, LL620F
- Prolight Opto PABS, PABA, PACB, PANA
- Samung LC013,LC019,LC026 COB LED engines.
- SHARP Mini Zenigata Intermo and Mega Zenigata LED engines.
- Philips Fortimo SLM LED engines.
- Vossloh-Schwabe LUGA Shop LED engines.
- Luminus C##9,C##14 LED engines.

FLOWLED Heat Sink

38mm Diameter

Thermal Data FLOWLED-3820

Pd = Pe x H t (1-ηL) 1 t (M) Pd 1.8 2.7		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb(℃)・
	0.9	15.4	14
(M)Pd	1.8	13.4	24.5
ower	2.7	12.4	34
ated P	3.6	11.4	42
Dissip	4.5	10.9	50

Dissipated Power Pd(W)

Thermal Data FLOWLED-3850

Pd (`	= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)
	1.4	9.8	14
(W)bq	2.8	8.4	24
ower I	4.2	7.7	33.2
ated P	5.6	7.2	41.6
Dissip	7	6.9	49.5

Heat sink to ambient temperature rise Ths-amb($^{\circ}$ C) ta=25 $^{\circ}$ C

FLOWLED Heat Sink

70mm Diameter

							Thermal Resistance (
Part Number		Description	Height (mm)	Diameter (mm)	Max. Lumen (lm)	Dissipated Power (W)	°C/W)	Weight (g)
WLED-7040	Flow LED	D Heat Sink 70MM DIA 40H	40	70	2700	19.6	2.3	183
WLED-7080	Flow LEE	D Heat Sink 70MM DIA 80H	80	70	3200	23	1.9	294
Note: A	<u>All B</u>	ases Have no	o Holes	.6			6	<i>a</i> .
No.	Finish	Mounting hole		2-				19
A1	•	25.0mm;2xM3@180°					8 m	13
A2		31.4mm;2xM3@180°				- Cho		Du
A3	•	35.0mm;2xM3@180°	20 Ann 2-M20	1208				
A4		39.0mm;3xM3@120°	42.0mm; 3xM3@	120° Dia 70.			C	
A5		42.0mm;3xM3@120°	25.0mm;2xM3@ 42.5mm;2xM3@	180°	TE.		a alle	56.6mm;4xt Fan Ho
A6		42.5mm;2xM3@180°	31.4mm;2xM3@ 35.0mm;2xM3@	180°			B.J.	Je e e
A7		45.0mm;2xM3@180°	45.0mm;2xM3@	180°			102	to -
A8		56.6mm;4xM3@90°					C32	(3)
A9		14.0mm;2xM3		· SPI-	She		So Do	Less o
A10		18.3mm;2xM2		4		Sido view	Ton	14.0mm;2xM3

Thermal Data FLOWLED-7040

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (*C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
	4	3.4	14.5
(M)Pd	8	2.9	25
ower	12	2.6	34.4
ated P	16	2.5	43
Dissip	20	2.3	51

Thermal Data FLOW

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (*C/W)	Heat sink to ambient temperature rise Ths-amb (℃)
	4.6	2.8	14
Pd(W)	9.2	2.4	24
ower	13.8	2.2	33
ated P	18.4	2	41.5
Dissip	23	1.9	49

FLOWLED Heat Sink

85mm Diameter

Thermal Data FLOWLED-8540

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)
	5.2	2.5	14
(M)pc	10.4	2.1	24
ower F	15.6	1.9	33
ated P	20.8	1.9	43.5
Dissip	26	1.7	50

Thermal Data FLOWLED-8560

Pd ('	= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	bient heat sink to ambient temperature rise Ths-amb (°C) 30 FanLED-8580 14 24 34 42
		FanLED-8580	FanLED-8580
	6.4	2	14
(M)Pc	12.8	1.7	24
ower I	19.2	1.6	34
ated P	25.6	1.4	42
Dissip	32	1.3	50

FLOWLED Heat Sink

96mm Diameter

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (°C/W)	l Heat sink to ambient temperature rise Ths-amb (℃)	
	6.4	1.9	14	
(W)bq	12.8	1.7	24	
ower	19.2	1.5	33.5	
ated P	25.6	1.4	42	
Dissip	32	1.3	50	

Thermal Data FLOWLED-9680

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (で)	
	8	1.5	14	
Pd(W)	16	1.3	24	
ower	24	1.2	34	
ated P	32	1.1	42	
Dissip	40	1.0	50	

PADLED Heat Sink

Wakefield- Vette's PADLED is designed with 99.7% highpurity aluminum cold forging process. The design of the series is simple and gorgeous, and the blade is rectangular in a radial patern, which makes the convection heat dissipation reasonable. This heat sink also has 4 PCS holes on top. This i compatible with Light Modules such as Edison, Xicato, Bridgelux, Osram, Lumileds, Cree, Tridonic, LG, Lustrous, Prolight, Samsung, SHARP, Luminus and Philips.

Features:

- Mechanical compatibility with direct mounting of the LED modules to the LED cooler and thermal performance matching the lumen packages
- Side fins to be frilled M3 or M4 Hotles
- Several Diameters, Several Standard heights
- Forged from highly conductive aluminum
- Black Anodized
- Blank surface with no holes to mount any device listed below

Compatible with:

- Bridelux: Vero 18/22 Vero SE 18/29 LED engines;
- Cree: XLamp CXA 25xx, Xlamp CXB 25xx, CXA 30xx, Xlamp CXB 30xx LED en
- Citizen: CLU036, CLU038, CLU721, CLU711, CLU046, CLU048, CLU731 LED engines;
- Edison: EdiLex III COB LED engines;
- GE lighting: Infusion[™] LED engines;
- LG Innotek: 32W, 42W, 56W LED engines;
- LumiLEDS: LUXEON 1211, LUXEON 1216, LUXEON 1812, LUXEON 1825 LED eng
- Lumens: Ergon-COB-2530, 2540, 3050, 3070 LED engines;
- Luminus: CXM-18, CLM-22, CXM-22 LED engines;
- Nichia: NFCWL036B, NFCLL036B, NFCWL060B, NFCLL060B LED engines;
- Osram: SOLERIQ® S 19, Core series LED engines;
- Philips: Fortimo SLM LED engines;
- Prolight Opto: PABS, PABA, PACB, PANA LED engines;
- Samsung: LC026B, LC033B, LC040B, LC040D, LC060D, LC080D LED engines;
- Seoul Semiconductor: Acrich MJT COBs, DC COB LED engines;
- Tridonic: SLE G6 19mm, SLE G6 23mm LED engines;
- Vossloh-Schwabe: LUGA Shop and LUGA C LED engines;
- Xicato: XSM, XIM, XTM LED engines;

PADED Heat Sink

130mm Diameter

WKV Part		Height	Diameter	Max. Lumen	Dissipated Power	Thermal Resistance (
Number	Description	(mm)	(mm)	(lm)	(W)	°C/W)	Weight (g)
PADLED-13080	PAD LED Heat Sink 130MM DIA 80H	80	130	4600	33	1.5	492
PADLED-130100	PAD LED Heat Sink 130MM DIA 100H	100	130	6700	48	1	625

*Note: All Bases Have no Holes

Thermal Data PADLED-13080

					He	at sink to a	mbient temp	erature rise	Ths-amb(℃) ┃	ta=2	25℃
Pd : (1	= Pe x -ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)	mbient (°C)	70 60						
(M	15.0	1.13	17.0	оvе а	50						F
er Pd(30.0	0.93	28.0	se ab	40						F
d Pow	45.0	0.89	40.0	ink ri	30						F
sipate	60.0	0.83	50.0	leat s	20						F
Dis	75.0	0.77	58.0	-	10						F
						0	15	30 4	45 6	0 7	75

Dissipated Power Pd(W)

Thermal Data PADLED-130100

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)	
(M)	20.0	1.10	22.0	
er Pd(40.0	0.90	36.0	
d Pow	60.0	0.78	47.0	
sipated	80.0	0.73	58.0	
Dis	100.0	0.66	66.0	

PADED Heat Sink

165mm Diameter

Thermal Data PADLED-16580

Pd : (1	= Pe x -ηL)	Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)
()	30.0	0.78	23.5
er Pd(V	60.0	0.63	38.0
d Powe	90.0	0.52	47.0
ssipated	120.0	0.51	61.0
D	150.0	0.49	73.0

Thermal Data PADLED-165100

Pd = (1	= Pe x -ηL)	Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (℃)
()	30.0	0.60	18.0
er Pd(V	60.0 0.48		29.0
d Pow	90.0	0.44	40.0
ssipate	120.0	0.42	50.0
Di	150.0	0.41	61.0

PADED Heat Sink

225mm Diameter

						Thermal	
WKV Part		Height	Diameter			Resistance	
Number	Description	(mm)	(mm)	Max. Lumen (lm)	Dissipated Power (W)	(°C/W)	Weight (g)
PADLED-22560	PAD LED Heat Sink 225MM DIA 60H	60	225	21000	150	0.3	2220
PADLED-225100	PAD LED Heat Sink 225MM DIA 100H	100	225	28000	200	0.2	3150

*Note: All Bases Have no Holes

Thermal Data PADLED-22560

Thermal Data PADLED-225100

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (℃)	
er Pd(W)	50.0	0.40	20.0	
	100.0	0.32	32.0	
d Pow	150.0	0.29	43.0	
Dissipate	200.0	0.26	52.0	
	250.0	0.24	61.0	

PINLED Heat Sink

Wakefield- Vette's PinLED is designed with 99.7% high-purity aluminum cold forging process. The design of the series is simple and gorgeous, and the blade is cylindrical, which makes the convection heat dissipation reasonable. This is compatible with Light Modules such as Edison, Xicato, Bridgelux, Osram, Lumileds, Cree, Tridonic, LG, Lustrous, Prolight, Samsung, SHARP, Luminus and Philips.

Features:

- Mechanical compatibility with direct mounting of the LED modules to the LED cooler and thermal performance matching the lumen packages
- Several Diameters, Several Standard heights •
- Forged from highly conductive aluminum •
- **Black Anodized** •
- Blank surface with no holes to mount any device listed below ٠

Compatible with:

- Xicato XSM, XIM, XTM
- Bridgelux ESS, ESR, Vero 10, Vero 13, Vero 18 V-series
 - Citizen CLL024-CLU028, CLL034-CLU038
 - Cree XLamp CXA13xx, CXA15xx, CSA18xx
- Lumileds Luxeon COB's 1203, 1204, 1205, Luxeon K arrays K12, K16
 - Osram PrevaLED Core, SOLERIQ P and SOLERIQ S LED engines
 - Seoul Semiconductor ZC6, ZC12, ZC18, ZC25
 - Tridonic TALEXXmodule SLE modules
 - LG Innotek LEMWM18 10W, 13W, 17W
 - Edison EdiLex SLM and EdiLex II COB LED engines
 - Lustrous LUSTRON 6 series LL604F, LL608D, LL613F, LL620F
 - Prolight Opto PABS, PABA, PACB, PANA
 - Samung LC013, LC019, LC026 COB LED engines
 - SHARP Mini Zenigata Intermo and Mega Zenigata LED engines
 - Philips Fortimo SLM LED engines
 - Vossloh-Schwabe LUGA Shop LED engines
 - Luminus C##9, C##14 LED engines

PINLED Heat Sink

48mm Diameter

Inclinal Data I INLED-4030

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (°C)
	2	9	18
Pd(W)	4	7.5	30
ower F	6	7	42
ated P	8	6.25	50
Dissip;	10	5.9	59

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (°C)	
	2	7	14	
Pd(W)	4	6.25	25	
ower	6	5.67	34	
ated P	8	5.38	43	
Dissip	10	5	50	

PINLED Heat Sink

58mm Diameter

WKV Part		Height	Diameter	Max. Lumen	Dissipated Power	Thermal Resistance (
Number	Description	(mm)	(mm)	(lm)	(W)	°C/W)	Weight (g)
PINLED-5830	Pin LED Heat Sink 58MM DIA 30H	30	58	1400	10	5	79
PINLED-5850	Pin LED Heat Sink 58MM DIA 50H	50	58	1800	13	3.85	108
*Note: A	ll Bases Have no Holes						

No.	Finish	Mounting Hole
A1		17.0 mm 2xM3 @ 180°
A2	•	19.0 mm 2xM3 @ 180°
A3	۲	20.2 mm 2xM3 @ 180°
A4	•	21.7 mm 2xM3 @ 180°
A5	•	25.0 mm 2xM3 @ 180°
A6		26.8 mm 2xM3 @ 180°
A7	۲	31.4 mm 2xM3 @ 180°
A8	۲	35.0 mm 2xM3 @ 180°
A9	۲	39.0 mm 3xM3 @ 120°
A10		42.0 mm 3xM3 @ 120°
A11		Ø11.5 Through hole @ Ø58.0

Top view

Thermal Data PINLED-5830

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise . Ths-amb (℃) .
	3	6.67	20
(M)pc	6	5.83	35
ower	9	5.11	46
ated P	12	4.75	57
Dissip	15	4.67	70

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (*C/W)	Heat sink to ambient temperature rise - Ths-amb (℃)
Γ	3	5	15
(W)PG	6	4.67	26
ower	9	4.33	39
ated P	12	4	46
Dissip	15	3.8	57

PINLED Heat Sink

68mm Diameter

WKV Part Number PINLED-6830 PINLED-6860	Description Pin LED Heat Sink 68MM DIA 30H Pin LED Heat Sink 68MM DIA 60H	Height (mm) 30 60	Diameter (mm) 68 68	Max. Lumen (lm) 1900 2800	Dissipated Power (W) 12.5 15.5	Thermal Resistance (°C/W) 4 3.23	Weight (g) 77 192	
*Note: A	Il Bases Have no Hole h Mounting Hole 17.0 mm 2xM3 @ 180° 19.0 mm 2xM3 @ 180° 20.2 mm 2xM3 @ 180°	es 						
A4 A5 A6 A7 A8 A9 A10 A11 A12	21.7 mm 2xM3 @ 180° 25.0 mm 2xM3 @ 180° 26.8 mm 2xM3 @ 180° 29.7 mm 2xM3 @ 180° 31.4 mm 2xM3 @ 180° 35.0 mm 2xM3 @ 180° 39.0 mm 3xM3 @ 120° 42.0 mm 3xM3 @ 120° ○ Ø11.5 Through hole @ Ø68.0	42 15 26 27 35 35 35 20 70 31	2.0 mm 3xM3 @ 120 2.0 mm 2xM3 @ 180 3.8 mm 2xM3 @ 180 3.0 mm 2xM3 @ 180 3.0 mm 2xM3 @ 180 0 mm 2xM3 @ 180 3.0 mm 2xM3 @ 180 4.0 mm 2xM3 @ 180 4.0 mm 2xM3 @ 180 4.0 mm 2xM3 @ 180 4.0 mm 2xM3 @ 180 5.0 mm 2xM3 @ 1	Dia 68.0 Dia		H H H H H H H H H H H H H H H H H H H	00000 000000 0000000 0000000 0000000 0000	

Thermal Data PINLED-6830

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance _ Rhs-amb (℃/W) .	Heat sink to ambient temperature rise Ths-amb(℃)		
	3	5.67	17		
Pd(W)	6	4.67	28		
ower	9	4.44	40		
ated P	12	4.08	49		
Dissip	15 3.87		58		

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise . Ths-amb (で) .
	4	4.25	17
(M)Pd	8	3.75	30
ower	12	3.42	41
ated P	16	3.25	52
Dissip	20	3	60

PINLED Heat Sink

78mm Diameter

w	/KV Part			Height	Diameter			Thermal Resistance	
N	lumber	Description		(mm)	(mm)	Max. Lumen (lm)	Dissipated Power (W)	(°C/W)	Weight (g)
PIN	LED-7830	Pin LED Heat Sink 78MM	/I DIA 30H	30	78	2300	16.5	3.03	138
PIN	LED-7850	Pin LED Heat Sink 78MN	/I DIA 50H	50	78	2900	21.5	2.33	197
<u>*N</u>	Note: A	All Bases Have n	<u>o Holes</u>					4	
No.	Finish	Mounting Hole			11 mars and 10	and the second se		ĩ	(*************************************
A1	•	17.0 mm 2xM3 @ 180°							
A2		19.0 mm 2xM3 @ 180°]					1	
A3		20.2 mm 2xM3 @ 180°	1		WWWW		小雨雨雨和		ATTIMA TO A
A4	•	21.7 mm 2xM3 @ 180°	1			htta.	· mmm.		
A5	•	25.0 mm 2xM3 @ 180°	58.4 mm 4x	M3.5@4-360°	La Dia	78.00	H H	-1	
A6	•	26.8 mm 2xM3 @ 180°	42.0 m	т 3xM3 (@ 120°) т 2xM3 (@ 180°)	\mathbf{X}				
A7	•	29.7 mm 2xM3 @ 180°	19.0 m	m 2xM3 @ 180°				=	0000
A8		31.4 mm 2xM3 @ 180°	43.0 m 26.8 m	m 4xM3 @ 90° m 2xM3 @ 180°	\mathbf{X}				
A9		32.2 mm 2xM3 @ 180°	39.0 m	m 3xM3 @ 120°					00000000000000000000000000000000000000
A10		35.0 mm 2xM3 @ 180°	32.2 m 21.7 m	m 2xM3 (a) 180° m 2xM3 (a) 180°	900	••		00	
A11	•	39.0 mm 3xM3 @ 120°	35.0 m	m 2xM3 @ 180°					
		42.0 mm 3xM3 @ 120°	25.0 m 20.2 m	m 2xM3 @ 180° m 2xM3 @ 180°					
A12						1 /			
A12		43.0 mm 4xM3 @ 90°	31.4 m	m 2xM3 @ 180°		• /		9	
A12 A13 A14		43.0 mm 4xM3 @ 90° 58.4 mm 4xM3.5 @ 4-360°	<u>31.4 m</u>	m 2xM3 @ 180°	@ Ø78 0			×	

Botton view

Top view

Thermal Data PINLED-7830

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb(℃)
	5	4.8	24
(M)Pd	10	3.6	36
ower	15 3.13		47
ated P	20	2.95	59
Dissip	25	2.72	68

Side view

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (°C)
	6	3.5	21
(W)PG	12	2.67	32
ower	18	2.44	44
ated P	24	2.25	54
Dissip	32	1.97	63

SPIRLED Heat Sink

Features:

- Thermal resistance range Rth(7.69°C/W; 5.0°C/W; 4.17°C/W).
- Modular design with mounting holes foreseen for direct mounting of LED modules and COB's: Diameter 48mm -110mm
- Extruded from highly conductive aluminum
- Black anodized

Compatible with:

- Xicato XSM, XIM, XTM;
- Bridgelux ESS, ESR, Vero 10, Vero 13, Vero 18 V-series;
- Citizen CLL022-CLU024, CLL032-CLU034;
- Cree XLamp CXA13xx, CXA15xx, CSA18xx;
- Lumileds Luxeon COB's 1203, 1204, 1205, Luxeon K arrays K12, K16;
- Osram PrevaLED Core, SOLERIQ P and SOLERIQ S LED engines.
- Seoul Semiconductor ZC6, ZC12, ZC18, ZC25;
- Tridonic TALEXXmodule SLE modules;
- LG Innotek LEMWM18 10W, 13W, 17W
- Edison EdiLex SLM and EdiLex II COB LED engines.
- Lustrous LUSTRON 6 series LL604F, LL608D, LL613F, LL620F
- Prolight Opto PABS, PABA, PACB, PANA
- Samung LC013, LC019, LC026 COB LED engines.
- SHARP Mini Zenigata Intermo and Mega Zenigata LED engines.
- Philips Fortimo SLM LED engines.
- Vossloh-Schwabe LUGA Shop LED engines.
- Luminus C##9, C##14 LED engines.

SPIRLED Heat Sink

48mm Diameter

WKV Part		Height	Diameter	Max. Lumen	Dissipated Power	Thermal Resistance (
Number	Description	(mm)	(mm)	(lm)	(W)	°C/W)	Weight (g)
SPIRLED-4850	SPIR LED Heat Sink 48MM DIA 50H	50	48	1400	10	5	134

*Note: All Bases Have no Holes

No.	Finish	Mounting Hole
H1	•	17.0 mm 2xM2.5 @ 180°
H2	•	17.4 mm 2xM2.5 @ 180°
H3	•	19.0 mm 2xM3 @ 180°
H4		20.2 mm 2xM3 @ 180°
H5	•	21.7 mm 2xM3 @ 180°
H6		22.0 mm 2xM2.5 @ 180°
H7	۲	24.0 mm 2xM3 @ 180°
H8		25.0 mm 2xM3 @ 180°
H9		26.2 mm 2xM3 @ 180°
H10	•	26.8 mm 2xM3 @ 180°
H11	۲	31.4 mm 2xM3 @ 180°
H12	•	35.0 mm 2xM3 @ 180°
H13		39.0 mm 3xM3 @ 120°
H14	۲	42.0 mm 3xM3 @ 120°

Top view

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (℃)	
	2	6.5	13	
Pd(W)	4	6	24	
ower	6	5.67	34	
ated P	8	5.38	43	
Dissip	10	5	50	

SPIRLED Heat Sink

70mm Diameter

	W	/KV Part	Descri	intion	Height (mm)	Diameter (mn	n) Max Lumen (Im)	Dissipated	Thermal Resistance	Weight (g)
	SPIR	RLED-7050	SPIR LED Heat Sin	k 70MM DIA 50H	50	70	3200	22.9	2.2	192
	SPIR	RLED-7080	SPIR LED Heat Sin	k 70MM DIA 80H	80	70	3900	28.1	1.8	308
*) No. F H1 H2 H3	Finish	Mc 17.5 mm 18.5 mm 19.0 mm	Bases Have	<u>no Holes</u>						La Martin
H4 H5	•	21.5 mn 24.0 mn	n 2xM3 @ 180° n 2xM3 @ 180°		74					
H6		25.0 mn	n 2xM3 @ 180°	8.0 mm 4xM3 @ 90°	10.		H H	-		65.0 mm 4xM3 (
H7		26.2 mn	n 2xM3 @ 180°	2.0 mm 3xM3 @ 120° 6.8 mm 2xM3 @ 180°	AR	522			578	Fan Hole
H8		26.8 mn	n 2xM3 @ 180°	5 mm 2xM2.5 @ 180°	A L Ho	P Ps			2 S S P	1 ps
H9		31.4 mn	n 2xM3 @ 180°	9.0 mm 3xM3 @ 120°	S BA	A S			3 11/1 5	
110		32.2 mn	n 2xM3 @ 180°	5.0 mm 2xM3 @ 180°	The second	2			20000	- and
111	0	35.0 mn	n 2xM3 @ 180°	5.0 mm 2xM3 @ 180°	2					
112		39.0 mn	n 3xM3 @ 120°	5.2 mm 2xM3 @ 180° 🖓 9.0 mm 2xM3 @ 180°	1200	No or			10 SAR	JP2
113		42.0 mm	n 3xM3 @ 120°	1.4 mm 2xM3 @ 180° 1.4 mm 2xM3 @ 180°					8	NS P
114	0	48.0 mm	n 4xM3 @ 90°	2.0 mm 3xM3 @ 120°	~ 2	21 2 22			3 L L	32 15
115		57.5 mm	n 4xM3 @ 90°		25		/ <i>[</i> /		325	
H16		65.0 mm	4xM3 @ 90°		DOTTO	I VIEW	Side vie	2W	TOP VIEW	
TIU	•	(F	an Hole)							
	<u>Th</u>	ermal I	Data SPIRL	<u>ED-7050</u>	Pd = Pe x Heat (1-ηL) Rh	t sink to ambient rmal resistance hs-amb (*C/W) . Heat si temp Ths	nk to ambient erature rise -amb (°C)	k to ambient temp	erature rise Ths-amb(°C) t	a=25 °C

Thermal Data SPIRLED-7080

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (℃)
Π	6	3	18
(W)b	12 18	2.5	30
ower		2.28	41
ated P	24	2.08	50
Dissip	32	1.84	59

10

15 20

25

2.7

2.6

2.5

2.44

27

39

50

61

SPIRLED Heat Sink

85mm Diameter

WKV Part Number	Description	Height (mm)	Diameter (mm)	Max. Lumen (lm)	Dissipated Power (W)	Thermal Resistance (°C/W)	Weight (g)
SPIRLED-8550	SPIR LED Heat Sink 85MM DIA 50H	50	85	4700	34	2.2	286
SPIRLED-8580	SPIR LED Heat Sink 85MM DIA 80H	80	85	5300	38	1.8	458

*Note: All Bases Have no Holes

No.	Finish	Mounting Hole
A1		19.0 mm 2xM3 @ 180°
A2	•	20.2 mm 2xM3 @ 180°
A3	•	21.7 mm 2xM3 @ 180°
A4	•	22.0 mm 2xM2 @ 180°
A5	•	24.0 mm 2xM3 @ 180°
A6		25.0 mm 2xM3 @ 180°
A7	•	26.2 mm 2xM3 @ 180°
A8	•	26.8 mm 2xM3 @ 180°
A9	•	30.2 mm 2xM3 @ 180°
A10	•	31.4 mm 2xM3 @ 180°
A11	۲	32.2 mm 2xM3 @ 180°
A12	•	35.0 mm 2xM3 @ 180°
A13	•	39.0 mm 3xM3 @ 120°
A14	•	42.0 mm 3xM3 @ 120°
A15		55.0 mm 4xM3 @ 90°
A16	0	2*56.3 - 2*31 (Ø64.5); 4xM3
A17		66.0 mm 3xM4 @ 120°
A18	0	70.5 mm 2xM3 @ 180° (Fan Hole)

Thermal Data SPIRLED-8550

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb(で)
	8	2.88	23
(M)Pd	16	2.19	35
ower	24	1.88	45
ated P	32	1.66	53
Dissip	40	1.53	61

Pd (J = Pe x (1-ηL) Heat sink to ambient thermal resistance Rhs-amb (°C/W)		Heat sink to ambient temperature rise Ths-amb(で)	
	8	2.25	18	
(M)Pd	16	1.88	30	
ower F	24	1.67	40	
ated P	32	1.5	48	
Dissip	40	1.4	56	

SPIRLED Heat Sink

96mm Diameter

Thermal Data SPIRLED-9650

Pd (I = Pe x 1-ηL) Heat sink to ambient thermal resistance Rhs-amb (°C/W)		Heat sink to ambient temperature rise Ths-amb(℃)	
	8	2.25	18	
(M)Pc	16	1.88	30	
ower	24	1.67	40	
ated P	32	1.5	48	
Dissip	40	1.4	56	

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance - Rhs-amb (°C/W)	Heat sink to ambient temperature rise Ths-amb (℃)
	10	1.7	17
(W)pd	20	1.45	29
ower F	30	1.33	40
ated P	40	1.2	48
Dissip	50	1.12	56

Heat sink to ambient temperature rise Ths-amb(℃) ta=25 ℃

SPIRLED Heat Sink

<u>110mm Diameter</u>

WKV Part Numbe	r Descrii	ption	Height (mm)	Diameter (mm)	Max. Lumen (Im)	Dissipated Power (W)	Thermal Resistance (°C/W)	Weight (g)
SPIRLED-11050	SPIR LED Heat Sink	110MM DIA 50H	50	110	6700	48	1.1	414
SPIRLED-11080	SPIR LED Heat Sink	110MM DIA 80H	80	110	7900	57	0.9	662
No. Finish H1 22. H2 24. H3 25. H4 26.8	Mounting Hole 0 mm 2xM2 @ 180° 0 mm 2xM3 @ 180°	ave no Hol	<u>es</u>					ANNI MARY
H5 🔵 30.2	2 mm 2xM3 @ 180°	79.5 mm 4xM3 @ 90°		Dia 110.00				
H6 😑 31.4	4 mm 2xM3 @ 180°	57.4 mm 4xM3 @ 90° 99.5 mm 2xM3 @ 90°	\times	Dia 110.00		, , , , , , , , , , , , , , , , , , ,		
H7 🥚 32.2	2 mm 2xM3 @ 180°	32.2 mm 2xM3 @ 180°		27872			25	\$ 57 0
H8 😑 35.0	0 mm 2xM3 @ 180°	25.0 mm 2xM3 @ 180°	1 A		8		37	1 5 8
H9 🔍 37.	7 mm 2xM3 @ 180°	43.0 mm 4xM3 @ 90° 31.4 mm 2xM3 @ 180°	Real				29 12	
H10 🧶 39.0	0 mm 3xM3 @ 120°	39.0 mm 3xM3 @ 120°					J // // 50	8 1 5
H11 🕚 42.0	0 mm 3xM3 @ 120°	42.0 mm 3x143 @ 120 45.2 mm 2xM3 @ 180°						000
H12 😑 43.0	0 mm 4xM3 @ 90°	30.2 mm 2xM3 (@ 180° 22.0 mm 2xM2 (@ 180°	2					
H13 🜒 45.3	2 mm 2xM3 @ 180°	26.8 mm 2xM3 @ 180° 24.0 mm 2xM3 @ 180°	2	2 APR			ALSO C	
H14 🔵 57.4	4 mm 4xM3 @ 90°	35.0 mm 2xM3 @ 180°	5 00	5 172 0 8 N 2			S IN	15 15/13 0
H15 🔵 58.	5 mm 4xM3.5 @ 90°	<u>37.7 mm 2x193 (a) 180°</u>	8/	PANE			s Isn	MAN
H16 🔵 79.5	5 mm 4xM3 @ 90°		N/SI		<u>م</u>		~~ /2	1 1 3
H17 🔵 99.	5 mm 2xM3 @ 90°		0	Sol & La			de l	18 July
Thomas	Data CDIDI	ED 11050		Botton view		Side view	1	op view

<u>Thermal Data SPIRLED-11050</u>

Pd (= Pe x 1-ηL) Heat sink to ambient thermal resistance Rhs-amb (°C/W)		Heat sink to ambient temperature rise Ths-amb (\mathcal{C})
Γ	10	1.6	16
Pd(W)	20	1.4	28
ower	30	1.33	40
ated P	40	1.23	49
Dissip	50	1.16	58
[

Pd ('	= Pe x 1-ηL) Heat sink to ambient thermal resistance Rhs-amb (℃/W)		Heat sink to ambient temperature rise Ths-amb (℃)	
Π	12	1.33	16	
(W)Pd	24	1.21	29	
ower	36	1.11	40	
ated P	48	1.03	49.5	
Dissip	60 0.95		57	

STRTLED Heat Sink

Wakefield- Vette's STRTLED radial aluminum extrusion that makes the convection heat dissipation reasonable. This is compatible with Light Modules such as Edison, Xicato, Bridgelux, Osram, Lumileds, Cree, Tridonic, LG, Lustrous, Prolight, Samsung, SHARP, Luminus and Philips.

Features:

- Mechanical compatibility with direct mounting of the LED modules to the LED cooler and thermal performance matching the lumen packages
- Several Diameters, Several Standard heights
- Extruded from highly conductive aluminum
- Black Anodized
- Blank surface with no holes to mount any device listed below

Compatible with:

- Xicato XSM, XIM,XTM
- Bridgelux ESS, ESR, Vero 10, Vero 13, Vero 18 V-series
 - Citizen CLL024-CLU028, CLL034-CLU038
 - Cree XLamp CXA13xx, CXA15xx, CSA18xx
- Lumileds Luxeon COB's 1203, 1204, 1205, Luxeon K arrays K12, K16
 - Osram PrevaLED Core, SOLERIQ P and SOLERIQ S LED engines
 - Seoul Semiconductor ZC6, ZC12, ZC18, ZC25
 - Tridonic TALEXXmodule SLE modules
 - LG Innotek LEMWM18 10W, 13W, 17W
 - Edison EdiLex SLM and EdiLex II COB LED engines
 - Lustrous LUSTRON 6 series LL604F, LL608D, LL613F, LL620F
 - Prolight Opto PABS, PABA, PACB, PANA
 - Samung LC013, LC019, LC026 COB LED engines
 - SHARP Mini Zenigata Intermo and Mega Zenigata LED engines
 - Philips Fortimo SLM LED engines
 - Vossloh-Schwabe LUGA Shop LED engines
 - Luminus C##9, C##14 LED engines

STRTLED Heat Sink

46mm Diameter

Pd (= Pe x 1-ηL)	Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)	
	3	5.67	17	
(W)b ^c	6	5.5	33	
ower I	9	5.22	47	
ated P	12	4.83	58	
Dissip	15	4.33	65	

STRTLED Heat Sink

70mm Diameter

WKV Part Nu STRTLED-7(mber 050	Description STRT LED Heat Sink 70MM DIA 50H	Height (mm) 50	Diameter (mm) 70	Max. Lumen (lm) 3200	Dissipated Power (W) 22.9	Thermal Resistance (°C/W 2.1	/) Weight (g) 206
<u>*Note</u>	e: A	Il Bases Have no	Holes					
No.	Finis	sh Mounting Hole		hhl.				
A1	0	17.0 mm 2xM3 @ 180°		- 44			· •	
A2	•	19.0 mm 2xM3 @ 180°		-	-			
A3		21.7 mm 2xM3 @ 180°			22.0	mm 2xM3 @ 180°		
A4	•	22.0 mm 2xM3 @ 180°	39.0 m	m 3xM3 @ 120°	19.0 m	nm 2×M3 @ 180°		
A5	0	24.0 mm 2xM3 @ 180°	17.0 mm	2xM3 @ 180°	25.0 ml	m 2xM3 @ 180°	-	Н
A6	•	25.0 mm 2xM3 @ 180°	21.7 mm	2xM3 @ 180°	31.4 mm	2×M3 @ 180°	Ø 70.00	()
A7	0	26.2 mm 2xM3 @ 180°	26.2 mm 2	xM3 @ 180°	T. COLT.P	1 F		
A8	•	26.8 mm 2xM3 @ 180°	27.0 mm 23 35.0 mm 23	xM3 @ 180°				
A9		27.0 mm 2xM3 @ 180°						
A10		31.4 mm 2xM3 @ 180°						
A11		35.0 mm 2xM3 @ 180°		U				
A12		39.0 mm 3xM3 @ 120°		4				
						-	61.00	Side view

Botton view(01)

Botton view(02)

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)		
	5	3.4	17		
Dissipated Power Pd(W)	10	2.8	28		
	15	2.7	37		
	20	2.25	45		
	25	2.16	54		

STRTLED Heat Sink

95mm Diameter

Pd = Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb (℃/W)	Heat sink to ambient temperature rise Ths-amb (℃)		
	10	1.8	18		
Dissipated Power Pd(W)	20	1.4	28		
	30	1.3	39		
	40	1.25	50		
	50	1.18	59		

THERMAL SELECTION GUIDELINES

CUSTOM RADIAL-FIN HEAT SINKS BRIDGELUX LED Light Engines

Background:

Continued growth of BRIDGELUX LED lighting products has created a very real need for design and usage guidelines aimed specifically at helping engineers and designers select heat sink products based on both space constraints and operating parameters.

WAKEFIELD SOLUTIONS has been working in conjunction with BRIDGELUX to develop a new product line of Custom Radial-Fin Heat Sinks – designed specifically for the complete family of BRIDGELUX LED Light Engines being marketed through NEWARK element 14.

Summary Table 1:

	BRIDGELUX P/N	Form factor	ORDERABLE P/N	HS Length	Thermal	HS TR	T RISE
				(in)	(W)	(C/W)	(C)
1	BXRA-N3500-00000	RS Rectangle	19754-M-AB	7.50	23.3	0.68	15.9
	BXRA-C4500-00000	RS Rectangle	19754-M-AB	7.50	34.5	0.68	23.5
	BXRA-W3000-00000	RS Rectangle	19754-M-AB	7.50	42.8	0.68	29.2
2	BXRA-C0802-00000	Rectangle	19755-S-AB	2.75	11.3	2.20	24.7
3	BXRA-W0802-00000	Rectangle	19755-M-AB	4.00	15.0	1.82	27.3
4	BXRA-W1202-00000	Rectangle	19755-L-AB	6.00	18.8	1.49	27.9
5	BXRA-W1203-00000	Rectangle	19755-XL-AB	8.00	22.5	1.29	29.0
6	BXRA-C2002-00000	Rectangle	19755-XXL-AB	10.00	26.3	1.15	30.2
	BXRA-C1202-00000	Rectangle	19755-M-AB	4.00	15.0	1.82	27.3
	BXRA-N0802-00000	Rectangle	19755-M-AB	4.00	15.0	1.82	27.3
	BXRA-N1203-00000	Rectangle	19755-XL-AB	8.00	22.5	1.29	29.0
7	BXRA-C0402-0000	Star	19756-S-AB	2.00	4.1	3.03	12.5
8	BXRA-W0402-0000	Star	19756-M-AB	2.75	5.6	2.48	13.9
9	BXRA-W0401-0000	Star	19756-L-AB	3.00	7.5	2.59	19.4
10	BXRA-W0403-00000	Star	19756-XL-AB	3.25	9.0	2.38	21.4
	BXRA-C0603-00000	Star	19756-XL-AB	3.25	9.0	2.38	21.4
11	BXRA-W0260-00000	LS	19757-S-AB	2.75	3.0	3.55	10.7
12	BXRA-C0360-00000	LS	19757-M-AB	3.00	3.8	3.40	12.8
13	BXRA-C0361-00000	LS	19757-L-AB	3.25	4.5	3.27	14.7
	BXRA-W0261-00000	LS	19757-S-AB	2.75	3.0	3.55	10.7
	BXRA-W0240-00000	LS	19757-M-AB	3.00	3.8	3.40	12.8
	BXRA-W0241-00000	LS	19757-L-AB	3.25	4.5	3.27	14.7
14	Helieon 1200LM	Helieon	19758-M-AB	7.00	24.0	1.15	27.7

Note – although there are 23 specific BRIDGELUX LED light options – there are only 14 Custom Wakefield Solutions Rad-Fin Heat Sink part numbers required to support the complete product line.

The Orderable P/Ns are made up of the unique extrusion profile number, followed by the product length, (i.e. S=Short. M=Medium, L=Length etc...), and finally the finish designation, (AB=Anodized Black).

The last column "T Rise" contains the estimated temperature rise above ambient, (i.e. room temperature), for a given WAKEFIELD Radial-Fin Heat Sink assembled with the associated BRIDGELUX LED. These values – T Rise and T Ambient - are added to determine the estimated LED Substrate temperature.

All WAKEFIELD Rad-Fin Heat Sink Lengths were derived using this T Rise with a T Ambient with a standard T Ambient of 40 degrees C maximum – with the objective to yield a maximum LED Substrate temperature of 70 degrees C or less.

This 70 degrees C maximum LED Substrate operating temperature has been specified by BRIDGELUX as the highest temperature permissible to achieve the expected LED light quality, (full lumens), for the extended life of 50,000 hours.

Sample Calculations:

To calculate the expected LED Substrate Temperature using a specific Rad-Fin Heat Sink ...

Select the Rad-Fin Heat Sink in Summary Table 1 ... go across to the columns to the second column in from the right – HS TR (C/W) – this column indicates the Heat Sink Thermal Resistance Values for each specific heat sink – in degrees Centigrade Temperature Rise per Watt of Thermal Load (W) in Natural Convection, (no fan).

Next ... look at the value in the third column from the right – THERMAL (W) – this is he Maximum Thermal Load Value for the specific BRIDGELUX LED.

The product of multiplying these two values – is the expected temperature rise above ambient for the particular LED Substrate and Heat Sink combination:

HS TR (C/W) X THERMAL (W) = T Rise (C)

T Rise Values are found in the first column from the right in Summary Table 1.

For BRIDGELUX LED BXRA-W0802-00000 – WAKEFIELD Rad-Fin Heat Sink 19755-M-AB:

Table 2:

						HS	HS			
	BRIDGELUX	SERIES	ORDERABLE	HS Length	HS Length	Diameter	Diameter	Thermal	HS TR	T RISE
	P/N		P/N	(in)	(mm)	(in)	(mm)	(W)	(C/W)	(C)
3	BXRA-W0802-00000	Rectangle	19755-M-AB	4	101.6	2.5	63.5	15	1.82	27.3

HS TR (C/W) X THERMAL (W) = T Rise (C)

1.82 C/W X 15 W = 27.3 C T Rise above Ambient Temperature

NOTE: BRIDGELUX has chosen 40 degrees C as the maximum expected Ambient Temperature – the "Standard" Rad-Fin Heat Sink Lengths indicated in Summary Table 1 were determined based on this 40 C Max Ambient Temperature and "Specified" 70 C Max LED Substrate Temperature.

Therefore, the LED Substrate Max Temperature is the Sum of:

Max T Rise + Max T Ambient = Max LED Substrate Temperature

27.3 C T Rise + 40 C T Ambient = 67.3 C T LED Substrate Temperature

Can shorter length Rad-Fin Heat Sinks be used successfully?

YES - assuming the Maximum Ambient temperature is less than 40 degrees C a shorter length heat sink within the same product family can be substituted.

Example:

In the case where Max T Ambient is expected to be less than 40 C – for example - assuming a Max T Ambient of 35 C – it would be possible to use a shorter length Rad-Fin Heat Sink.

Could the "next size down" Rad-Fin Heat Sink - 19755-S-AB - be used?

HS TR (C/W) X THERMAL (W) = T Rise (C)

2.2 C/W X 15 W = 33 C T Rise above Ambient Temperature

Therefore, the LED Substrate Max Temperature is the Sum of:

Max T Rise + Max T Ambient = Max LED Substrate Temperature

33 C T Rise + 35 C T Ambient = 68 C T LED Substrate Temperature

Example Summary:

Five Rad-Fin Heat Sink Lengths were manufactured for the BRIDGELUX "Rectangular" Form Factor LED Light Engine Family;

- 1. S = Short
- 2. M= Medium

- L= Long
 XL= Extra Long
 XXL = Extra Extra Long

Summary Table 3:

BRIDGELUX P/N	Form	ORDERABLE	HS	T SUB	ORDERABLE	T SUB
	Factor	P/N	Length	40C Amb	P/N	35C Amb
			(in)	(C)		(C)
BXRA-C0802-00000	Rectangle	19755-S-AB	2.75	64.86	19755-S-AB	59.86
BXRA-W0802-00000	Rectangle	<mark>19755-M-AB</mark>	<mark>4</mark>	<mark>67.30</mark>	19755-S-AB	<mark>68.00</mark>
BXRA-W1202-00000	Rectangle	19755-L-AB	6	68.01	19755-M-AB	69.22
BXRA-W1203-00000	Rectangle	19755-XL-AB	8	69.03	19755-L-AB	73.53
BXRA-C2002-00000	Rectangle	19755-XXL-AB	10	70.25	19755-XL-AB	68.93
BXRA-C1202-00000	Rectangle	19755-M-AB	4	67.30	19755-S-AB	68.00
BXRA-N0802-00000	Rectangle	19755-M-AB	4	67.30	19755-S-AB	68.00
BXRA-N1203-00000	Rectangle	19755-XL-AB	8	69.03	19755-L-AB	68.53

From the previous example BXRA-W0802-00000 – WAKEFIELD Rad-Fin Heat Sink 19755-M-AB :

The first temperature column -

T SUB 40C Amb - indicates the LED Substrate temperatures for the "Standard" length heat • heats at 40 C Ambient Temperature = 67.3 C.

The second temperature column -

T SUB 35C Amb – indicates the LED Substrate temperatures for the "Reduced" length heat • sinks at 35 C Ambient Temperature = 68.0 C.

Conclusion:

This Summary Graph 1 overview of the - WAKEFIELD 19755 Rad-Fin Heat Sink Profile - indicates that for all products except BXRA-W1203-0000 – it would be possible to use the "next size down" length Rad-Fin Heat Sink if the Max T Ambient is reduced from the specified 40 C to 35 C and still maintain a Max T Substrate below the BRIDGELUX specified 70 C Maximum.

Knowing the specific values from Summary Table 1:

- Heat Sink Thermal Resistance Values HS TR (C/W)
- LED Thermal Load THERMAL (W)

The Temperature Rise – Max T Rise (C) – can be calculated.

By adding this Max T Rise to the Max Ambient Temperature the Max LED Substrate Temperature can be estimated – this will enable the selection of the minimum size Rad-Fin Heat Sink for a specific application.

Max T Rise (C) + Max T Ambient (C) = Max T LED Substrate