


# GaN on SiC Power Amplifier Module for 5G

## **Description**

The WS1A3940 is an Asymmetric Doherty Power Amplifier Module (PAM) integrating Wolfspeed GaN on SiC HEMT transistors with RF matching and biasing networks on a multilayer laminate substrate with advanced heat sinking technology. The WS1A3940 has been designed to operate from 3700 MHz to 3980 MHz, from supply voltages up to 50 V, at average output power levels of 8 to 10 W with crest-factor reduced and digitally pre-distorted LTE and 5G NR signals with instantaneous bandwidths of 200 MHz or more. The device is housed in a 6 mm X 6 mm land grid array (LGA) package.

#### **Features**

- GaN on SiC technology
- Frequency: 3700-3980 MHz
- Average Output Power: 39.5 dBm
- P<sub>SAT</sub> = 48 dBm
- RF inputs matched to  $50 \Omega$  and DC matched
- Gate bias supply for main and peak sides available from either side of device
- · Integrated harmonic terminations
- Pb-free and RoHS compliant



WS1A3940 Package PG-LGA-6x6-3-1

## **Typical Broadband Performance**

 $\label{eq:single-carrier} \textbf{Single-carrier LTE Performance} \ (\text{tested in Wolfspeed applications circuit for } 3700-4100\ \text{MHz}) \\ V_{DD} = 48\ \text{V, } I_{DQ(main)} = 45\ \text{mA, } V_{GS(peak)} = -5.1\ \text{V, channel bandwidth} = 20\ \text{MHz, input PAR} = 10\ \text{dB} \ @\ 0.01\%\ \text{CCDF} = 10\ \text{MHz} = 10\ \text{dB} \ @\ 0.01\%\ \text{CCDF} = 10\ \text{dB} =$ 

|          | P <sub>OUT</sub><br>(dBM) | Gain<br>(dB) | Efficiency<br>(%) | ACPR –<br>(dBc) | ACPR +<br>(dBc) | PAR<br>(dB) |
|----------|---------------------------|--------------|-------------------|-----------------|-----------------|-------------|
| 3700 MHz | 39.5                      | 14.5         | 53.0              | -26             | -26             | 8.3         |
| 3850 MHz | 39.5                      | 13.7         | 52.0              | -30             | -30             | 8.5         |
| 3980 MHz | 39.5                      | 12.9         | 51.0              | -32             | -32             | 8.5         |
| 4100 MHz | 39.5                      | 11.7         | 48.5              | -29             | -29             | 8.0         |



# Maximum Ratings at T<sub>CASE</sub> = 25 °C

| Parameter                 |                           | Symbol           | Value       | Unit |
|---------------------------|---------------------------|------------------|-------------|------|
| Drain-source Voltage      |                           | $V_{DSS}$        | 125         | V    |
| Gate-source Voltage       |                           | $V_{GS}$         | -10 to +2   | V    |
| Operating Voltage         |                           | $V_{DD}$         | 55          | V    |
| RF Input Power (main)     | Pulse CW, 10% duty cycle, | P <sub>IN</sub>  | 35.2        | dBm  |
| (peak)                    | 20 μs pulse width         | $P_{IN}$         | 38          | dBm  |
| Case Temperature          |                           | T <sub>C</sub>   | 135         | °C   |
| Storage Temperature Range |                           | T <sub>STG</sub> | -65 to +150 | °C   |

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range (V<sub>DD</sub>) specified above.

#### **DC Characteristics**

| Characteristics                       | Conditions                                     | Symbol               | Min  | Тур  | Max  | Unit |
|---------------------------------------|------------------------------------------------|----------------------|------|------|------|------|
| Drain-Source Breakdown Voltage (main) | $V_{GS} = -8 \text{ V}, I_D = 3.36 \text{ mA}$ | V <sub>(BR)DSS</sub> | 150  | _    | _    | V    |
| (peak)                                | $V_{GS} = -8 \text{ V}, I_D = 5.6 \text{ mA}$  | $V_{(BR)DSS}$        | 150  | _    | _    | V    |
| Gate Leakage Current                  | $V_{GS} = -8 \text{ V}, V_{DS} = 50 \text{ V}$ | I <sub>GSS</sub>     | _    | _    | -1.5 | mA   |
| Gate Threshold Voltage (main)         | $V_{DS} = 10 \text{ V}, I_D = 3.36 \text{ mA}$ | V <sub>GS(th)</sub>  | -3.8 | -3.0 | -2.3 | V    |
| (peak)                                | $V_{DS} = 10 \text{ V}, I_D = 5.6 \text{ mA}$  | $V_{GS(th)}$         | -3.6 | -2.7 | -2   | V    |

# **Recommended Operating Conditions**

| Parameter                     | Conditions                                     | Symbol      | Min  | Тур  | Max  | Unit |
|-------------------------------|------------------------------------------------|-------------|------|------|------|------|
| Operating Voltage             |                                                | $V_{DD}$    | 0    | _    | 50   | V    |
| Gate Quiescent Voltage (main) | $V_{DS} = 48 \text{ V}, I_{D} = 30 \text{ mA}$ | $V_{GS(Q)}$ | -3.6 | -3.1 | -2.6 | V    |
| (peak)                        | $V_{DS} = 48 \text{ V}, I_D = 40 \text{ mA}$   | $V_{GS(Q)}$ | -3.6 | -3.1 | -2.6 | V    |

## **Moisture Sensitivity Level**

| Level | el Test Standard    |     | Unit |
|-------|---------------------|-----|------|
| 3     | IPC/JEDEC J-STD-020 | 260 | °C   |

## **ESD Characteristics**

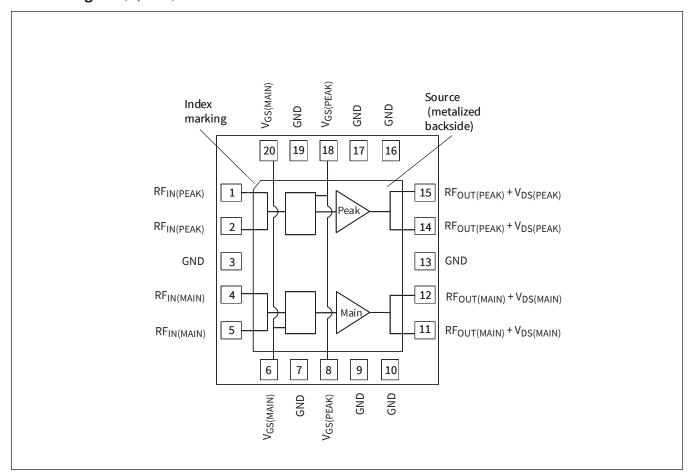
| Parameter                 | Class    | Standard               |
|---------------------------|----------|------------------------|
| Human Body Model (HBM)    | Class 1B | ANSI/ESDA/JEDEC JS-001 |
| Charge Device Model (CDM) | Class C3 | ANSI/ESDA/JEDEC JS-002 |

## **RF Characteristics** (tested in Wolfspeed production test fixture)

 $V_{DD}$  = 48 V, Pulse CW 10% duty cycle, 20  $\mu$ s pulse width

| Danamatan                                                                                           | Cl               | Canaditions                                                               | Ma  | ain  | Pe   | ak   | Unit |
|-----------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|-----|------|------|------|------|
| Parameter                                                                                           | Symbol           | Conditions                                                                | Min | Max  | Min  | Max  | Unit |
| 3700 MHz                                                                                            |                  |                                                                           |     |      |      |      |      |
| Gain                                                                                                | G                | P <sub>OUT</sub> = 38 dBm (main)<br>P <sub>OUT</sub> = 37.5 dBm (peak)    | 13  | 16.3 | 12.5 | 16.5 | dB   |
| Saturated Power                                                                                     | P <sub>SAT</sub> | $P_{SAT}$ $I_{DQ} = 30 \text{ mA (main)}$ $I_{DQ} = 40 \text{ mA (peak)}$ |     | -    | 43   | _    | dBm  |
| Efficiency Eff                                                                                      |                  | $I_{DQ}$ = 30 mA (main), $P_{SAT}$<br>$I_{DQ}$ = 40 mA (peak), $P_{SAT}$  | 45  | -    | 34   | -    | %    |
| 3980 MHz                                                                                            |                  |                                                                           |     |      |      |      |      |
| Gain                                                                                                | G                | P <sub>OUT</sub> = 38 dBm (main)<br>P <sub>OUT</sub> = 37.5 dBm (peak)    | 12  | 16   | 10   | 14   | dB   |
| Saturated Power                                                                                     | P <sub>SAT</sub> | $P_{SAT}$ $I_{DQ} = 30 \text{ mA (main)}$ $I_{DQ} = 40 \text{ mA (peak)}$ |     | _    | 41   | -    | dBm  |
| Efficiency Eff $I_{DQ} = 30 \text{ mA (main)}, P_{SAT}$<br>$I_{DQ} = 40 \text{ mA (peak)}, P_{SAT}$ |                  | 46                                                                        | -   | 31   | -    | %    |      |

# **Ordering Information**


| Order Code        | Description                          |
|-------------------|--------------------------------------|
| WS1A3940-V2-R00A  | Sample Quantities                    |
| WS1A3940-V2-R1    | 330 mm (13") Reel 100 pcs            |
| WS1A3940-V2-R3K   | 330 mm (13") Reel 3,000 pcs          |
| FXA/ WSGPA01V1-18 | 3.7-3.98 GHz Driver Evaluation Board |
| FXA/WS1A3940V2-04 | 3.7-3.98 GHz Evaluation Board        |

# **Evaluation Boards - Typical RF Performance**

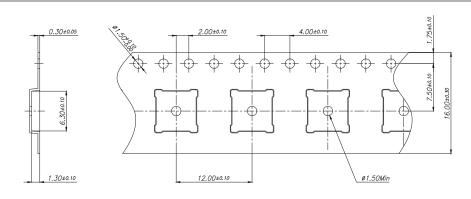
| Part Number Frequency                                                                                                                                                        |              | P <sub>OUT</sub><br>(dBm) | Eff<br>(%) | Gain<br>(dB) | PAR<br>(dB) | ACPR+<br>(dBc) | ACPR-<br>(dBc) |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|------------|--------------|-------------|----------------|----------------|--|
| Output Stage: WS1A3940 Single-carrier WCDMA Performance, V <sub>DD</sub> = 48 V, I <sub>DQ(main)</sub> = 45 mA, channel bandwidth = 3.84 MHz, input PAR = 10 dB @ 0.01% CCDF |              |                           |            |              |             |                |                |  |
| FXA/WS1A3940V2-04                                                                                                                                                            | 3.7-3.98 GHz | 39.5                      | 44.5       | 29.8         | 8           | -27.5          | -27.5          |  |

| <b>WSGPA01 Driver</b> Single-carrier WCDMA Pe | rformance, V <sub>DD</sub> = 48 V, I <sub>DQ</sub> = 25 m/ | A, channel bandwidth | = 3.84 MHz, i | nput PAR = 10 | dB @ 0.01% | CCDF  |       |
|-----------------------------------------------|------------------------------------------------------------|----------------------|---------------|---------------|------------|-------|-------|
| FXA/WSGPA01V1-18                              | 3.7-3.98 GHz                                               | 26.5                 | 17.5          | 16.8          | 9.1        | -46.3 | -45.2 |

## Pinout Diagram (top view)



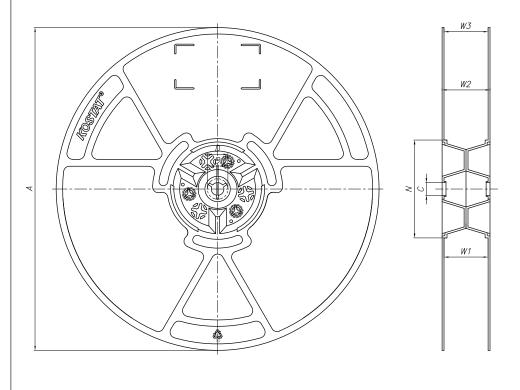
## **Bias Sequencing**

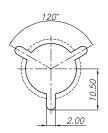

#### **Bias ON**

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of –5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

#### **Bias OFF**

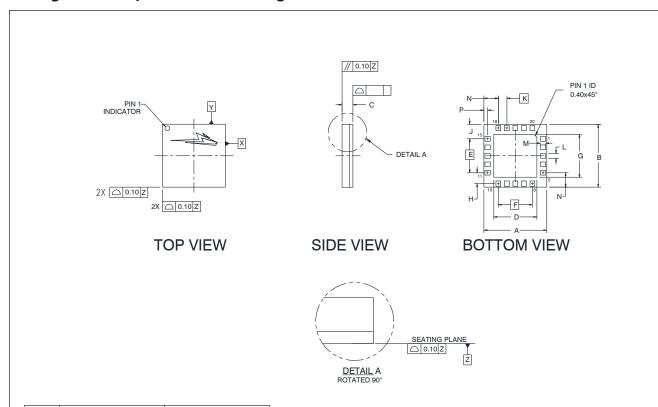
- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage


## **Tape and Reel Information**






- (I) 10 sprocket hole pitch cumulative tolerance ± 0.20
- (II) Camber not to exceed 1 mm in 250 mm
- (III) Material: Black conductive Polystyrene
- (IV) Ao and Bo measured on a plane 0.3 mm above the bottom of the pocket.
- (V) Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier
- (VI) Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole


ALL DIMENSIONS IN MILLIMETERS UNLESS OTHERWISE STATED.





| Size | А                                   | В      | С                                    | D        | N                                   | W1                                   | W2             | W3                                      |
|------|-------------------------------------|--------|--------------------------------------|----------|-------------------------------------|--------------------------------------|----------------|-----------------------------------------|
| 16mm | 330 <sup>+2.0</sup> <sub>-2.0</sub> | 1.5min | 13.0 <sup>+0.5</sup> <sub>-0.2</sub> | 20.2 min | 100 <sup>+3.0</sup> <sub>-0.0</sub> | 16.4 <sup>+2.0</sup> <sub>-0.0</sub> | 20.4 +2.0 -2.0 | 17.65 <sup>+1.75</sup> <sub>-1.75</sub> |

## Package Outline Specifications - Package PG-LGA-6x6-3-1



|     | INCHES |      |      | MI   | ILLIMETER | RS   |
|-----|--------|------|------|------|-----------|------|
| DIM | MIN    | TYP  | MAX  | MIN  | TYP       | MAX  |
| Α   | .234   | .236 | .238 | 5.95 | 6.00      | 6.05 |
| В   | .234   | .236 | .238 | 5.95 | 6.00      | 6.05 |
| С   | .037   | .041 | .045 | 0.93 | 1.03      | 1.13 |
| D   | .157   | .161 | .165 | 4.00 | 4.10      | 4.20 |
| Е   | _      | .128 | _    | _    | 3.24      | _    |
| F   | _      | .128 | _    | _    | 3.24      | _    |
| G   | _      | .161 | _    | -    | 4.10      | _    |
| Н   | _      | .041 | _    | -    | 1.03      | _    |
| J   | .054   | .054 | .055 | 1.37 | 1.38      | 1.39 |
| K   | _      | .032 | _    | -    | 0.81      | _    |
| L   | _      | .018 | _    | _    | 0.46      | _    |
| М   | _      | .020 | _    |      | 0.50      | _    |
| N   | .054   | .054 | .055 | 1.37 | 1.38      | 1.39 |
| Р   | .013   | .014 | .014 | 0.34 | 0.35      | 0.36 |

Diagram Notes-unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.