

FXP14R Hexa-Band Cellular Antenna

Part No: FXP14R.A.07.0100A

Description

AntD© Shunt 10k Ohm Chip Resistor Inside 850/900/1700/1800/1900/2100MHz 100mm, Ø1.13 cable, I-PEX MHF® I (U.FL comp) Dims: 70*20*0.1mm

Features:

IPEX MHF Connector (U.FL compatible)
100 mm 1.37 Cable
70*20*.01 mm
Flexible
Peel and Stick Mounting
AntD© Shunt 10k Ohm Chip Resistor Inside
Cable and Connector Customizable
RoHS compliant

1.	Introduction	2
2.	Specification	3
3.	Antenna Characteristics	5
4.	Radiation Patterns	9
5.	Mechanical Drawing	18
6.	Packaging	19
	Changelog	20

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

The Taoglas FXP14R Hexa Band Cellular Antenna with Integrated AntD© Resistor covers all world-wide 2G/3G bands (850 / 900 / 1700 / 1800 / 1900 / 2100 MHz). Common applications are in GSM / CDMA / DCS / PCS / WCDMA / UMTS/ HSPA / GPRS / EDGE.

The antenna has been designed using a super thin flexible polymer substrate with a rectangular form-factor and cable connection for ease of installation. The antenna radiates well on different plastic materials and thickness. We have selected ABS plastic mounting with 2 mm of thickness as a baseline for testing. Best in class efficiency on lower and upper bands (above 40%) make it an ideal antenna for devices where space for onboard SMT cellular antennas is not available. The antenna is mounted via automotive quality 3M 467MP adhesive and has excellent reliability. The FXP14 has its own ground-plane, therefore it does not need to connect to the ground-plane of the main-board of the device for improved radiation efficiency.

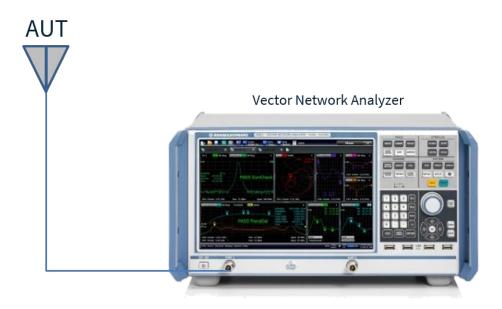
Taoglas unique AntD© technology allows connected radio products to perform diagnostics on the antenna. This includes detection that the proper antenna is connected and that the connection isn't shorted or broken. Contact Taoglas engineering for examples on how to implement AntD© antenna diagnostics in your product. Cable length and connector types are also customizable. Like all such antennas, care should be taken to mount the antenna at least 10mm from metal components or surfaces, and ideally 20mm for best radiation efficiency.

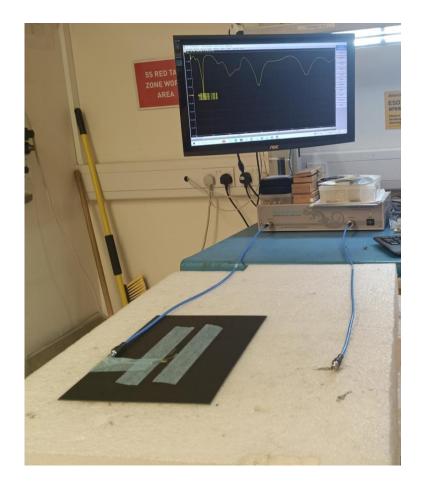
2. Specification

			LTE	Electrical				
Band	Frequency (MHz)	Efficiency (%)	Average Gain (dB)	Peak Gain (dBi)	Impedance	Polarization	Radiation Pattern	Max. input power
5GNR/4G Band71	617-698	19.8	-7.02	-2.47				
4G/3G Band 12,13,14,17,28,29	698-806	18.2	-7.39	-2.56				
4G/3G/NB-IoT/Cat M Band 5,8,18,19,20,26,27	824-960	38.6	-4.13	3.27				
5GNR/4G Band 21,32,74,75,76	1427-1518	47.0	-3.28	2.86	50 Ω	Linear	Omni	2W
4G/3G Band 1,2,3,4,9,23,25,35,39,6 6	1710-2200	64.0	-1.94	4.18				
4G/3G Band 7,30,38,40,41	2300-2690	34.4	-4.63	3.32				
5GNR/4G Band 22,42,48,77,78,79	3300-5000	60.5	-2.18	4.88				

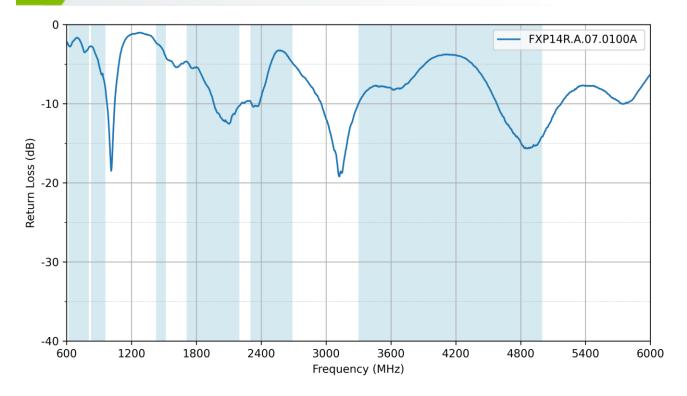
	Mechanical
Dimensions	70*20*01mm
Connector	MHFII (U.FL Compatible)
Cable Standard	Mini-Coax 1.13mm
Cable Length and color	100 mm,Black

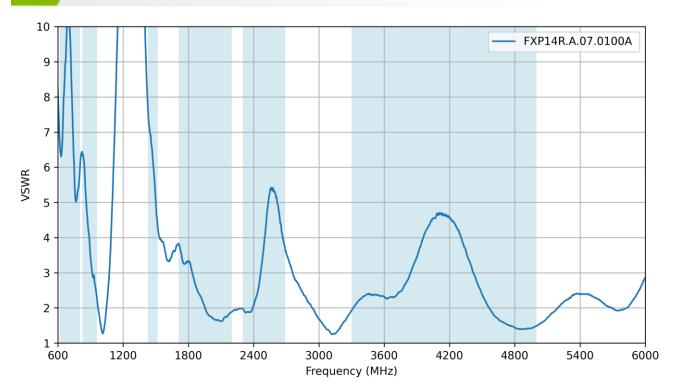
	Environmental
Temperature Range	-40°C to 85°C
Storage Temperature	-40°C to 85°C



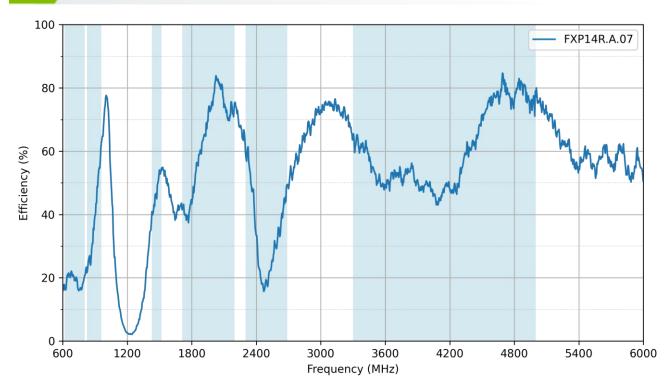

	FC/40	i Bands	
Band Number	<u> </u>	E / LTE-Advanced / WCDMA / HSPA / H:	SPA+/TD-SCDMA
Band Number	Uplink	Downlink	Covered
B1	1920 to 1980	2110 to 2170	✓
В2	1850 to 1910	1930 to 1990	✓
В3	1710 to 1785	1805 to 1880	✓
B4	1710 to 1755	2110 to 2155	✓
B5	824 to 849	869 to 894	✓
В7	2500 to 2570	2620 to 2690	✓
B8	880 to 915	925 to 960	✓
B9*	1749.9 to 1784.9	1844.9 to 1879.9	√
B11	1427.9 to 1447.9	1475.9 to 1495.9	√
B12	699 to 716	729 to 746	√
B13	777 to 787	746 to 756	√
B14 B17	788 to 798 704 to 716	758 to 768 734 to 746	∨ ✓
B18	815 to 830	860 to 875	· ✓
B19	830 to 845	875 to 890	↓
B20	832 to 862	791 to 821	✓
B21	1447.9 to 1462.9	1495.9 to 1510.9	✓
B22*	3410 to 3490	3510 to 3590	· ✓
B23*	2000 to 2020	2180 to 2200	✓
B24	1626.5 to 1660.5	1525 to 1559	✓
B25	1850 to 1915	1930 to 1995	✓
B26	814 to 849	859 to 894	✓
B27*	807 to 824	852 to 869	✓
B28	703 to 748	758 to 803	✓
B29	717 t	to 728	✓
B30	2305 to 2315	2350 to 2360	✓
B31	452.5 to 457.5	462.5 to 467.5	×
B32	1452 t	to 1496	✓
B34		to 2025	√
B35		to 1910	√
B36		to 1990	√
B37		0 1930	√
B38		to 2620	∨ ✓
B39		to 1920	∨ ✓
B40 B41		to 2400 to 2690	↓
B42		to 3600	✓
B43		to 3800	· ✓
B45		0 1467	✓
B46		to 5925	✓
B47		to 5925	✓
B48	3550 t	:0 3700	✓
B49	3550 t	to 3700	✓
B50	1432 t	to 1517	✓
B51		to 1432	√
B52		to 3400	√
B53		to 2495	√
B65	1920 to 2010	2110 to 2200	√
B66	1710 to 1780	2110 to 2200	√
B68	698 to 728	753 to 783	√
B69		to 2620	∀ ✓
B70 B71	1695 to 1710	1995 to 2020 617 to 652	∀ ✓
B72	663 to 698 451 to 456	461 to 466	×
B73	450 to 455	460 to 465	×
B74	1427 to 1470	1475 to 1518	~ ~
B75		1473 to 1310	· ✓
B76		0 1432	· ✓
B77		0 4200	✓
B78		:0 3800	✓
B79		to 5000	✓
B85	698 to 716	728 to 746	✓
B87	410 to 415	420 to 425	×
B88	412 to 417	422 to 427	×

3. Antenna Characteristics

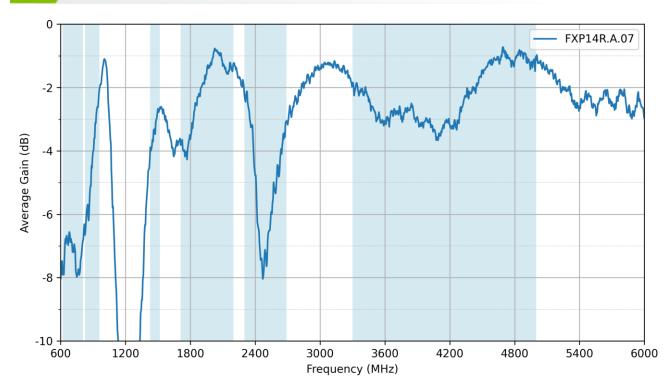

3.1 Test Setup



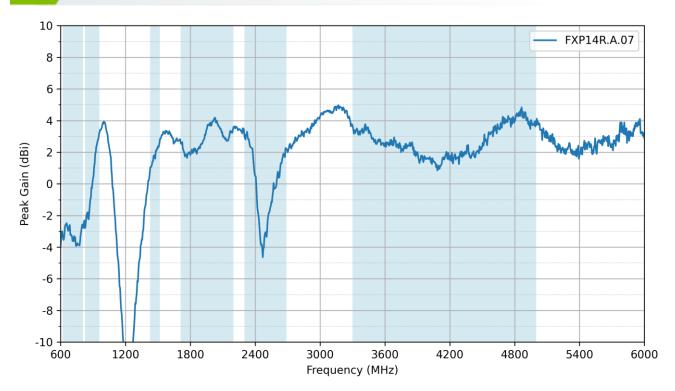
3.2 Return Loss



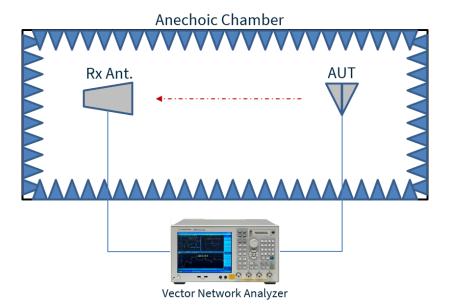
3.3 VSWR



3.4 Efficiency

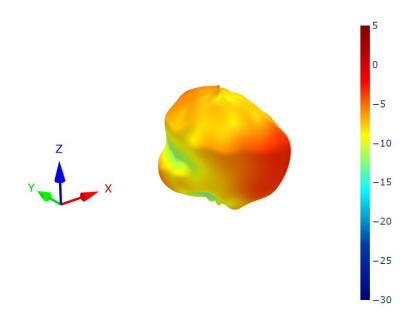


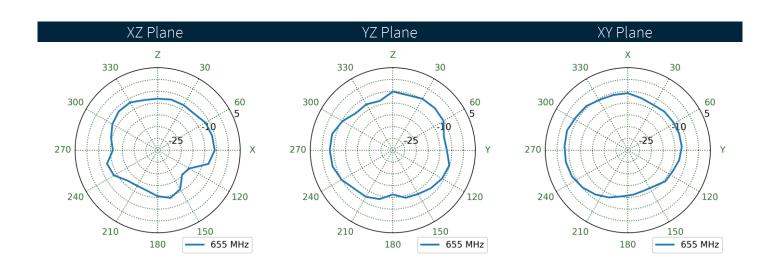
3.5 Average Gain

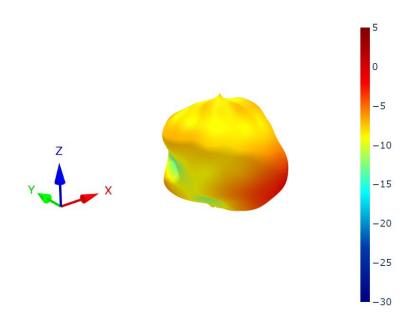

3.6 Peak Gain

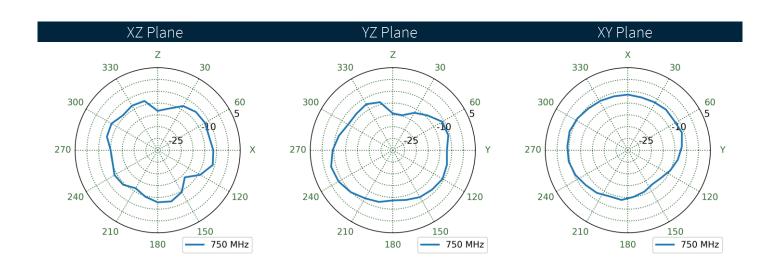


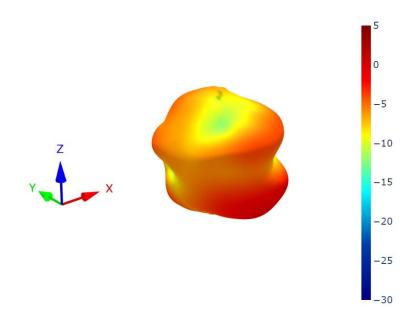
4. Radiation Patterns

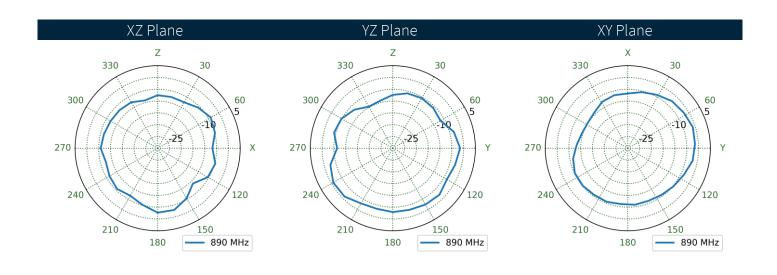

4.1 Test Setup

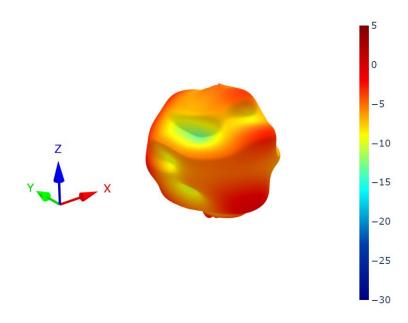


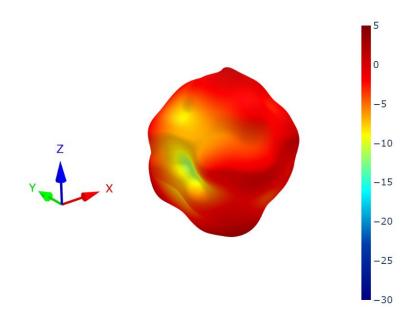

4.2 Patterns at 658 MHz

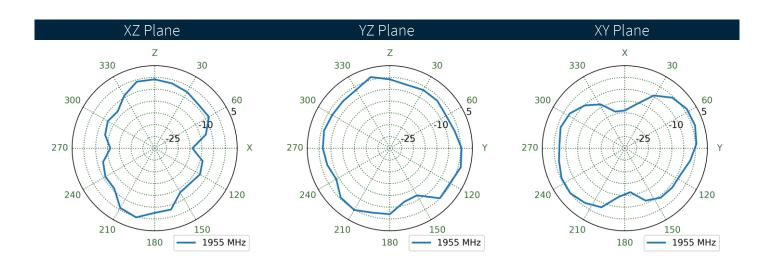


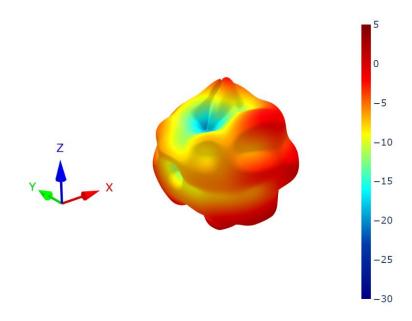

4.3 Patterns at 752 MHz

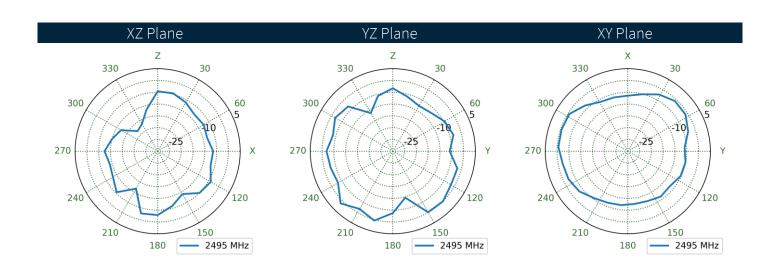


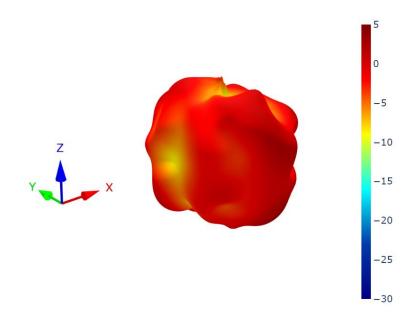

4.4 Patterns at 892 MHz

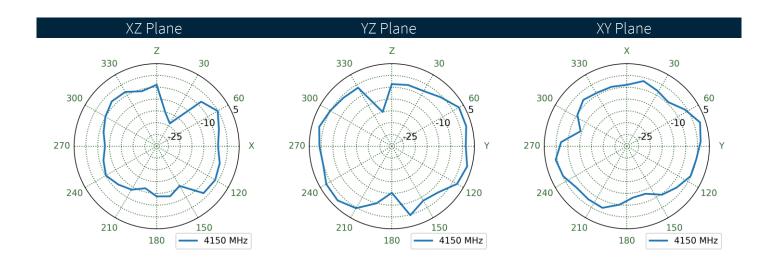

4.5 Patterns at 1473 MHz

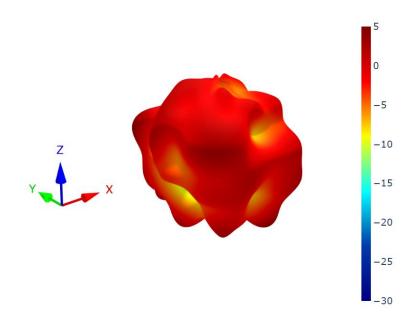


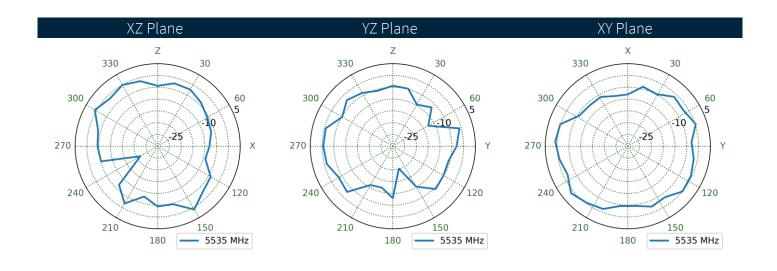

4.6 Patterns at 1955 MHz




4.7 Patterns at 2495 MHz

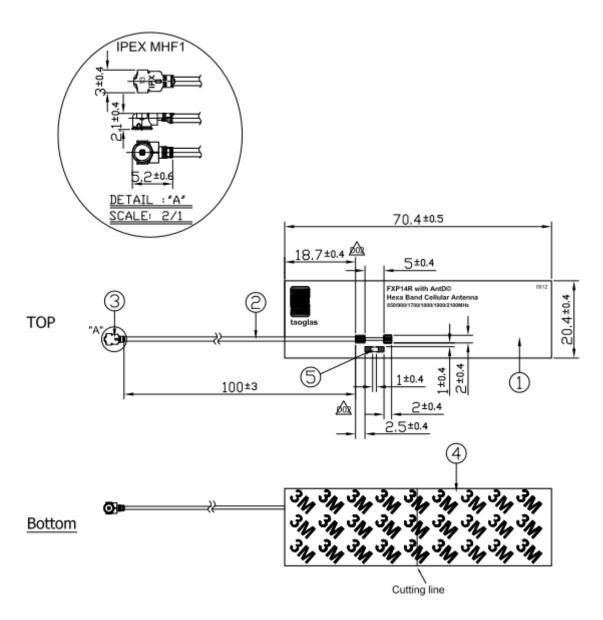


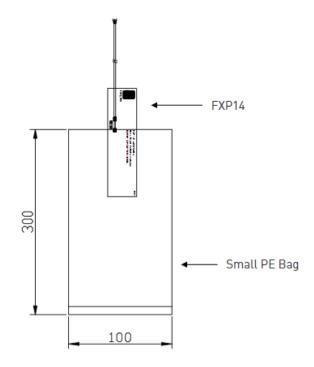

4.8 Patterns at 4150 MHz



4.9 Patterns at 5538 MHz

5. Mechanical Drawing




Figure 9. Mechanical Drawing for the FXP14 Antenna

	Name	Material	Finish	QTY
1	FXP14R FPCB	FPCB 0.1t	Black	1
(2)	1.13 Coaxial Cable	FEP	Black	1
3	IPEX MHF1	Brass	Gold	1
4	Double-Sided Adhesive	3M 467	Brown Liner	1
(5)	Resistor (R=10k Ohm)	Ceramic	N/A	1

6. Packaging

100pcs FXP14R.07.0100A per PE Bag Dimensions - 300*100mm Weight - 150g

Changelog for the datasheet

SPE-13-8-074- FXP14.07.0100A

Revision: B (Current	Version)
Date:	2023-11-14
Changes:	Full datasheet update. (New test results showing 600-6000MHz)
Changes Made by:	Aswin Biju

Previous Revisions

Revision: A	
Date:	2013-10-11
Changes:	Initial Release
Changes Made by:	Peter Knaz