

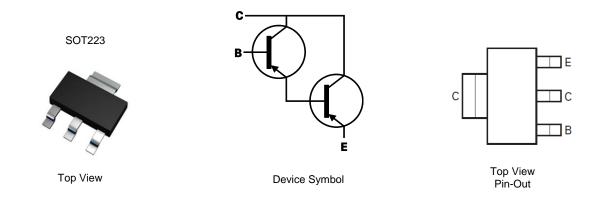
FZT705Q

Description

This Bipolar Junction Transistor (BJT) is designed to meet the stringent requirements of automotive requirements.

Features

- BV_{CEO} > -120V
- BV_{CBO} > -140V
- I_C = -2A High Continuous Current
- hFE > 2k for High Gain @ -2A
- Lead-Free Finish; RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- The FZT705Q is suitable for automotive applications requiring specific change control and is AEC-Q101 qualified, is PPAP capable, and is manufactured in IATF16949: 2016 certified facilities.


120V PNP DARLINGTON TRANSISTOR IN SOT223

Mechanical Data

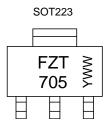
- Case: SOT223
- Case Material: Molded Plastic. "Green" Molding Compound; UL Flammability Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (93)
- Weight: 0.112 grams (Approximate)

Applications

- Lamp
- Relay
- Solenoid Driving

Ordering Information (Note 4)

Part Number Compliance	e Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
FZT705QTA Automotiv	e FZT705	7	12	1,000


Notes: 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied. 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and

Lead-free.
Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and

. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + CI) ar <1000ppm antimony compounds.</p>

4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

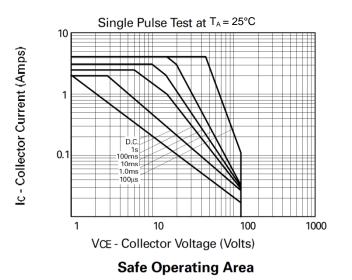
FZT 705 = Product Type Marking Code YWW = Date Code Marking Y or \overline{Y} = Last Digit of Year (ex: 9 = 2019) WW or \overline{WW} = Week Code (01 to 53)

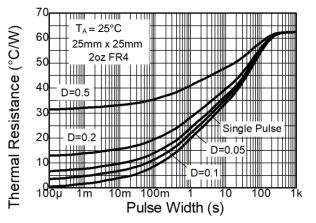
Absolute Maximum Ratings ($@T_A = +25^{\circ}C$, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-140	V
Collector-Emitter Voltage	V _{CEO}	-120	V
Emitter-Base Voltage	V _{EBO}	-12	V
Continuous Collector Current	lc	-2	A
Peak Pulse Current	I _{CM}	-4	A

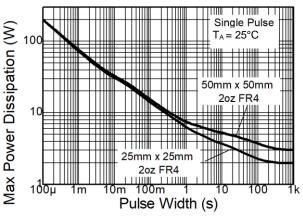
Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Unit	
	(Note 5)		3.0		
Rower Discipation	(Note 6)		2.0	W	
Power Dissipation	(Note 7)	PD	1.6	vv	
	(Note 8)		1.2		
	(Note 5)		41.7		
Thermal Resistance, Junction to Ambient	(Note 6))	62.5		
Thermal Resistance, Junction to Ambient	(Note 7)	$R_{ extsf{ heta}JA}$	78.1	°C/W	
	(Note 8)		104		
Thermal Resistance Junction to Lead	al Resistance Junction to Lead (Note 9)		12.9		
Operating and Storage Temperature Range	T _{J,} T _{STG}	-55 to +150	°C		

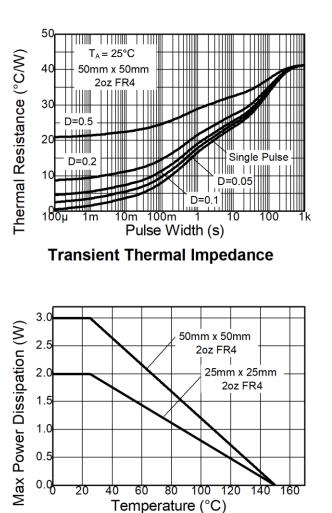

ESD Ratings (Note 10)


Characteristic	Symbol	Value	Unit	JEDEC Class
Electrostatic Discharge - Human Body Model	ESD HBM	2,000	V	2
Electrostatic Discharge - Machine Model	ESD MM	≥ 200	V	В

Notes: 5. For a device mounted with the collector lead on 50mm x 50mm 2oz copper that is on a single-sided 1.6mm FR-4 PCB; device is measured under For a device mounted with the collector lead on 50mm x 50mm 2oz copper that is on a still air conditions whilst operating in a steady-state.
Same as Note 5, except the device is mounted on 25mm x 25mm 2oz copper.
Same as Note 5, except the device is mounted on 25mm x 25mm 1oz copper.
Same as Note 5, except the device is mounted on minimum recommended pad layout.
Thermal resistance from junction to solder-point (at the end of the collector lead).
Refer to JEDEC specification JESD22-A114 and JESD22-A115.



Thermal Characteristics and Derating Information

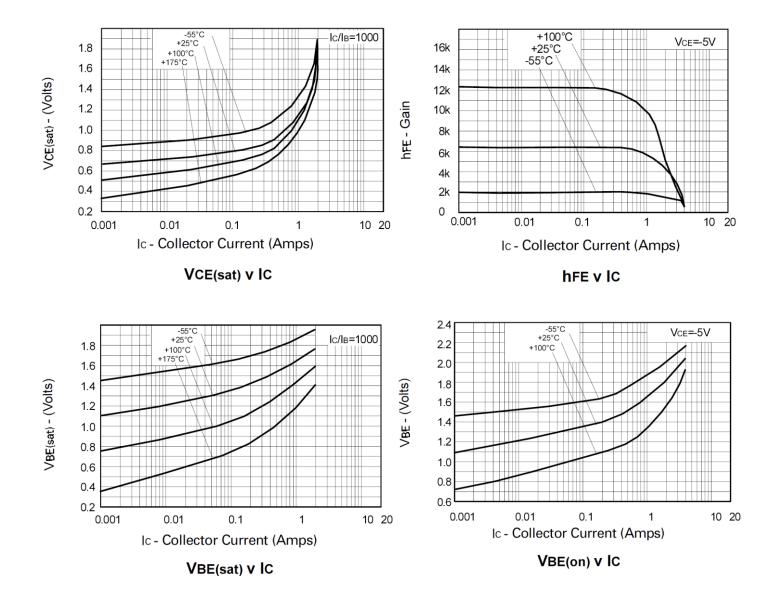


Transient Thermal Impedance

Pulse Power Dissipation

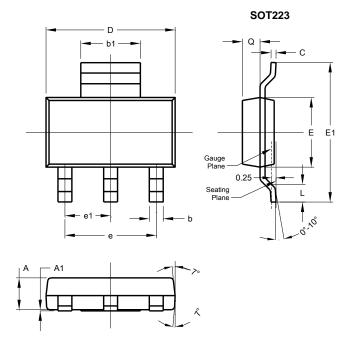
Derating Curve

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

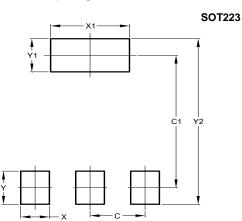

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	BV _{CBO}	-140	—	—	V	I _C = -100μA
Collector-Emitter Breakdown Voltage (Note 11)	BV _{CEO}	-120	—	—	V	I _C = -10mA
Emitter-Base Breakdown Voltage	BV _{EBO}	-12	_	_	V	I _E = -100μA
Collector-Base Cut-Off Current		_		-100	nA	V _{CB} = -120V
	I _{CBO}			-10	μΑ	$V_{CB} = -120V, T_A = +100^{\circ}C$
Collector-Emitter Cut-Off Current	I _{CES}	_	—	-10	μA	V _{CE} = -80V
Emitter Cut-Off Current	I _{EBO}	_	—	-100	nA	V _{EB} = -8V
	h _{FE}	3,000	—	—		I _C = -10mA, V _{CE} = -5V
DC Current Gain (Note 11)		3,000	—	—	—	I _C = -100mA, V _{CE} = -5V
		3,000	—	30,000		$I_{C} = -1A, V_{CE} = -5V$
		2,000	—	_		$I_{C} = -2A, V_{CE} = -5V$
Collector Ensition Coturnation Maltons (Nate 14)	V _{CE(sat)}	_	—	-1.3	v	I _C = -1A, I _B = -1mA
Collector-Emitter Saturation Voltage (Note 11)		_	—	-2.5	V	$I_{\rm C} = -2A, I_{\rm B} = -2mA$
Base-Emitter Saturation Voltage (Note 11)	V _{BE(sat)}	—	—	-1.8	V	I _C = -1A, I _B = -10mA
Base-Emitter Turn-On Voltage (Note 11)	V _{BE(on)}	—	—	-1.7	V	$I_{\rm C} = -1$ A, $V_{\rm CE} = -5$ V
Output Capacitance	C _{obo}	—	15	—	pF	$V_{EB} = -10V$, f = 1MHz
Current Gain-Bandwidth Product	f⊤	_	160	_	MHz	$V_{CE} = -10V, I_C = -100mA,$ f = 20MHz
Turn-On Time	t _{ON}	_	0.6	_	μs	$V_{CC} = -10V, I_{C} = -500mA$
Turn-Off Time	t _{OFF}	_	0.8	—	μs	I _{B1} = -I _{B2} = -0.5mA

Note: 11. Measured under pulsed conditions. Pulse width \leq 300 µs. Duty cycle \leq 2%.

FZT705Q


Typical Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT223					
Dim	Min	Max	Тур		
Α	1.55	1.65	1.60		
A1	0.010	0.15	0.05		
b	0.60	0.80	0.70		
b1	2.90	3.10	3.00		
С	0.20	0.30	0.25		
D	6.45	6.55	6.50		
E	3.45	3.55	3.50		
E1	6.90	7.10	7.00		
е	_	I	4.60		
e1	_	_	2.30		
L	0.85	1.05	0.95		
Q	0.84	0.94	0.89		
All [All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)
С	2.30
C1	6.40
Х	1.20
X1	3.30
Y	1.60
Y1	1.60
Y2	8.00

For high voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device terminals and PCB tracking.