Surface Mount

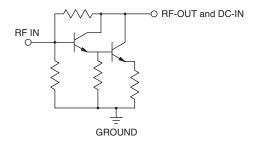
Monolithic Amplifier

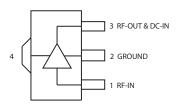
DC-3 GHz

Features

- Miniature SOT-89 package
- Low noise figure, 2.4 dB typ.
- Internally Matched to 50 Ohms
- Wide bandwidth, DC to 3 GHz
- Excellent package for heat dissipation, exposed metal bottom
- · Low thermal resistance for high reliability
- Aqueous washable

Applications


- Cellular
- PCS
- Communication receivers & transmitters


+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

Gali = S66+ (RoHS compliant) is a wideband amplifier offering high dynamic range. Lead finish is SnAgNi. It has repeatable performance from lot to lot, and is enclosed in a SOT-89 package. It uses Darlington configuration and is designed to be rugged for ESD.

simplified schematic and pin description

Function	Pin Number	Description
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

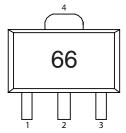
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuit's standard limited warranty and terms and conditions (collectively, "Standard Terms"): Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Electrical Specifications at 25°C and 16mA, unless noted

Parameter		Min.	Тур.	Max.	Units
Frequency Range*		DC		3	GHz
Gain	f=0.1 GHz	_	21.6	_	dB
	f=1 GHz	_	20.3	_	
	f=2 GHz	15	18.2	_	
	f=3 GHz	_	16.4	_	
Input Return Loss	f= DC to 3 GHz		25		dB
Output Return Loss	f= DC to 3 GHz		20		dB
Output Power @ 1 dB compression	f=2 GHz	1.0	3.3	_	dBm
Output IP3	f=2 GHz		19.1		dBm
Noise Figure	f=2 GHz		2.4		dB
Recommended Device Operating Current			16		mA
Device Operating Voltage		3.0	3.5	4.0	V
Device Voltage Variation vs. Temperature at 16 mA			-2.1		mV/°C
Device Voltage Variation vs. Current at 25°C			3.7		mV/mA
Thermal Resistance, junction-to-case ¹			64		°C/W


^{*}Guaranteed specification DC-3 GHz. Low frequency cut off determined by external coupling capacitors.

Absolute Maximum Ratings

	•		
Parameter	Ratings		
Operating Temperature	-45°C to 85°C		
Storage Temperature	-65°C to 150°C		
Operating Current	50mA		
Input Power	20dBm		

Note: Permanent damage may occur if any of these limits are exceeded.

Product Marking

Markings in addition to model number designation may appear for internal quality control purposes.

Additional Detailed Technical Information

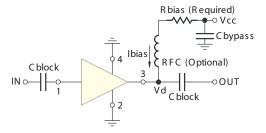
Additional information is available on our web site. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: DF782

Plastic package, exposed paddle, lead finish: Matte-Tin

Tape & Reel: F55


7" reels with 20, 50, 100, 200, 500, 1K devices.

Suggested Layout for PCB Design: PL-019

Evaluation Board: TB-409-S66+

Environmental Ratings: ENV08T2

Recommended Application Circuit

Test Board includes case, connectors, and components (in bold) soldered to PCB

R BIAS				
Vcc	"1%" Res. Values (ohms) for Optimum Biasing			
7	187			
8	243			
9	301			
10	374			
11	432			
12	499			
13	562			
14	619			
15	681			
16	750			
17	806			
18	866			
19	931			
20	976			

Notes
A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warrantly and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp