

Accura GNSS L1/L5 Stacked Patch Multi-Band Antenna

Part No: GVLB258.A

Description:

Single Feed Stacked Patch Antenna for GNSS L1 / L5, GLONASS, BeiDou B1

Features:

Single Feed Stacked Patch Assembly

Covering Bands

- GPS L1 & L5
- BeiDou B1
- Galileo E1 & E5a
- GLONASS G1
- IRNSS L5

Pin Mount

Dimensions: 25*25*8.12mm

1.	Introduction	3
2.	Specifications	4
3.	Antenna Characteristics	6
4.	Radiation Patterns	9
5.	Field Test Results	14
6.	Mechanical Drawing	15
7.	Antenna Integration Guide	17
8.	Solder Reflow Profile	21
9.	Packaging	22
	Changelog	23

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and resermance changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited.

1. Introduction

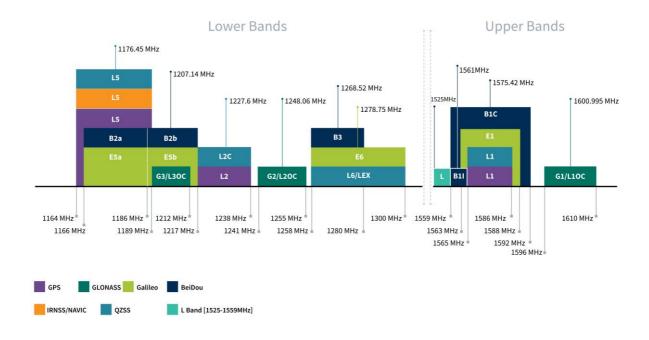
The Taoglas Accura GVLB258.A, is a multi-band GPS, BeiDou/Compass and IRNSS, high-performance directional antenna for high precision GPS and BeiDou accuracy and fast positioning. It utilizes a 25*25*8mm advanced wide-band dual stacked ceramic patch antenna with optimized gain for GPS L1/L5, Galileo, GLONASS and BeiDou bands.

Typical Applications Include:

- RTK - Wearables - Transportation - Agriculture

Navigation - Security - Autonomous Vehicles

The GVLB258.A has been tuned and tested on a 70 x 70 mm ground plane and exhibits excellent radiation patterns. The GVLB258.A has been optimised to cover the bands required for the next generation of L1/L5 GNSS receivers that are currently on the market.


Patch antennas can be specifically tuned to customer-specific device environments, subject to NRE and MOQ. Contact your regional Taoglas customer support team to request these services or additional support to integrate and test this antenna's performance in your device.

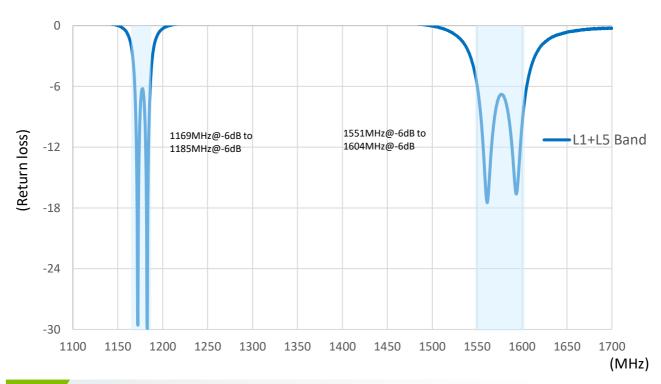
2. Specifications

		GNSS Fred	quency Band	s Covered		
GPS	L1	L2	L5			
GLONASS	G1	G2	G3			
Galileo	E1	E5a	E5b	E6		
BeiDou	B1	B2a	B2b	В3		
	•					
QZSS (Regional)	L1	L2C	L5	L6		
	-					
IRNSS (Regional)	L5					
SBAS	L1/E1/B1	L5/B2a/E5a	G1	G2	G3	

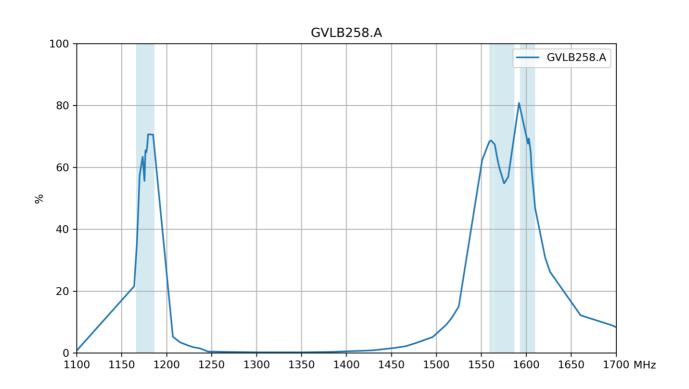
[■] GNSS Frequency Bands Covered. ☐ GNSS Frequency Bands Not Covered.

GNSS Bands and Constellations

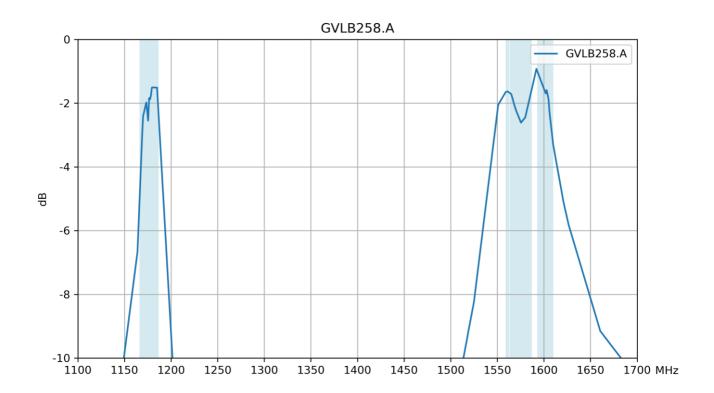
^{*}SBAS systems: WASS(L1/L5), EGNOSS(E1/E5a), SDCM(G1/G2/G3), SNAS(B1,B2a), GAGAN(L1/L5), QZSS(L1/L5), KAZZ(L1/L5).

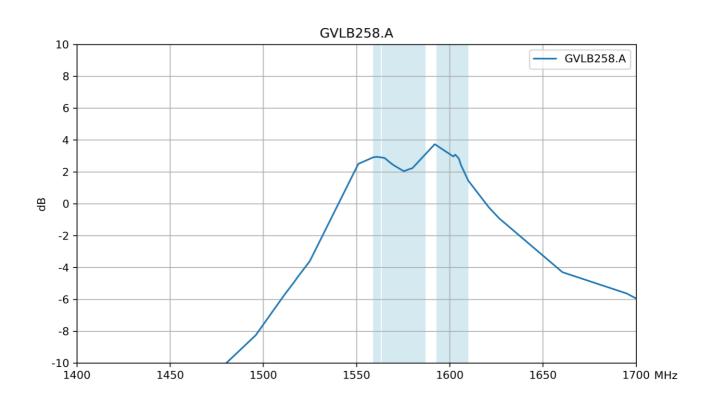

	Electrical			
Frequency (MHz)	GPS L5 / GLONASS E5a / IRNSS L5 / BeiDou B2a	BeiDou B1	GPS L1 / Galileo E1	GLONASS G1
rrequerity (Will2)	1166-1186	1559-1563	1563-1587	1593-1610
Efficiency (%)	58.5	68.5	60.7	62.5
Peak Gain(dBi)	2.31	2.94	2.87	3.08
Average Gain(dB)	-2.33	-1.64	-2.17	-2.04
Polarization		R.H.C.	P.	
Radiation Pattern		Omn	i	
Impedance		50 Ω)	

	Mechanical			
Planner Dimension	25*25*8mm			
Ground Plane	70*70mm			
Connection Type	Pin & Adhesive Mount			
Weight	18g			
	Environmental			
Temperature Range	-40°C to 85°C			
Humidity	Non-condensing 65°C 95% RH			

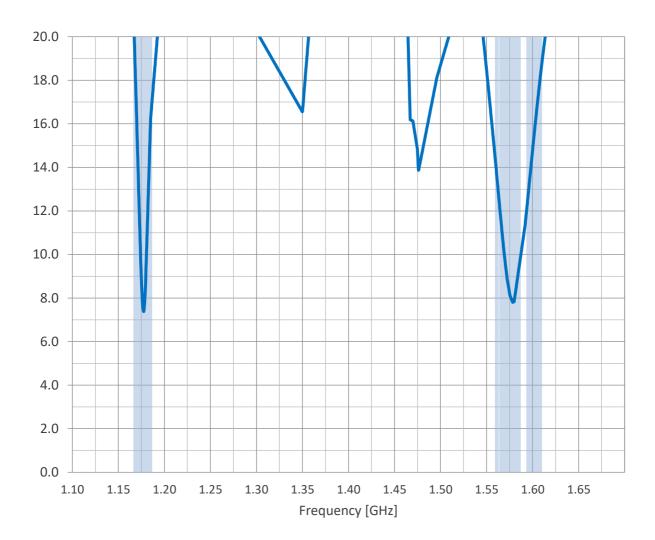


3. Antenna Characteristics

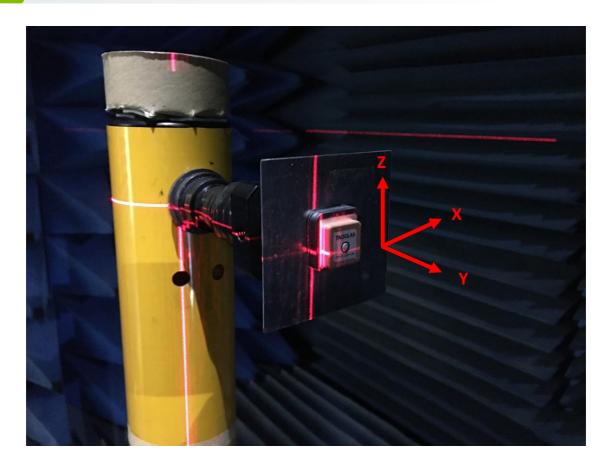

3.1 Return Loss


Efficiency

3.3 Average Gain



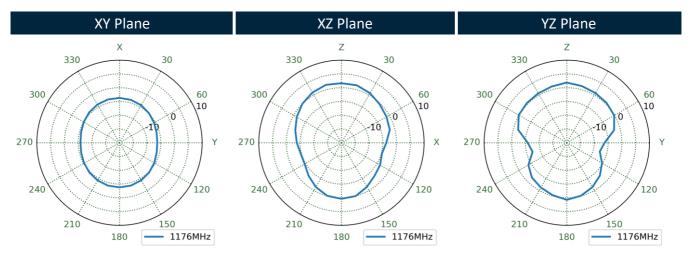
3.4 Peak Gain


3.5 Axial Ratio – X-Z

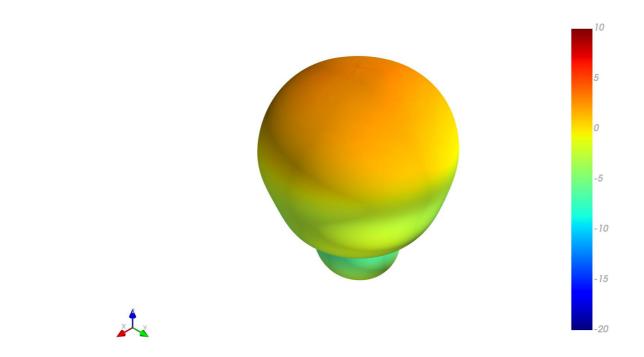
4. Radiation Patterns

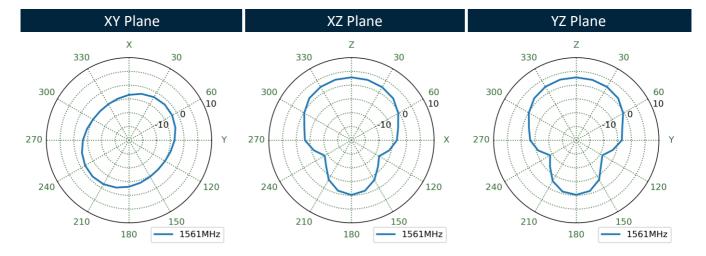
4.1 Test Setup

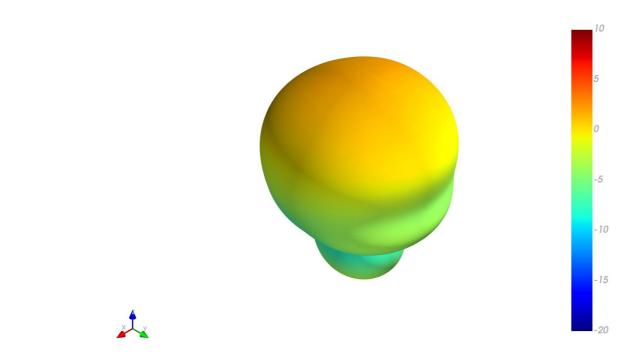


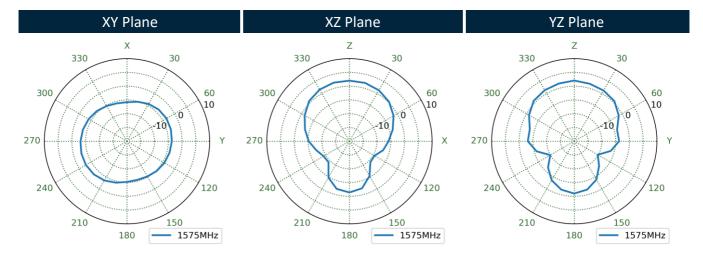

Tested on 70*70mm Ground Plane Evaluation Board

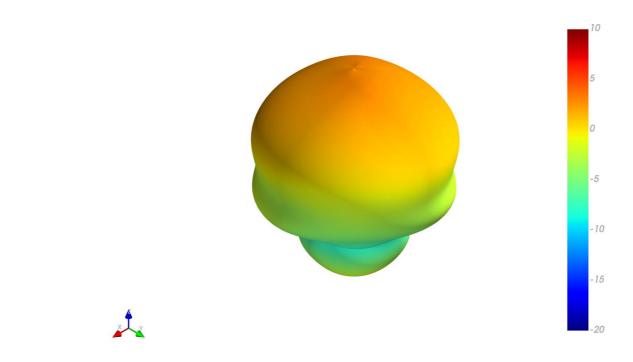
4.2 Radiation Patterns

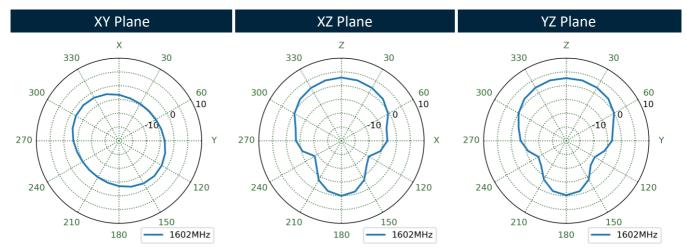

1176MHz




1561MHz




1575MHz



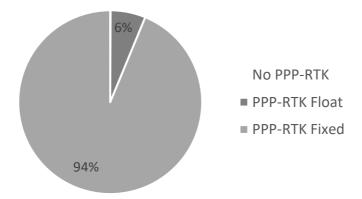
1602MHz

Field Test Results

This section outlines the field test result for GVLB258.A antenna. The test was performed when the antenna was mounted on a static rooftop test set up in an open sky environment for a minimum of **6 hours**.

Taoglas will show the field test results using the following receivers:

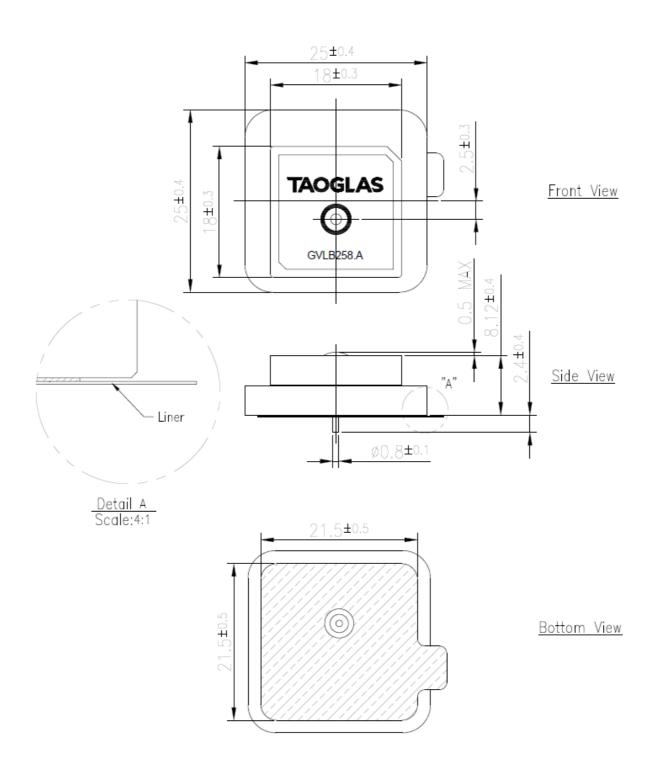
5.1 Ublox NEO-F9P-15B


Receiver features:

- Multi-band GNSS: GPS / QZSS (L1C/A, L5) GLONASS (L1OF) Galileo (E1-B/C, E5a) BeiDou (B1I, B2a) NavIC (SPS-L5)
- Multi-band PPP-RTK with fast convergence times and reliable performance
- Nav. update rate RTK up to 25 Hz
- Position accuracy = RTK 0.01 m + 1 ppm CEP

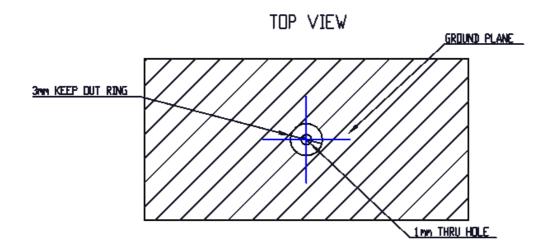
	Positioning Accuracy Table (2D Accuracy)					
Test Condition	DRMS(cm)	CEP (50%)	DRMS (68%)	2DRMS (95-98.2%)	TTFF (sec)	
70x70mm	PPP-RTK DISABLED	44.91	53.99	107.98	25	
Ground Plane	PPP-RTK ENABLED	9.04	11.71	23.42	26	

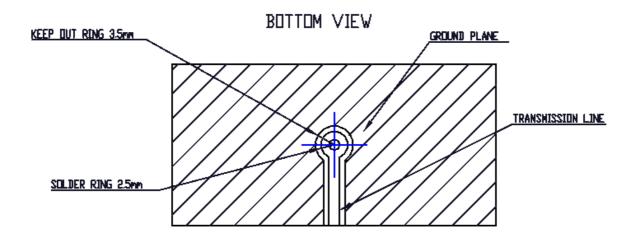
^{*}The RTK correction service used in previous measurements provides superior corrections compared to the PPP-RTK service used for measurements on the NEO-F9P.



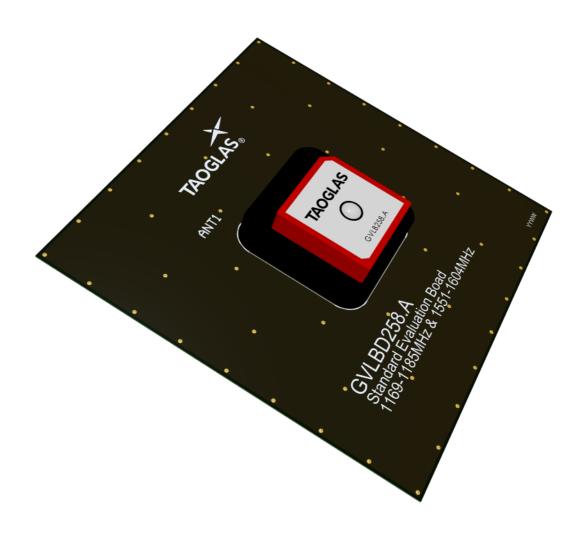
6. Mechanical Drawing (Units: mm)

ISO NO.: EDW-21-8-0598

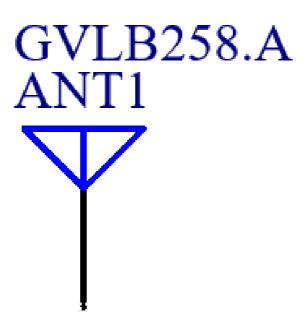

STATE: Release


REV.	DESCRIPTION	ENG.	APPROVED	DATE
2003	Initial Design	Aron Yan	Wing	2021/05/06

	Name	Material	Finish	QTY
1	Patch(18*18*4)	Ceramic	Clear	1
2	Patch(25*25*4)	Ceramic	Clear	1



7. Antenna Integration Guide



7.1

Schematic Symbol and Pin Definition

The circuit symbol for the antenna is shown below. The antenna has 1 pin as indicated below.

Pin	Description	
1	RF Feed	

Please note you can download the design files, 3D model, 2D drawings and CST simulation files from the website here:

https://www.taoglas.com/product/gvlb258-a-accura-gnss-l1-l5-stacked-patch-multi-band-antenna/

7.2 Antenna Integration

The antenna should be placed at the center of the ground plane with a length and width of 70mm. Maintaining a square symmetric ground plane shape and symmetric environment around the antenna is critical to maintaining the excellent axial ratio and phase center performance shown in this datasheet.

Top Side w/ Solder Mask

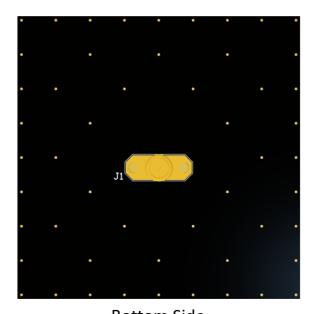
Top Side w/o Solder Mask

7.3 PCB Layout

The footprint and clearance on the PCB must comply with the antenna specification. The PCB layout shown in the diagram below demonstrates the antenna footprint.

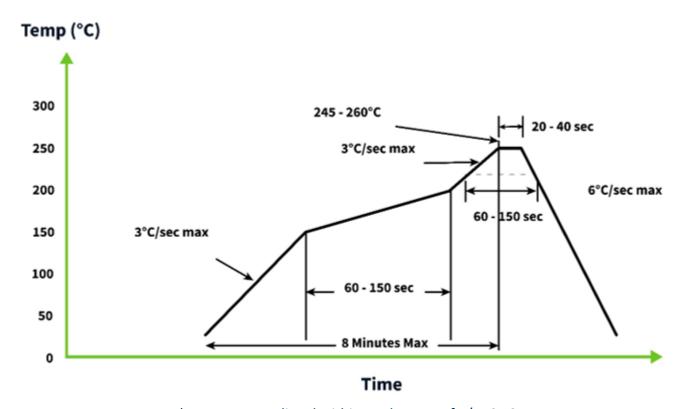
Topside

Bottom Side


19

7.4 Evaluation Board

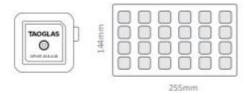
70mm



Topside Bottom Side

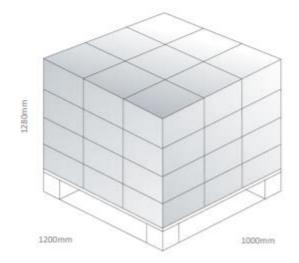
9. Solder Reflow Profile

The GVLB258.A can be assembled by following the recommended soldering temperatures are as follows:


*Temperatures listed within a tolerance of +/- 10º C

Smaller components are typically mounted on the first pass, however, we do advise mounting the GVLB258.A when placing larger components on the board during subsequent reflows.

8. Packaging


24pcs GVLB258.A per Tray Tray Dimensions: 255*144*8mm Weight: 0.460Kg

96pcs GVLB258.A per Inner Carton Dimensions: 263*154*96mm Weight: 2Kg

384pcs GVLB258.A per Large Carton Dimensions: 327*280*218mm Weight: 9Kg 263mm 154mm 154mm 327mm 280mm

Pallet Dimensions: 1200*1000*1280mm 36 Cartons Per Pallet 9 Cartons Per Layer, 4 Layers

Changelog for the datasheet

SPE-21-8-082 - GVLB258.A

Revision: E (Current Version) Date: 2023-11-07 Notes: Added Antenna Integration Guide and solder reflow profile Author: Cesar Sousa

Previous Revisions

Revision: D	
Date:	2023-07-25
Notes:	Updated Antenna Field Testing
Author:	Gary West

Revision: C	
Date:	2022-02-21
Notes:	Updated GNSS Bands & Constellations Graphics
Author:	Cesar Sousa

Revision: B	
Date:	2022-08-25
Notes:	Updated Footprint Information and ME Drawing.
Author:	Gary West

Revision: A (Origina	Revision: A (Original First Release)		
Date:	2021-09-06		
Notes:	Initial Release		
Author:	Jack Conroy		