6-Pin DIP Schmitt Trigger Output Optocoupler

H11L1M, H11L2M, H11L3M

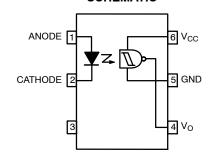
Description

The H11LXM series has a high-speed integrated circuit detector optically coupled to a gallium-arsenide infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open-collector output for maximum application flexibility.

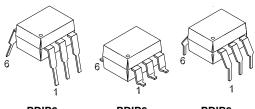
Features

- High Data Rate, 1 MHz Typical (NRZ)
- Free from Latch-up and Oscillation Throughout Voltage and Temperature Ranges
- Microprocessor Compatible Drive
- Logic Compatible Output Sinks 16 mA at 0.4 V Maximum
- Guaranteed On/Off Threshold Hysteresis
- Wide Supply Voltage Capability, Compatible with All Popular Logic Systems
- Safety and Regulatory Approvals:
 - ◆ UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications


- Logic-to-Logic Isolator
- Programmable Current Level Sensor
- Line Receiver Eliminate Noise and Transient Problems
- AC to TTL Conversion Square Wave Shaping
- Digital Programming of Power Supplies
- Interfaces Computers with Peripherals

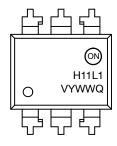
ON Semiconductor®


www.onsemi.com

SCHEMATIC

Truth Table

Input	Output
Н	L
L	Н



PDIP6 CASE 646BX

PDIP6 CASE 646BY

PDIP6 CASE 646BZ

MARKING DIAGRAM

H11L1 = Specific Device Code

/ = DIN EN/IEC40747-5-5 Option

Y = Year Code WW = Work Week

Q = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

SAFETY AND INSULATION RATINGS

As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		55/100/21
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index		175

Symbol	Parameter	Value	Units
V_{PR}	Input–to–Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	1360	V _{peak}
	Input–to–Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1594	V _{peak}
V_{IORM}	Maximum Working Insulation Voltage	850	V_{peak}
V_{IOTM}	Highest Allowable Over-Voltage	6000	V_{peak}
	External Creepage	≥7	mm
	External Clearance	≥7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.5	mm
T _S	Case Temperature (Note 1)	175	°C
I _{S,INPUT}	Input Current (Note 1)	350	mA
P _{S,OUTPUT}	Output Power (Note 1)	800	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹	Ω

^{1.} Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameters	Value	Units				
TOTAL DEVICE	OTAL DEVICE						
T _{STG}	T _{STG} Storage Temperature		°C				
T _{OPR}	Operating Temperature	-40 to +85	°C				
T_J	Junction Temperature	-40 to +125	°C				
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C				
P _D			mW				
	Derate Above 25°C	2.94	mW/°C				
EMITTER							
l _F	Continuous Forward Current	30	mA				
V _R	Reverse Voltage	6	V				
I _F (pk)	Forward Current - Peak (1 µs pulse, 300 pps)	100	mA				
P _D	LED Power Dissipation	60	mW				
DETECTOR	DETECTOR						
P _D	Detector Power Dissipation	150	mW				
Vo	V ₄₅ Allowed Range	0 to 16	V				
V _{CC}	V ₆₅ Allowed Range	3 to 16	V				
I _O	I ₄ Output Current	50	mA				

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

FI FCTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Device	Min	Тур	Max	Units
NDIVIDUAL	COMPONENT CHARACTERIST	ics					
mitter							
V _F	Input Forward Voltage	I _F = 10 mA	All		1.2	1.5	V
		I _F = 0.3 mA		0.75	1.0		
I _R	Reverse Current	V _R = 3 V	All			10	μΑ
CJ	Capacitance	V = 0, f = 1.0 MHz	All			100	pF
etector		•					-
V _{CC}	Operating Voltage Range		All	3		15	V
I _{CC(off)}	Supply Current	I _F = 0, V _{CC} = 5 V	All		1.6	5.0	mA
I _{OH}	Output Current, High	$I_F = 0$, $V_{CC} = V_O = 15 V$	All			100	μΑ
RANSFER	CHARACTERISTICS						-
C Character							
I _{CC(on)}	Supply Current	I _F = 10 mA, V _{CC} = 5 V	All		1.6	5.0	mA
V _{OL}	Output Voltage, Low	$R_L = 270 \Omega$, $V_{CC} = 5 V$, $I_F = I_{F(on)}$ max.	All		0.2	0.4	V
I _{F(on)}	Turn-On Threshold Current (Note 2)	$R_L = 270 \Omega$, $V_{CC} = 5 V$	H11L1M			1.6	mA
			H11L2M			10.0	
			H11L3M			5.0	
I _{F(off)}	Turn-Off Threshold Current	$R_L = 270 \Omega, V_{CC} = 5 V$	All	0.3	1.0		mA
I _{F(off)} /I _{F(on)}	Hysteresis Ratio	$R_L = 270 \Omega, V_{CC} = 5 V$	All	0.50	0.75	0.90	
C Character	istics, Switching Speed						
t _{on}	Turn-On Time	$R_L = 270 \Omega, V_{CC} = 5 V,$	All		1.0	4.0	μs
t _f	Fall Time	$I_F = I_{F(on)}, T_A = 25^{\circ}C$	All		0.1		
t _{off}	Turn-Off Time		All		1.2	4.0	
t _r	Rise Time		All		0.1		
	Data Rate		All		1.0		MHz
SOLATION	CHARACTERISTICS						
V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	4170				VAC _{RM}
C _{ISO}	Isolation Capacitance	V _{I-O} = 0 V, f = 1 MHz			0.4	0.6	pF
R _{ISO}	Isolation Resistance	V _{I-O} = ±500 VDC, T _A = 25°C	10 ¹¹				Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Maximum IF(ON) is the maximum current required to trigger the output. For example, a 1.6 mA maximum trigger current would require the LED to be driven at a current greater than 1.6 mA to guarantee the device turns on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 30 mA.

TYPICAL PERFORMANCE CURVES

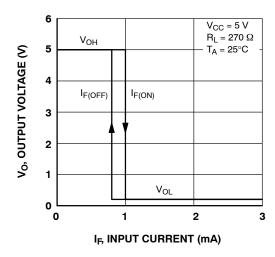


Figure 1. Transfer Characteristics

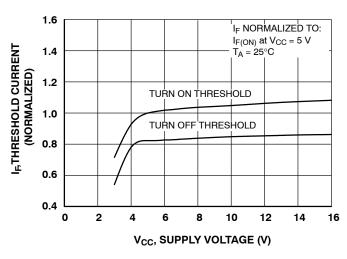


Figure 2. Threshold Current vs. Supply Voltage

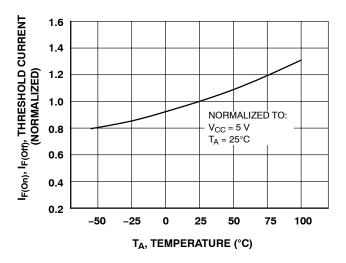


Figure 3. Threshold Current vs. Supply Temperature

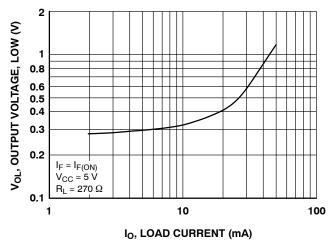


Figure 4. Output Voltage, Low vs. Load Current

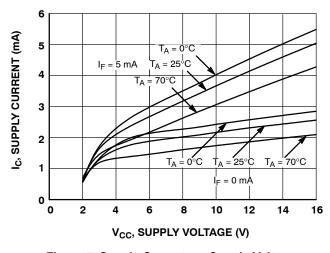


Figure 5. Supply Current vs. Supply Voltage

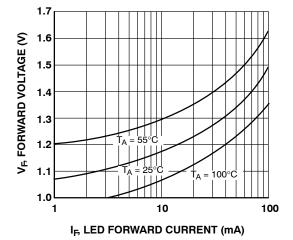


Figure 6. LED Forward Voltage vs. Forward Current

TYPICAL PERFORMANCE CURVES (continued)

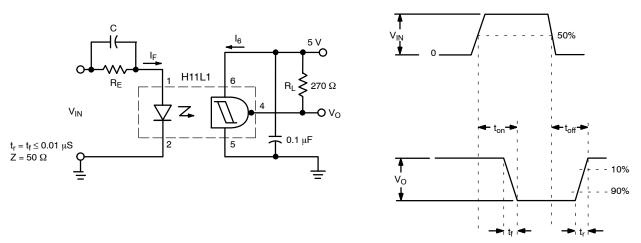


Figure 7. Switching Test Circuit and Waveforms

REFLOW PROFILE

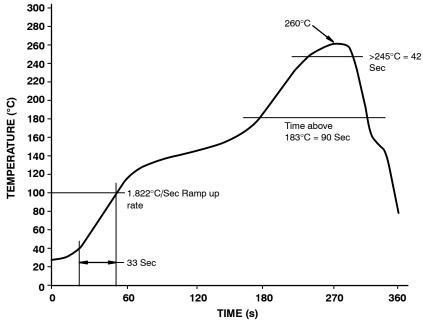
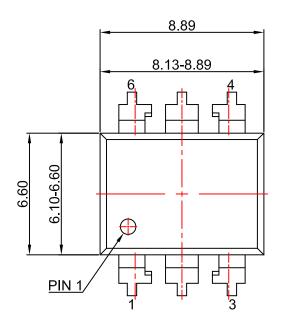
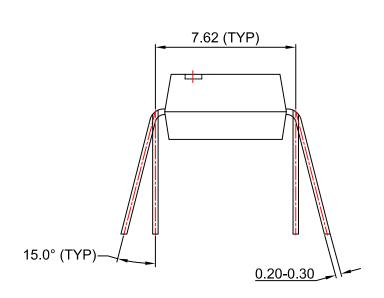


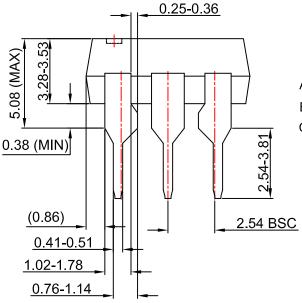
Figure 8. Reflow Profile

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Shipping [†]
H11L1M	H11L1M DIP 6-Pin	
H11L1SM	SMT 6-Pin (Lead Bend)	50 Units/Tube
H11L1SR2M	SMT 6-Pin (Lead Bend)	1000 Units/Tape & Reel
H11L1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	50 Units/Tube
H11L1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	50 Units/Tube
H11L1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	1000 Units/Tape & Reel
H11L1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	50 Units/Tube


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

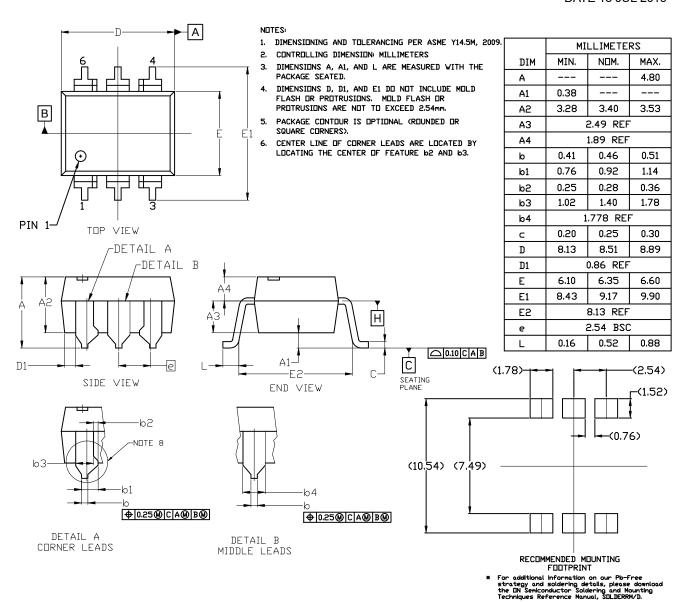

^{3.} The product orderable part number system listed in this table also applies to the H11L2M and H11L3M product families.


ON

PDIP6 8.51x6.35, 2.54P CASE 646BX ISSUE O

DATE 31 JUL 2016

NOTES:

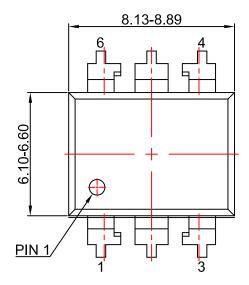

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

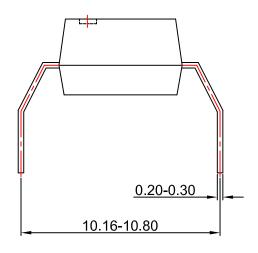
DOCUMENT NUMBER:	98AON13449G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1	

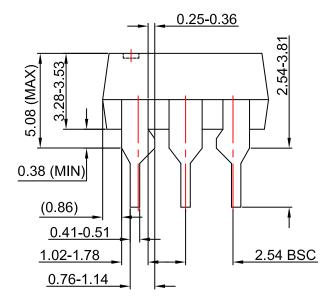
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P CASE 646BY ISSUE A

DATE 15 JUL 2019




DOCUMENT NUMBER:	98AON13450G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51x6.35, 2.54P		PAGE 1 OF 1	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP6 8.51x6.35, 2.54P CASE 646BZ ISSUE O

DATE 31 JUL 2016

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13451G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP6 8.51X6.35, 2.54P		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.