Application Note

AEDR-9920

3-Channel Reflective Digital Incremental Encoders

Introduction

The Broadcom[®] AEDR-9920 is a three-channel reflective optical encoder. It is configured to digital outputs employing reflective technology for motion control purposes. The selectable options available are with different interpolation three-channel digital differential A, B, and gated I outputs.

The AEDR-9920 digital encoder offers two-channel (AB) quadrature digital outputs and a third channel digital index output. Being TTL compatible, the outputs of the encoder can be interfaced with most of the signal processing circuitry. Therefore, the encoder provides easy integration and flexible design-in into existing systems.

The AEDR-9920 encoder is designed to operate over –40°C to 125°C temperature range and is suitable for commercial, industrial, and automotive end applications.

Applications

- Closed-loop stepper motor
- Small motors, actuator
- Industrial printer
- Robotic
- Card reader
- Pan-tilt-zoom (PTZ) camera
- Portable medical equipment
- Optometric equipment
- Linear stage

Related Part Ordering Information

Ordering Information	Туре
AEDR-9920-100	AEDR-9920, 225 LPI Incremental Encoder, 1000 pieces
AEDR-9920-102	AEDR-9920, 225 LPI Incremental Encoder, 100 pieces
HEDS-9920EVB	AEDR-9920 Evaluation Board 225 LPI Evaluation Board and Code Wheel

Reference Schematic Design

Figure 1 shows an example of the schematic diagram used in the evaluation PCB example shown later in this application note.

Figure 1: Reference Schematic Diagram for AEDR-9920

Select Options – AEDR-9920 Encoder Built-in Interpolation

SEL 1	SEL 2	IND SEL	Interpolation Factor	Index	Max Output Frequency	CPR at R _{OP}
Open	Open	Low	1X	Gated 90°e	0.1 MHz	612
		High		Gated 180°e		
		Open		Ungated raw		
Open	Low	Low	2X	Gated 90°e	0.2 MHz	1224
		High		Gated 180°e		
		Open		Gated 360°e		
High	High	Low	4X	Gated 90°e	0.5 MHz	2448
	- 	High		Gated 180°e		
		Open		Gated 360°e		
Low	Low	Low	8X	Gated 90°e	1.0 MHz	4896
		High		Gated 180°e		
		Open		Gated 360°e		
High	Low	Low	16X	Gated 90°e	2.0 MHz	9792
		High		Gated 180°e		
		Open		Gated 360°e		
Open	High	Low	32X	Gated 90°e	2.0 MHz	19584
		High		Gated 180°e		
		Open		Gated 360°e		
Low	High	Low	64X	Gated 90°e	2.0 MHz	39168
	_	High		Gated 180°e		
		Open		Gated 360°e		
High	Open	Low	128X	Gated 90°e	2.0 MHz	78336
g.·		High		Gated 180°e		
		Open		Gated 360°e		
Low	Open	High	256X	Gated 90°e	2.0 MHz	156672
		N/A		N/A		

Evaluation Board with Physical Alignment Guide Lines

- 1. Place the mounting plate on the motor base.
- 2. Place the set height jig on the motor base.
- 3. Install the code wheel hub assembly into the motor shaft with the aid of the set height jig between the motor base and the hub bottom surface. Secure the hub with an M3x3 set screw. (The recommended tightening torque is 0.15 Nm for an M3x3 set screw.)
- 4. Position the PCBA on the mounting plate guided by the guide pins. Align to the code wheel by using the silk screen-printed guide lines to the code wheel hub assembly.

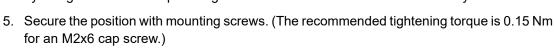
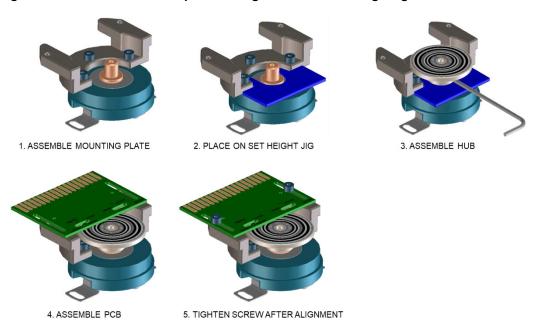
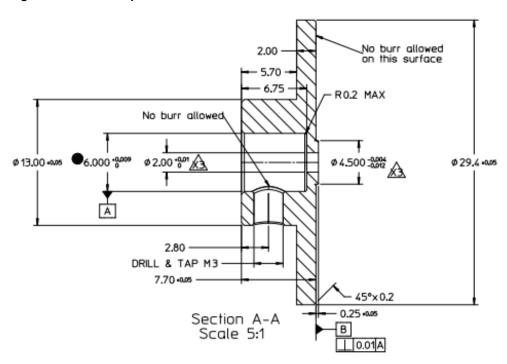



Figure 2: Evaluation Board AEDR-9920 Mounting Concept

AEDR-9920

Figure 3: Evaluation Board Sample Mounting Bracket and Bearing Stage



AEDR-9920-AN101 Broadcom

Hub Design Concept

The hub design concept for multiple track CW is shown in Figure 4.

Figure 4: Hub Concept

Jig Design Concept

The jig design is based on the AEDR-9920 with 6-mm shaft mounting. Consult the factory for the jig design details.

Figure 5: Mounting Jig Drawing

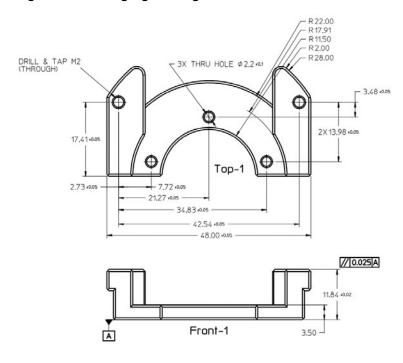
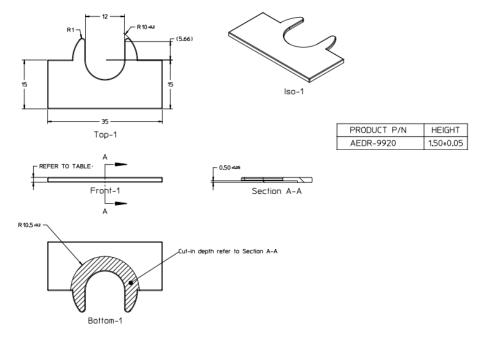



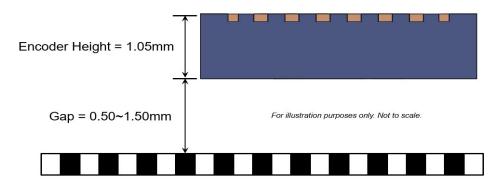
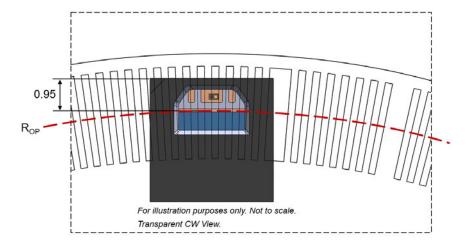
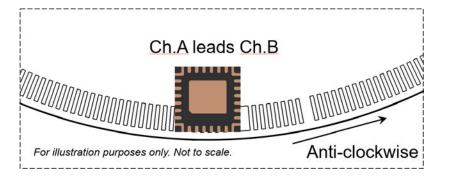
Figure 6: Height Jig Drawing

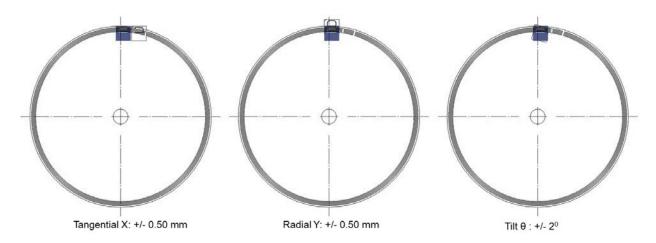
Mounting Requirement

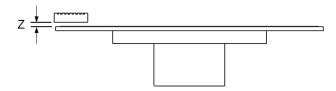
The mounting requirement is shown in Figure 7 to set up the encoder to the optimum position for typical encoder performance. The overall mounting requirements applicable for the following:

- AEDR-9920 encoder to code wheel operational gap.
- Code wheel placement.

Figure 7: Mounting Requirement


Figure 8: A and B Signal Orientation vs. Mounting Position



Spatial Tolerances

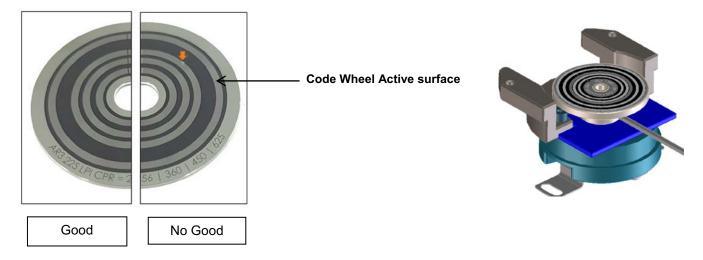
Figure 9: AEDR-9920 Spatial Tolerances

For AEDR-9920 225LPI Gap Z: 1.0 +/- 0.5 mm Nominal at 1.00 mm & with range of 0.50 mm to 1.50 mm

Notes on Assembly

- 1. The assembly of the encoder requires a clean room condition, Class 100k or better.
- 2. The encoder must be enclosed with an IP50-rated enclosure.
- 3. The encoder is supplied with protective tape to prevent contamination. Remove the tape only after the surface mount soldering reflow process.

Recommended Shaft Tolerance


Table 1: Shaft Tolerance

Hub ID	Hole Tolerance				Shaft OD	Shaft Tolerance		
(mm)	Lower	Upper	Hole Basis	Set Screw Size	(mm)	Lower	Upper	Shaft Basis
6	0	0.008	H6	M3	6	-0.004	-0.009	g5
8	0	0.009	H6	M3	8	-0.005	-0.011	g5

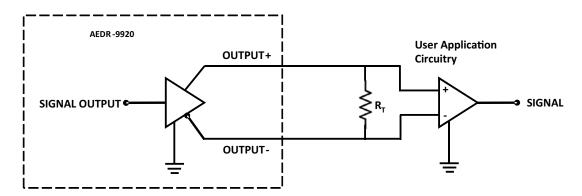
Code Wheel Handling

- Prevent touching the code wheel ACTIVE AREA by wearing a finger cot.
- Use only delicate task wipers with IPA to wipe the code wheel. Do not use cotton buds (non-lint-free) because they will cause scratches and will contaminate the code wheel.

Figure 10: Code Wheel Handling

Recommended Electrical Interface

- 1. Provide the encoder power supply with the following values:
 - For the 5.0V supply, V_{CC} must be within the range of 4.5V ~ 5.5V.
 - For the 3.3V supply, V_{CC} must be within the range of 3.0V \sim 3.6V.
- 2. For best noise immunity, use a twisted-pair shielded cable for connection to the servo driver.
- 3. To prevent undesirable signal reflection, terminate with 1200Ω resistors.


The following variations must be considered when the termination resistor is optimized:

- Cable length (impedance matching)
- PCB (impedance matching low contribution, more on crosstalk)
- Cable type (twisted, non-twisted, parallel, non-shielded, shielded)
- Cable size, and so on

Differential I/O Connection

Use the Broadcom AEIC-7272-S16 quad differential line receiver or compatible as the line receiver. Ground unused pins for noise reduction. Use shielded cable for better noise immunity.

Figure 11: Differential I/O Connection

NOTE:

- 1. Output+ represents A+, B+, or I+ digital output from the encoder.
- 2. Output- represents A-, B-, or I- digital output from the encoder.
- 3. Load resistance, *RT, is optional although highly recommended to reduce reflection.

Single-Ended I/O Connection

Figure 12: Single-Ended Connection

NOTE:

- 1. Output+ represents A+, B+, or I+ digital output from the encoder.
- 2. Output- represents A-, B-, or I- digital output from the encoder.
- 3. Do not ground the Output- from the encoder. Allow the output to float.