
SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz

Typical Applications

The HMC1013LP4E is ideal for:

- EW, ELINT & IFM Receivers
- DF Radar Systems
- ECM Systems
- Broadband Test & Measurement
- Power Measurement & Control Circuits
- Military & Space Applications

Functional Diagram

Features

High Logging Range: 67 dB (-62 to +5 dBm)

Output Frequency Flatness: ±2 dB

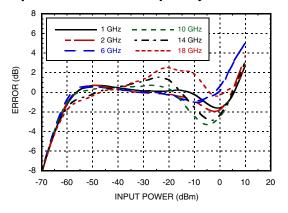
Log Linearity: ±2 dB

Fast Rise/Fall Times: 5/15 ns Single Positive Supply: +3.3V ESD Sensitivity (HBM): Class 1A 24 Lead 4x4mm SMT Package: 16mm²

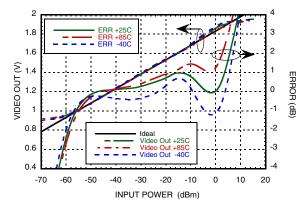
General Description

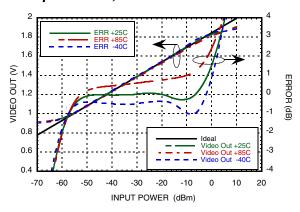
The HMC1013LP4E is a Successive Detection Log Video Amplifier which operates from 0.5 to 18.5 GHz. The HMC1013LP4E provides a logging range of 67 dB. This device offers typical fast rise/fall times of 5/15 ns and a superior delay time of only 10 ns. The HMC1013LP4E log video output slope is typically 15 mV/dB. Maximum recovery times are less than 40 ns. The HMC1013LP4E is available in a highly compact 4x4 mm SMT plastic package and is ideal for high speed channelized receiver applications.

Electrical Specifications, T_A = +25 °C Vcc1 = Vcc2 = Vcc3= +3.3V, EN=3.3V

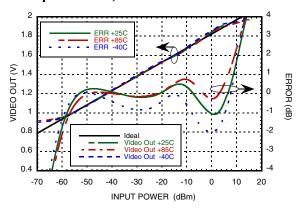

Parameter	Conditions	Тур.	Units
Input Frequency Range [1]		0.5 - 18.5	GHz
Frequency Flatness		±2	dB
Log Linearity	Pin = -60 to +5 dBm	±2	dB
Log Linearity over Temperature		±2	dB
Minimum Logging Range	to ±3 dB error	-62	dBm
Maximum Logging Range	to ±3 dB error	+5	dBm
Input Return Loss		8	dB
Log Video Minimum Output Voltage		0.9	V
Log Video Maximum Output Voltage		1.9	V
Log Video Output Rise Time	10% to 90%	5	ns
Log Video Output Fall Time	90% to 10%	15	ns
Log Video Recovery Time	@ 10 GHz	38	ns
Log Video Output Slope		15	mV/dB
Log Video Output Slope Variation over Temperature	@ 10 GHz	6.2	μV/dB°C
Log Video Propagation Delay		10	ns
Supply Current (Icc1)		7	mA
Supply Current (Icc2)		90	mA
Supply Current (Icc3)		86	mA

[1] Video output load should be 1K Ohm or higher.

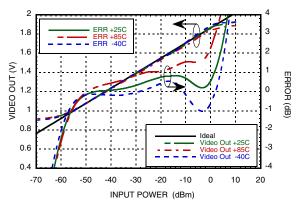



Error Flatness vs. Input Power Over Frequency [1] [2]

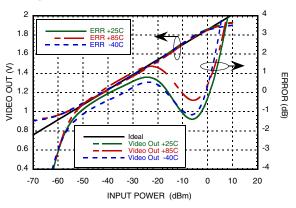
VIDEO OUT & Error vs. Input Power, Fin = 1 GHz



VIDEO OUT & Error vs. Input Power, Fin = 6 GHz

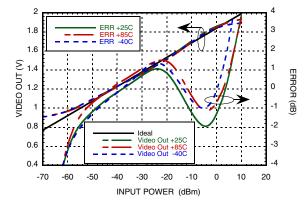


SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz

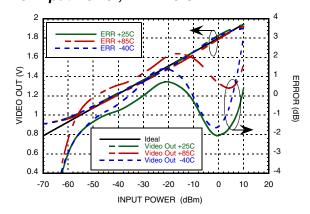

VIDEO OUT & Error vs. Input Power, Fin = 500 MHz

VIDEO OUT & Error vs. Input Power, Fin = 2 GHz

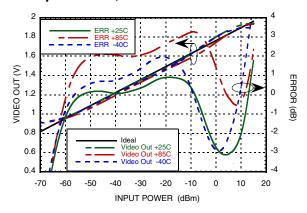
VIDEO OUT & Error vs. Input Power, Fin = 10 GHz



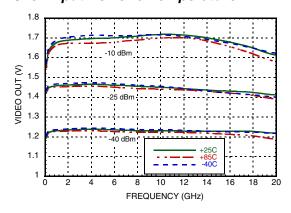
[1] An average ideal line is used to calculate error curves. [2] At 25°C.

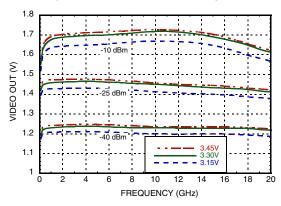


VIDEO OUT & Error vs. Input Power, Fin = 14 GHz

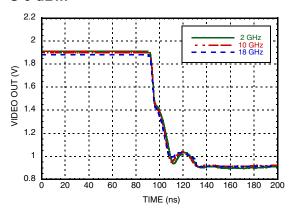


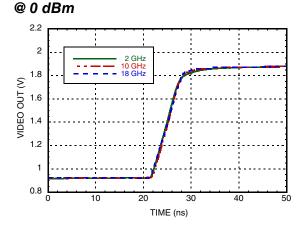
SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz


VIDEO OUT & Error vs. Input Power, Fin = 18 GHz

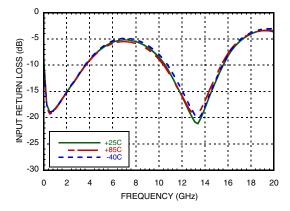

VIDEO OUT & Error vs. Input Power, Fin = 20 GHz

VIDEO OUT vs. Frequency Over Input Power & Temperature


VIDEO OUT vs. Frequency Over Input Power & Bias Voltage



Fall Time for Various Frequencies @ 0 dBm



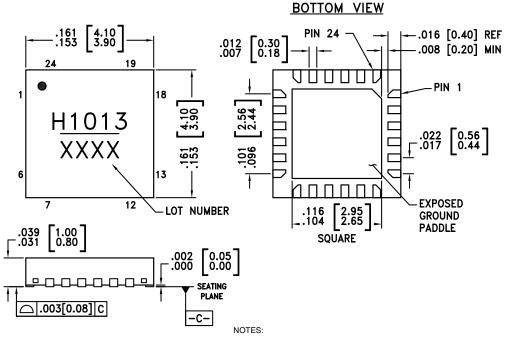
Rise Time for Various Frequencies

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz

Input Return Loss vs. Frequency

Absolute Maximum Ratings

=
+3.6V
+3.6V
+13 dBm
125 °C
1.41 W
28.4 °C/W
-65 to +150 °C
-40 to +85 °C
Class 1A



SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz

Outline Drawing

- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- ${\tt 2. \, LEAD \, AND \, GROUND \, PADDLE \, MATERIAL: \, COPPER \, ALLOY.}$
- 3. LEAD AND GROUND PADDLE PLATING: 100% MATTE TIN
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- $\bf 6.$ CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 7. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.05mm MAX.
- 8. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 10. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC1013LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>H1013</u> XXXX

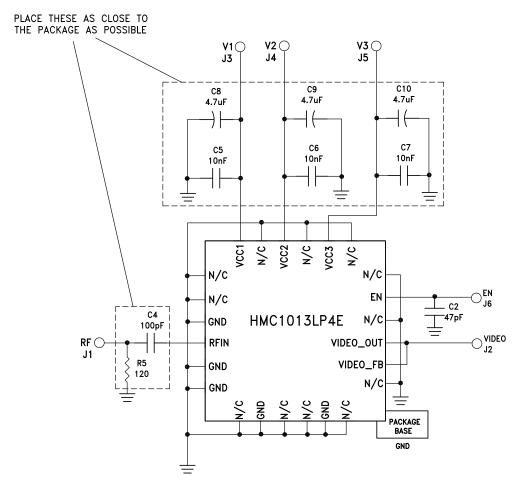
^{[1] 4-}Digit lot number XXXX

^[2] Max peak reflow temperature of 260 °C

SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1-2, 7, 9-10, 12-13, 16, 18-19, 21, 23	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3, 5-6, 8, 11	GND	These pins and the exposed package bottom must be connected to a high quality RF/DC ground.	GND =
4	RFIN	RF Input pin	Vcc1 Vcc1 RFIN O
14, 15	VIDEO_FB VIDEO_OUT	Video out and feedback. These pins should be shorted to each other (see application circuit). Video out load should be at least 1K Ohm or higher.	VIDEO OUT VIDEO VIDEO FB
17	EN	Enable pin, connect to 3.3V supply for normal operation. Total supply current reduced to less than 11mA when EN is set to 0V.	Vcc1 Vcc1 Vcc1 R=1.25k EN
20	VCC3	Bias Supply. Connect supply voltage to these pins with appropriate filtering. See application circuit To ensure proper start-up supply rise time should be faster than 100usec.	Vcc3 ESD =



SUCCESSIVE DETECTION LOG VIDEO AMPLIFIER (SDLVA), 0.5 - 18.5 GHz

Pin Descriptions (continued)

Pin Number	Function	Description	Interface Schematic
22, 24	VCC2, VCC1	Bias Supply. Connect Supply Voltage to these pins with appropriate filtering. Connect Vcc2 with Vcc1. See application circuit. To ensure proper start-up supply rise time should be faster than 100usec.	Vcc1 Vcc2

Application Circuit

Note: Video output load should be 1K Ohm or higher.