

GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

Typical Applications

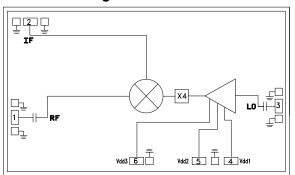
The HMC1093 is ideal for:

- 38 GHz Microwave Radio
- 42 GHz Microwave Radio
- Military End-Use

Features

Sub-Harmonically Pumped (x4) LO

Low LO Power: -1 dBm


High 4LO/RF Isolation: 20 dB

Wide IF Bandwidth: DC to 7.5 GHz

Downconversion Applications

Die Size: 1.45 X 3.85 X 0.1 mm

Functional Diagram

General Description

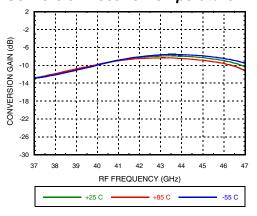
The HMC1093 chip is a sub-harmonically pumped (x4) MMIC mixer with an integrated LO amplifier. The HMC1093 chip is ideal for use as a downconverter with 37 to 46.5 GHz at the RF port and DC to 7.5 GHz at the IF port. The HMC1093 utilizes a GaAs PHEMT technology and delivers excellent 4LO to RF isolation of 20 dB, which eliminates the need for additional filtering. The LO amplifier is a single bias (+3V) two-stage design requiring only -1 dBm of LO power. The RF and LO ports are DC blocked and matched to 50 Ohms for ease of use. All data shown herein is measured with the chip in a 50 Ohm test fixture connected via 0.025mm (1 mil) wire bonds of minimal length <0.31 mm (<12 mils).

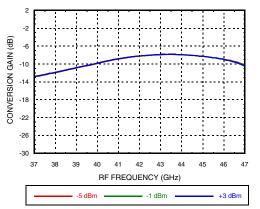
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +3V, $USB^{[1]}$

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
RF Frequency Range		37 - 40			40 - 43			43 - 46.5		GHz
LO Frequency Range	8.5 - 11					GHz				
IF Frequency Range	DC - 7.5				GHz					
Conversion Loss		14	16		11	13		9	11	dB
4LO to RF Isolation		22			15			15		dB
4LO to IF Isolation		16			18			25		dB
Input Third Order Intercept (IP3)		30			26			21		dB
Input Power for 1 dB Compression [2]		20			18			16		dBm
Idd	140	160	210	140	160	210	140	160	210	mA

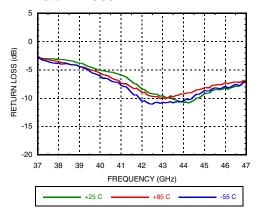
^[1] Unless otherwise noted, all measurements performed as a downconverter with LO = -1 dBm.

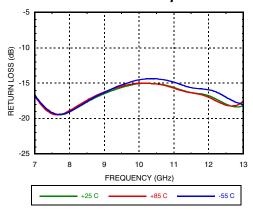
^[2] Data taken at IF = 7.5 GHz, USB.

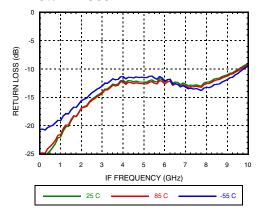


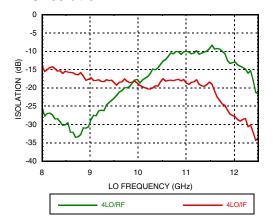

GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

Data taken at IF = 1 GHz, USB


Conversion Loss vs. Temperature

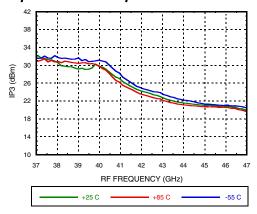

Conversion Loss vs. LO Drive

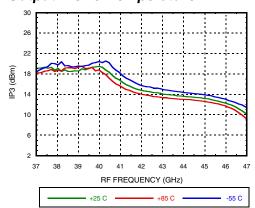

RF Return Loss


LO Return Loss vs. Temperature

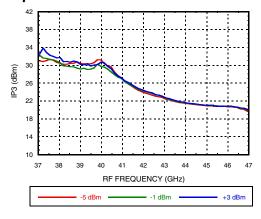
IF Return Loss

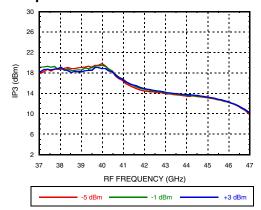
4LO Isolation




GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

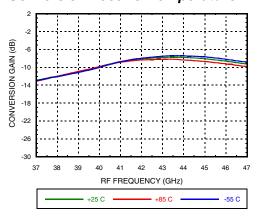
Data taken at IF = 1 GHz, USB

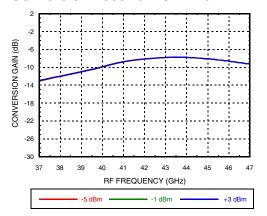

Input IP3 vs. Temperature


Output IP3 vs. Temperature

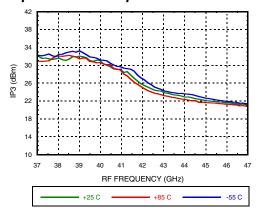
Input IP3 vs. LO Power

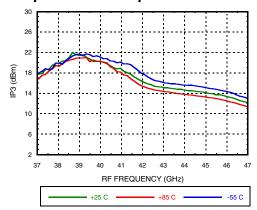
Output IP3 vs. LO Power




GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

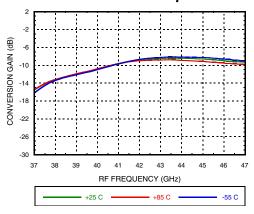
Data taken at IF = 2 GHz, USB

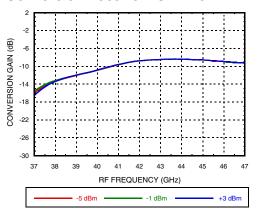

Conversion Loss vs. Temperature


Conversion Loss vs. LO Drive

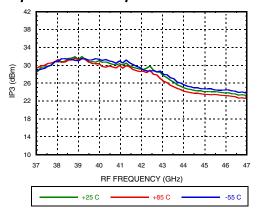
Input IP3 vs. Temperature

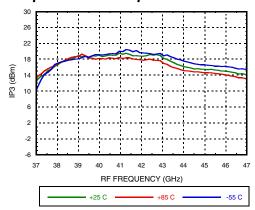
Output IP3 vs. Temperature




GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

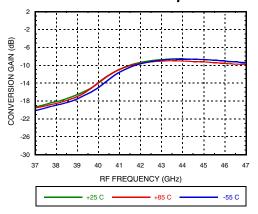
Data taken at IF = 3.5 GHz, USB

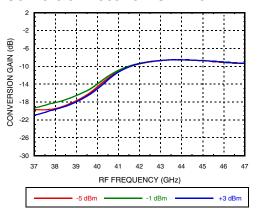

Conversion Loss vs. Temperature


Conversion Loss vs. LO Drive

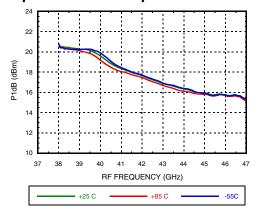
Input IP3 vs. Temperature

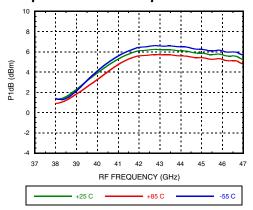
Output IP3 vs. Temperature

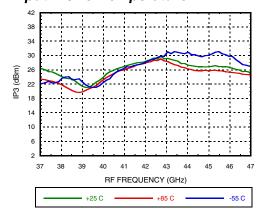


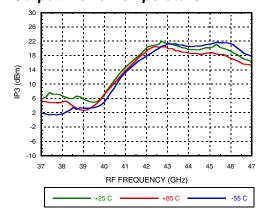

GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

Data taken at IF = 7 GHz, USB


Conversion Loss vs. Temperature


Conversion Loss vs. LO Drive

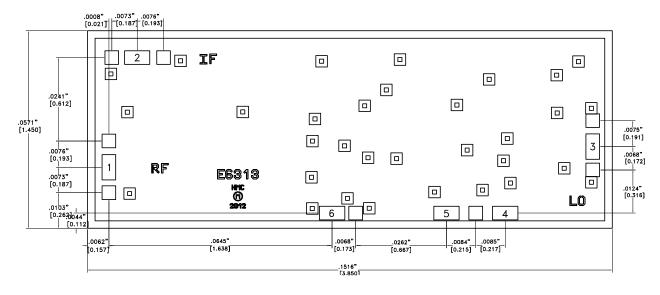

Input P1dB vs. Temperature [1]


Output P1dB vs. Temperature [1]

Input IP3 vs. Temperature

Output IP3 vs. Temperature

[1] Data taken at IF = 7.5 GHz, USB


GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

Absolute Maximum Ratings

Bias Voltage	+3.5V
RF Input Power	+18dBm
LO Input Power	+5dBm
Channel Temperature	175 °C
Continuous Pdiss (T = 85 °C) (derate 15mW/ °C above 85 °C)	1.6
Thermal Resistance (R _{TH}) (channel to die bottom)	66.7 °C/W
Operating Temperature	-55°C to +85°C
Storage Temperature	-65°C to 125°C
ESD Sensitivity (HBM)	Class 0, Passed 150V

Outline Drawing

Die Packaging Information [1]

Standard	Alternate		
GP-2 (Gel Pack)	[2]		

[1] Refer to the "Packaging Information" section for die packaging dimensions.

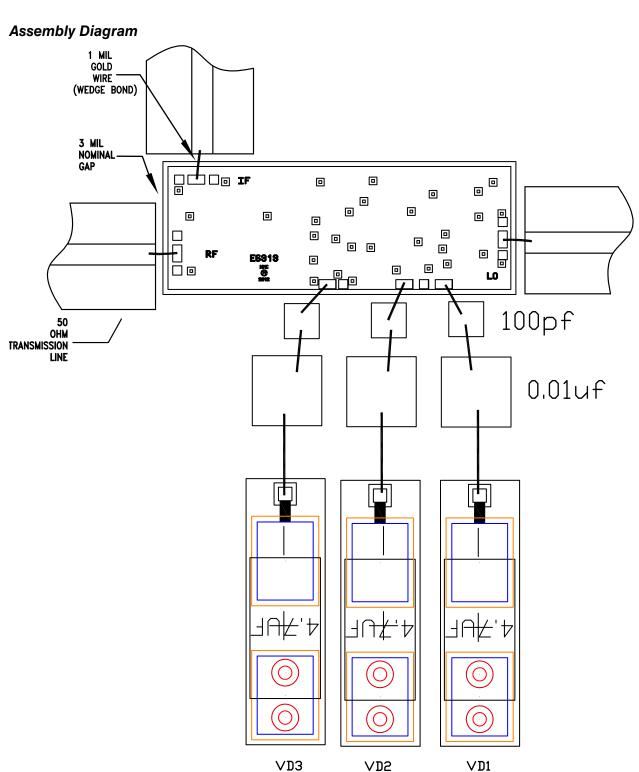
[2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES [MM]
- 2. DIE THICKNESS IS .004"
- 3. TYPICAL BOND PAD IS 0.0026" [0.066] SQUARE
- 4. BACKSIDE METALLIZATION: GOLD
- 5. BOND PAD METALLIZATION: GOLD
- 6. BACKSIDE METAL IS GROUND.
- 7. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.
- 8. OVERALL DIE SIZE ± .002

MIXERS - SUB HARMONIC - CHIP

GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz


Pad Descriptions

Pad Number	Function	Description	Pad Schematic		
1	RF	This pad is AC coupled and matched to 50 Ohms.	RF ○		
2	IF	This pad is DC coupled and matched to 50 Ohms.	IF O		
3	LO	This pad is AC coupled and matched to 50 Ohms.	LO O		
4, 5, 6	Vdd1, Vdd2, Vdd3	Power Supply Voltage for the LO Amplifier. External bypass capacitors 100pF, 0.01uF, and 4.7uF are required.	Vdd1, Vdd2, Vdd3		
Die Bottom	Ground	Die bottom must be connected to RF/DC ground.	○ GND =		

GaAs MMIC SUB HARMONIC MIXER, 37 - 46.5 GHz

