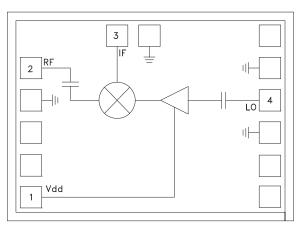


GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz

Typical Applications

The HMC264 is ideal for:


- Microwave Point-to-Point Radios
- LMDS
- SATCOM

Features

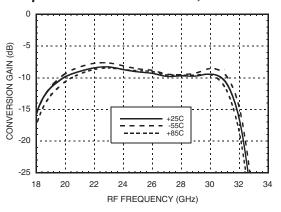
Integrated LO Amplifier: -4 dBm Input Sub-Harmonically Pumped (x2) LO

High 2LO/RF Isolation: 40 dB Small Size: 1.32 x 0.97 x 0.1 mm

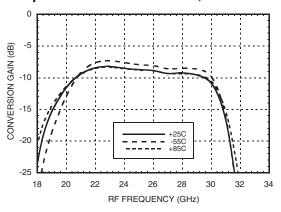
Functional Diagram

General Description

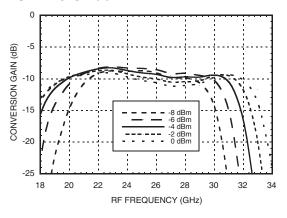
The HMC264 chip is a sub-harmonically pumped (x2) MMIC mixer with an integrated LO amplifier which can be used as an upconverter or downconverter. The chip utilizes a GaAs PHEMT technology that results in a small overall chip area of 1.28mm². The 2LO to RF isolation is excellent eliminating the need for additional filtering. The LO amplifier is a single bias (+3V to +4V) two stage design with only -4 dBm nominal drive requirement. All data is measured with the chip in a 50 ohm test fixture connected via 0.025 mm (1 mil) diameter wire bonds of minimal length <0.31 mm (<12 mils).

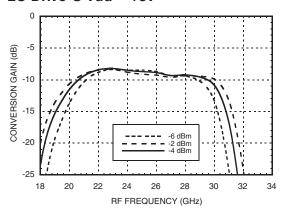

Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of LO Drive & Vdd

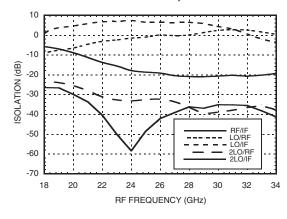
Parameter	IF = 1 GHz LO = 0 dBm & Vdd = +4V		IF = 1 GHz LO = -4 dBm & Vdd = +4V			IF = 1 GHz LO = -4 dBm & Vdd = +3V			Units	
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Frequency Range, RF		24 - 32			20 - 30			22 - 29		GHz
Frequency Range, LO	12 - 16			10 - 15		10.5 - 14.5			GHz	
Frequency Range, IF		DC - 6			DC - 6			DC - 4		GHz
Conversion Loss		10	13		10	12		9	11	dB
Noise Figure (SSB)		10	13		10	12		9	11	dB
2LO to RF Isolation	29	35		29	40		18	22 ~ 30		dB
2LO to IF Isolation	32	40		29	40 ~ 50		25	30		dB
IP3 (Input)	5	13		5	13		3	10		dBm
1 dB Gain Compression (Input)	+3	+6		-3	0 ~ +4		-5	0 ~ +3		dBm
Supply Current (Idd)		28	50		28	50		25	50	mA

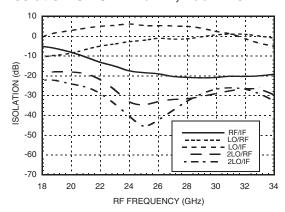


GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz

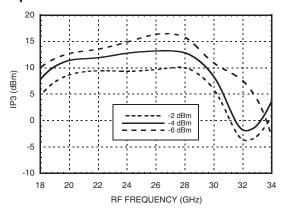

Conversion Gain vs. Temperature @ LO = -4 dBm, Vdd = +4V

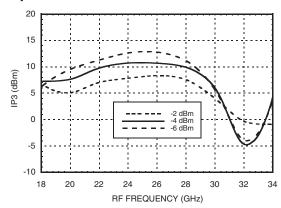

Conversion Gain vs. Temperature @ LO = -4 dBm, Vdd = +3V


Conversion Gain vs. LO Drive @ Vdd = +4V

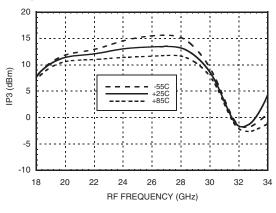

Conversion Gain vs. LO Drive @ Vdd = +3V

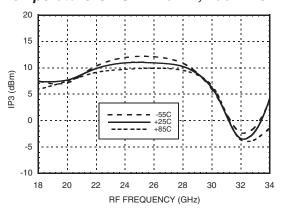
Isolation @ LO = -4 dBm, Vdd = +4V

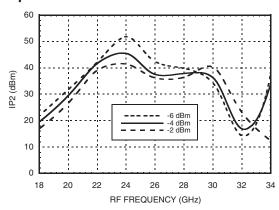

Isolation @ LO = -4 dBm, Vdd = +3V

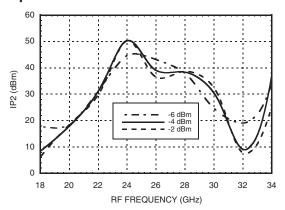


GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz

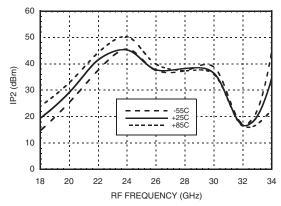

Input IP3 vs. LO Drive @ Vdd = +4V

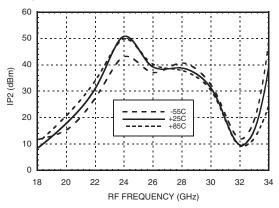

Input IP3 vs. LO Drive @ Vdd = +3V


Input IP3 vs.
Temperature @ LO = -4 dBm, Vdd = +4V

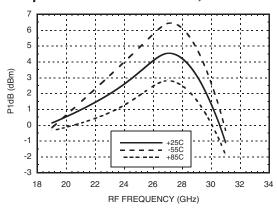

Input IP3 vs.
Temperature @ LO = -4 dBm, Vdd = +3V

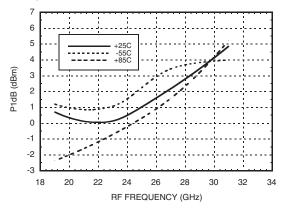
Input IP2 vs. LO Drive @ Vdd = +4V


Input IP2 vs. LO Drive @ Vdd = +3V

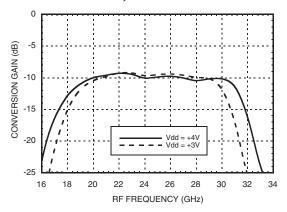


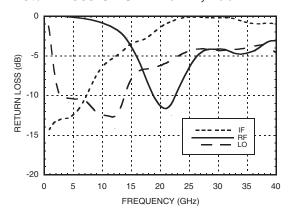
GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz


Input IP2 vs. Temperature @ LO = -4 dBm, Vdd = +4V

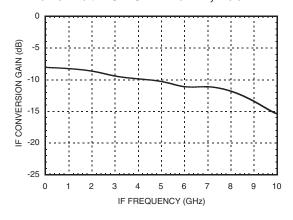

Input IP2 vs.
Temperature @ LO = -4 dBm, Vdd = +3V

Input P1dB vs. Temperature @ LO = -4 dBm, Vdd = +4V


Input P1dB vs.
Temperature @ LO = -4 dBm, Vdd = +3V



GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz


Upconverter Performance Conversion Gain, LO = -4 dBm

Return Loss @ LO = -4 dBm, Vdd = +4V

IF Bandwidth @ LO = -4 dBm, Vdd = +4V

MxN Spurious Outputs @ LO Drive = -4 dBm, Vdd = +4V

	nLO					
mRF	±5	±4	±3	±2	±1	0
-3						
-2	-36					
-1	-54	-22	-34			
0				-15	+26	
1				х	-30	-10
2		-54	-38	-66		
3	-74	-67				

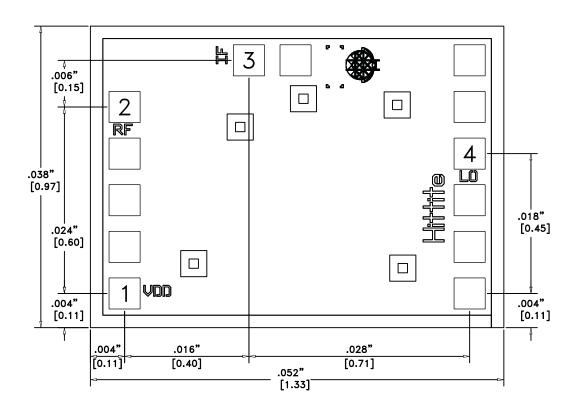
RF = 30 GHz @ -10 dBm LO = 13.5 GHz @ -4 dBm

All values in dBc below the IF power level

GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz

Absolute Maximum Ratings

RF / IF Input (Vdd = +4V)	+13 dBm
LO Drive (Vdd = +4V)	+13 dBm
Vdd	+5.5 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C


Pad Descriptions

Pad Number	Function	Description	Interface Schematic	
1	Vdd	Power supply for the LO Amplifier. An external RF bypass capacitor of 100 - 330 pF is required. A MIM border capacitor is recommended. The bond length to the capacitor should be as short as possible. The ground side of the capacitor should be connected to the housing ground.	Vdd 0	
2	RF	This pad is AC coupled and matched to 50 Ohm.	RF 0— -	
3	IF	This pad is DC coupled and should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. Any applied DC voltage to this pin will result in die non-function and possible die failure.	IF O	
4	LO	This pad is AC coupled and matched to 50 Ohm.	LO 0— —	

GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 20 - 32 GHz

Outline Drawing

Die Packaging Information [1]

Standard	Alternate
GP-2 (Gel Pack)	[2]

- [1] Refer to the "Packaging Information" section for die packaging dimensions.
- [2] For alternate packaging information contact Hittite Microwave Corporation.

NOTES

- 1. ALL DIMENSIONS ARE IN INCHES [MM].
- 2. DIE THICKNESS IS .004".
- 3. TYPICAL BOND PAD IS .004" SQUARE.
- 4. BOND PAD SPACING CENTER TO CENTER IS .006".
- 5. BACKSIDE METALLIZATION: GOLD.
- 6. BOND PAD METALLIZATION: GOLD.
- 7. BACKSIDE METAL IS GROUND.
- 8. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.