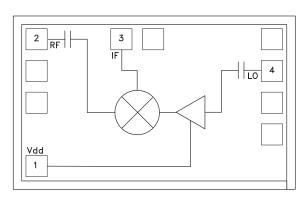


## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz

### Typical Applications


The HMC339 is ideal for:

- 33 to 42 GHz Microwave Radios
- Up and Down Converter for Point to Point Radios
- Satellite Communication Systems

#### **Features**

Integrated LO Amplifier: +2 dBm Input Sub-Harmonically Pumped (x2) LO High 2LO/RF Isolation: > 37 dB Die Size: 1.32 x 0.81 x 0.1 mm

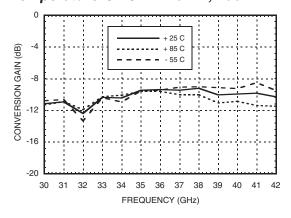
#### **Functional Diagram**



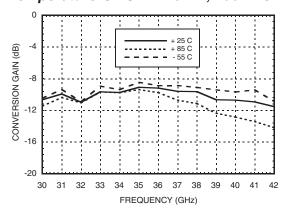
### **General Description**

The HMC339 chip is a sub-harmonically pumped (x2) MMIC mixer with an integrated LO amplifier which can be used as an upconverter or downconverter. The chip utilizes a GaAs PHEMT technology that results in a small overall chip area of 1.07mm². The 2LO to RF isolation is excellent eliminating the need for additional filtering. The LO amplifier is a single bias (+3V to +4V) two stage design with only +2 dBm nominal drive requirement. All data is measured with the chip in a 50 ohm test fixture connected via 0.025mm (3 mil) ribbon bonds of minimal length <0.31 mm (<12 mils).

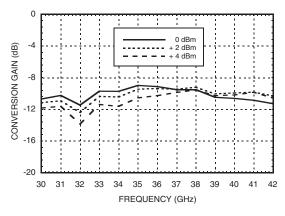
## Electrical Specifications, $T_{A} = +25^{\circ}$ C, As a Function of Vdd


| Parameter                | IF = 1 GHz<br>LO = +2 dBm & Vdd = +4V |      | IF = 1 GHz<br>LO = +2 dBm & Vdd = +3V |           | Units |      |     |
|--------------------------|---------------------------------------|------|---------------------------------------|-----------|-------|------|-----|
|                          | Min.                                  | Тур. | Max.                                  | Min.      | Тур.  | Max. |     |
| Frequency Range, RF      | 33 - 42                               |      |                                       | 33 - 38   |       |      | GHz |
| Frequency Range, LO      | 16.5 - 21                             |      |                                       | 16.5 - 19 |       |      | GHz |
| Frequency Range, IF      | DC - 3                                |      |                                       | DC - 3    |       |      | GHz |
| Conversion Loss          |                                       | 10   | 13                                    |           | 10    | 12   | dB  |
| Noise Figure (SSB)       |                                       | 10   | 13                                    |           | 10    | 12   | dB  |
| 2LO to RF Isolation      | 27                                    | 37   |                                       | 23        | 37    |      | dB  |
| 2LO to IF Isolation      | 30                                    | 40   |                                       | 25        | 40    |      | dB  |
| IP3 (Input)              | 5                                     | 10   |                                       | 3         | 8     |      | dBm |
| 1 dB Compression (Input) | -4                                    | 0    |                                       | -5        | -1    |      | dBm |
| Supply Current (Idd)     |                                       | 28   | 38                                    |           | 25    | 38   | mA  |

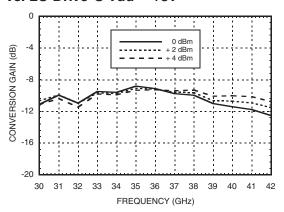
<sup>\*</sup>Unless otherwise noted, all measurements performed as downconverter, IF= 1 GHz.



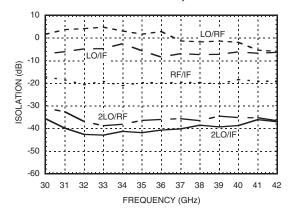

## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz


# Conversion Gain vs. Temperature @ LO = +2 dBm, Vdd= +4V

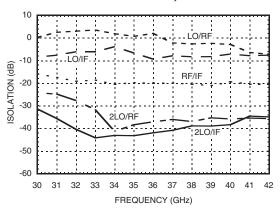



# Conversion Gain vs. Temperature @ LO = +2 dBm, Vdd= +3V




# Conversion Gain vs. LO Drive @ Vdd = +4V

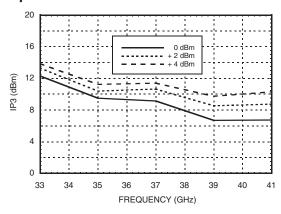



# Conversion Gain vs. LO Drive @ Vdd = +3V

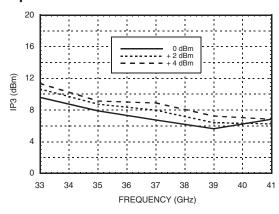


#### Isolation @ LO = +2 dBm, Vdd = +4V

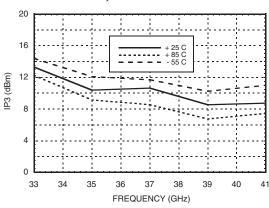



#### Isolation @ LO = +2 dBm, Vdd = +3V

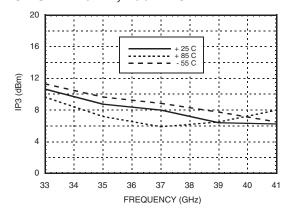




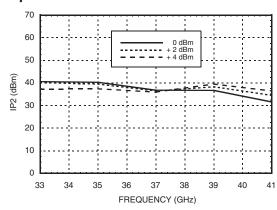

## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz


### Input IP3 vs. LO Drive @ Vdd = +4V\*

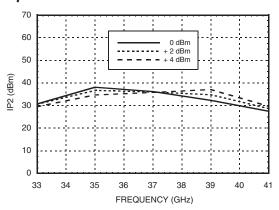



#### Input IP3 vs. LO Drive @ Vdd = +3V\*




# Input IP3 vs. Temperature @LO = +2 dBm, Vdd = +4V\*



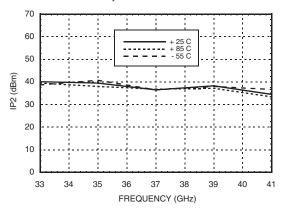

Input IP3 vs. Temperature @ LO = +2 dBm, Vdd = +3V\*



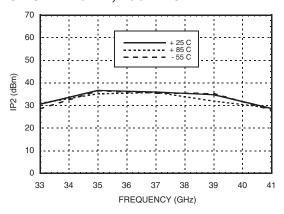
#### Input IP2 vs. LO Drive @ Vdd = +4V\*



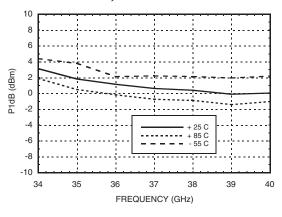
Input IP2 vs. LO Drive @  $Vdd = +3V^*$ 



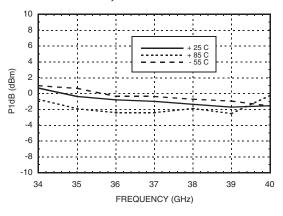

<sup>\*</sup> Two-tone input power = -10 dBm each tone, 1 MHz spacing.



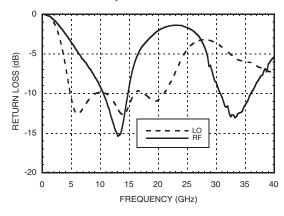

## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz


# Input IP2 vs. Temperature @ LO = +2 dBm, Vdd = +4V\*

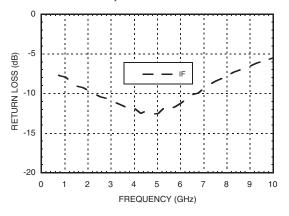



Input IP2 vs. Temperature @ LO = +2 dBm, Vdd =  $+3V^*$ 




# Input P1dB vs. Temperature @ LO = +2 dBm, Vdd = +4V



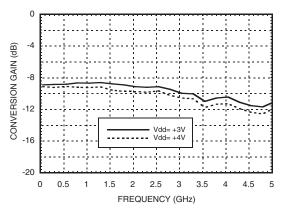

Input P1dB vs. Temperature @ LO = +2 dBm, Vdd = +3V



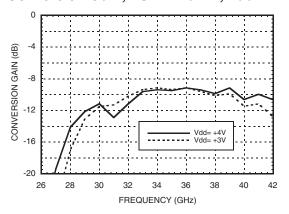
# RF & LO Return Loss @ LO = +2 dBm, Vdd = +4V



IF Return Loss @ LO = +2 dBm, Vdd = +4V




<sup>\*</sup> Two-tone input power = -10 dBm each tone, 1 MHz spacing.




## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz

#### IF Bandwidth @ LO = +2 dBm



## Upconverter Performance Conversion Gain, LO = +2 dBm, Vdd = +4V



### MxN Spurious @ IF Port, Vdd = +4V

|     | nLO |    |    |    |     |    |
|-----|-----|----|----|----|-----|----|
| mRF | ±5  | ±4 | ±3 | ±2 | ±1  | 0  |
| -2  | 44  |    |    |    |     |    |
| -1  |     | 42 | 53 |    |     |    |
| 0   |     |    |    | 18 | -14 |    |
| 1   |     |    |    | Х  | 42  | 13 |
| 2   |     | 55 | 47 |    |     |    |

RF = 39 GHz @ -10 dBm LO = 19 GHz @ +2 dBm

All values in dBc below IF power level.

Measured as downconverter

## MxN Spurious @ RF Port, Vdd = +4V

|     | nLO |    |    |    |     |    |
|-----|-----|----|----|----|-----|----|
| mIF | ±5  | ±4 | ±3 | ±2 | ±1  | 0  |
| -2  |     |    |    |    | 30  |    |
| -1  |     |    |    | Х  | 36  |    |
| 0   |     |    |    | 13 | -20 |    |
| 1   |     |    |    | Х  | 36  | 3  |
| 2   |     |    |    |    | 37  | 54 |

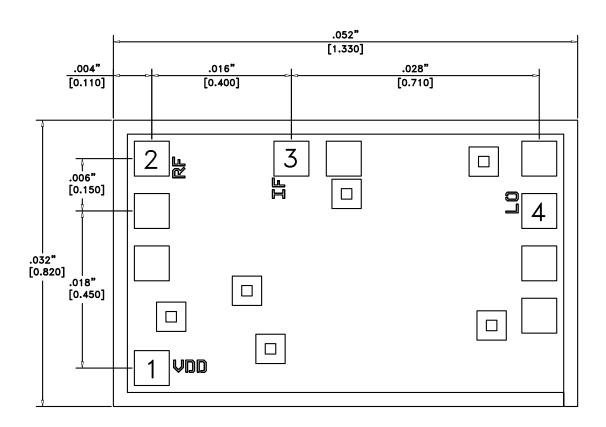
IF = 1 GHz @ -10 dBm

LO = 19 GHz @ +2 dBm

All values in dBc below RF power level.

Measured as upconverter




## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz

## **Absolute Maximum Ratings**

| RF / IF Input (Vdd = +5V)                                        | +13 dBm        |
|------------------------------------------------------------------|----------------|
| LO Drive (Vdd = +5V)                                             | +13 dBm        |
| Vdd                                                              | +5.5V          |
| Continuous Pdiss (Ta = 85 °C)<br>(derate 2.64 mW/°C above 85 °C) | 238 mW         |
| Storage Temperature                                              | -65 to +150 °C |
| Operating Temperature                                            | -55 to +85 °C  |



## **Outline Drawing**



## Die Packaging Information [1]

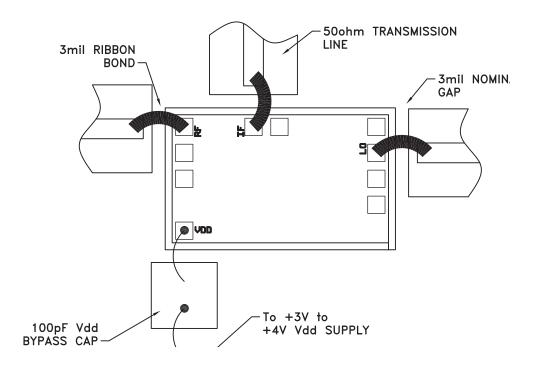
| Standard        | Alternate |
|-----------------|-----------|
| GP-2 (Gel Pack) | [2]       |

[1] Refer to the "Packaging Information" section for die packaging dimensions.

[2] For alternate packaging information contact Hittite Microwave Corporation.

#### NOTES:

- 1. ALL DIMENSIONS IN INCHES (MILLIMETERS)
- 2. ALL TOLERANCES ARE ±0.001 (0.025)
- 3. DIE THICKNESS IS 0.004 (0.100) BACKSIDE IS GROUND
- 4. BOND PADS ARE 0.004 (0.100) SQUARE
- 5. BOND PAD SPACING, CTR-CTR: 0.006 (0.150)
- 6. BACKSIDE METALLIZATION: GOLD
- 7. BOND PAD METALLIZATION: GOLD




## GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 33 - 42 GHz

## **Pad Descriptions**

| Pad Number | Function | Description                                                                                                                                                                                                                                                                         | Interface Schematic |
|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1          | Vdd      | Power supply for the LO Amplifier. An external RF bypass capacitor of 100 - 330 pF is required. A MIM border capacitor is recommended. The bond length to the capacitor should be as short as possible. The ground side of the capacitor should be connected to the housing ground. |                     |
| 2          | RF       | This pad is AC coupled and matched to 50 Ohm.                                                                                                                                                                                                                                       | RF ○── ├──          |
| 3          | lF       | This pad is DC coupled and should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. Any applied DC voltage to this pin will result in die non-function and possible die failure.                              |                     |
| 4          | LO       | This pad is AC coupled and matched to 50 Ohm.                                                                                                                                                                                                                                       | 10 0—  —            |

### **Assembly Diagram**

