
GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Typical Applications

The HMC463LH250 is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military EW, ECM & C3I
- Test Instrumentation
- Fiber Optics

Functional Diagram

Features

50 Ohm Matched Input/Output

Hermetic SMT Package

Gain: 14 dB

Noise Figure: 2.5 dB @ Mid-Band

P1dB Output Power: +18 dBm @ Mid-Band

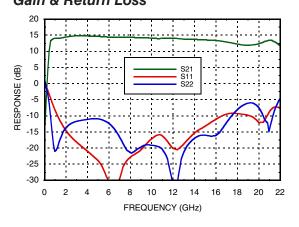
Supply Voltage: +5V @ 60mA

Screening to MIL-PRF-38535 (Class B or S) Available

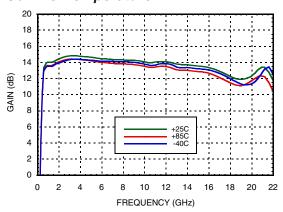
General Description

The HMC463LH250 is a GaAs MMIC pHEMT Low Noise AGC Distributed Amplifier packaged in a hermetic surface mount package which operates between 2 and 20 GHz. The amplifier provides 13 dB of gain, 3 dB noise figure and 18 dBm of output power at 1 dB gain compression while requiring only 60 mA from a +5V supply. An optional gate bias (Vgg2) is provided to allow Adjustable Gain Control (AGC) of 8 dB typical. Gain flatness is excellent at ±0.5 dB from 2 - 14 GHz making the HMC463LH250 ideal for EW, ECM RADAR, test equipment and High-Reliability applications. The HMC463LH250 LNA I/Os are internally matched to 50 Ohms and are internally DC blocked.

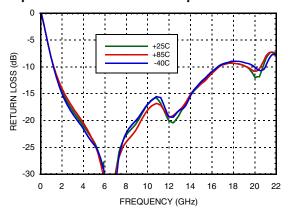
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd=5V, Vgg2= Open, Idd=60 mA^*

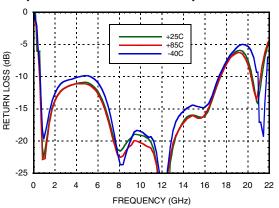

Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	2.0 - 6.0		6.0 - 16.0			16.0 - 20.0			GHz	
Gain	11.5	14.5		9	12		8	11		dB
Gain Flatness		±0.25			±0.5			±0.9		dB
Gain Variation Over Temperature		0.010			0.010			0.010		dB/ °C
Noise Figure		3.5	5.5		2.5	4.5		4	5.5	dB
Input Return Loss		15			15			9		dB
Output Return Loss		11			15			7		dB
Output Power for 1 dB Compression (P1dB)	16	19		13	18		10	13		dBm
Saturated Output Power (Psat)		21.5			20.5			19		dBm
Output Third Order Intercept (IP3)		29			27			24		dBm
Supply Current (Idd) (Vdd= 5V, Vgg1= -0.9V Typ.)		60	80		60	80		60	80	mA

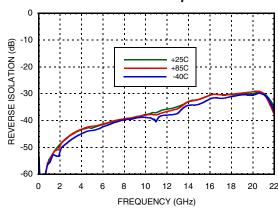
^{*} Adjust Vgg1 between -2 to -0V to achieve Idd= 60 mA typical.

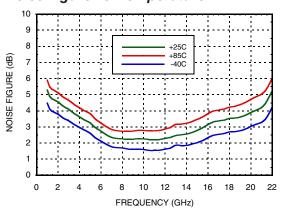


GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

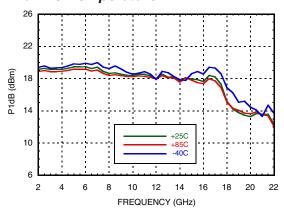

Gain & Return Loss

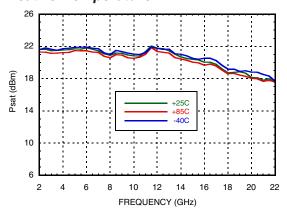

Gain vs. Temperature


Input Return Loss vs. Temperature

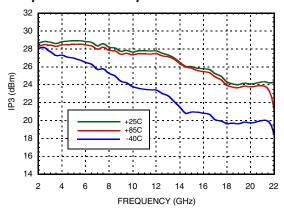

Output Return Loss vs. Temperature

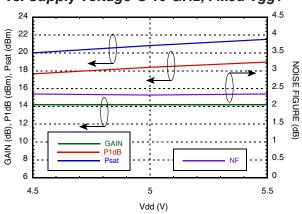
Reverse Isolation vs. Temperature

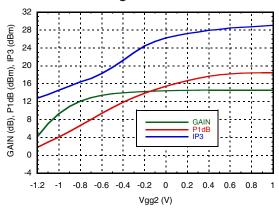

Noise Figure vs. Temperature

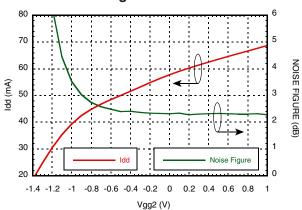


GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz


P1dB vs. Temperature

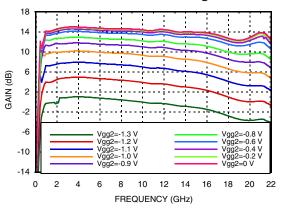

Psat vs. Temperature


Output IP3 vs. Temperature


Gain, Power & Noise Figure vs. Supply Voltage @ 10 GHz, Fixed Vgg1

Gain, P1dB & Output IP3 vs. Control Voltage @ 10 GHz

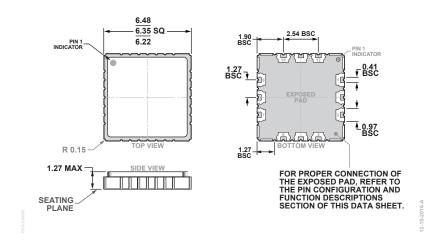
Noise Figure & Supply Current vs. Control Voltage @ 10 GHz



/06.1217

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Gain @ Several Control Voltages


Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+9 V
Gate Bias Voltage (Vgg1)	-2 to 0 Vdc
Gate Bias Current (Igg1)	2.5 mA
Gate Bias Voltage (Vgg2)(AGC)	(Vdd -9) Vdc to +2 Vdc
RF Input Power (RFIN)(Vdd = +5 V)	+18 dBm
Channel Temperature	175 °C
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 0B - Passed 150V

Typical Supply Current vs. Vdd

Vdd (V)	Idd (mA)
+4.5	58
+5.0	60
+5.5	62

Outline Drawing

12-Terminal Ceramic Leadless Chip Carrier [LCC] (E-12-2)

Dimensions shown in millimeters.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC463LH250	Ceramic & Kovar	Au	MSL1 [1]	H463 XXXX

^[1] Max peak reflow temperature of 250 $^{\circ}\text{C}$

^{[2] 4-}Digit lot number XXXX

/06 1217

GaAs pHEMT MMIC LOW NOISE AGC AMPLIFIER, 2 - 20 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 4, 5, 7, 8, 10	GND	Ground paddle must be connected to RF/DC ground.	Ģ GND =
3	RFIN	This pad is AC coupled and matched to 50 Ohms.	RFIN ○── ├──
6	Vgg1	Gate control for amplifier. Adjust to achieve Idd= 60 mA.	Vgg10
9	RFOUT	This pad is AC coupled and matched to 50 Ohms.	— —○ RFOUT
11	Vdd	Power supply voltage for the amplifier. External bypass capacitors are required	Vdd —
12	Vgg2	Optional gate control if AGC is required. Leave Vgg2 open circuited if AGC is not required.	Vgg2