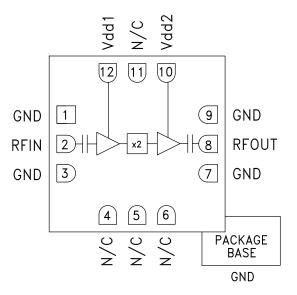


ROHS

v02.0614


SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT

Typical Applications

The HMC814LC3B is ideal for:

- Clock Generation Applications: SONET OC-192 & SDH STM-64
- Point-to-Point & VSAT Radios
- Test Instrumentation
- Military & Space
- Sensors

Functional Diagram

General Description

High Output Power: +17 dBm

Single Supply: +5V @ 88 mA

Low Input Power Drive: 0 to +6 dBm

Fo Isolation: >20 dBc @ Fout = 19 GHz

100 kHz SSB Phase Noise: -136 dBc/Hz

12 Lead 3x3 mm SMT Package: 9 mm²

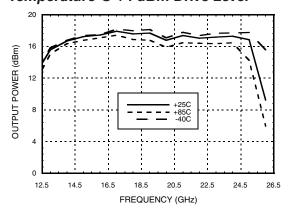
Features

The HMC814LC3B is a x2 active broadband frequency multiplier utilizing GaAs pHEMT technology in a leadless RoHS compliant SMT package. When driven by a +4 dBm signal, the multiplier provides +17 dBm typical output power from 13 to 24.6 GHz. The Fo, 3Fo and 4Fo isolations are >20 dBc at 19 GHz. The HMC814LC3B is ideal for use in LO multiplier chains for Pt-to-Pt & VSAT Radios yielding reduced parts count vs. traditional approaches. The low additive SSB Phase Noise of -136 dBc/Hz at 100 kHz offset helps maintain good system noise performance. The RoHS packaged HMC814LC3B eliminates the need for wire bonding, and allows the use of surface mount manufacturing techniques.

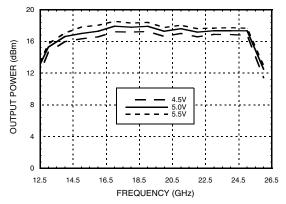
Electrical Specifications, $T_{A} = +25^{\circ}$ *C, Vdd1, Vdd2* = +5*V,* +4 *dBm Drive Level*

Parameter	Min.	Тур.	Max.	Units
Frequency Range, Input		6.5 - 12.3	6.5 - 12.3	
Frequency Range, Output		13 - 24.6		
Output Power	14	17		dBm
Fo Isolation (with respect to output level)		25		dBc
3Fo Isolation (with respect to output level)		25		dBc
Input Return Loss	4	10		dB
Output Return Loss	6	12		dB
SSB Phase Noise (100 kHz Offset @ Input Frequency = 19 GHz)		-136		dBc/Hz
Supply Current (Idd1 & Idd2)		88	100	mA

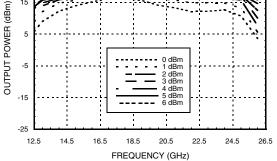
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

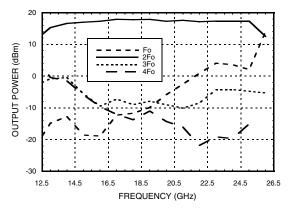


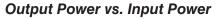
v02.0614

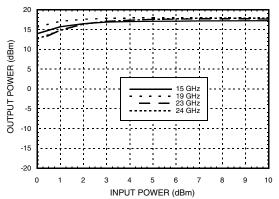

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT

Output Power vs. Drive Level

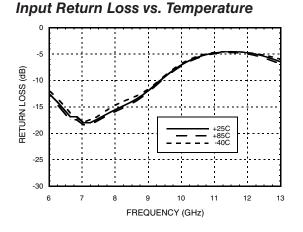

Output Power vs. Temperature @ +4 dBm Drive Level

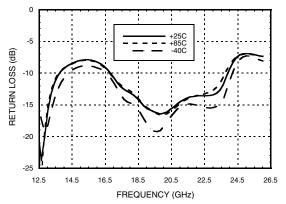

Output Power vs. Supply Voltage @ +4 dBm Drive Level

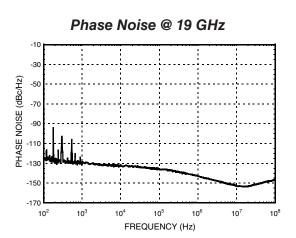




Isolation @ +4 dBm Drive Level


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




v02.0614

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT

Output Return Loss vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0614

SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT

Absolute Maximum Ratings

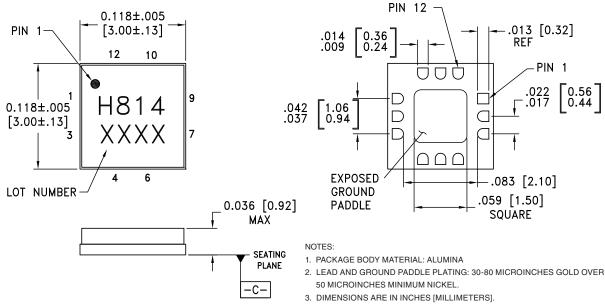
+10 dBm
+5.5 Vdc
175 °C
743 mW
121 °C/W
-65 to +150 °C
-40 to +85 °C
Class 0 (Passed 150 V)

Typical Supply Current vs. Vdd

BOTTOM VIEW

Vdd (Vdc)	ldd (mA)
4.5	87
5.0	88
5.5	89

Note:


Multiplier will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

0.56 0.44

Outline Drawing

4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE

- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

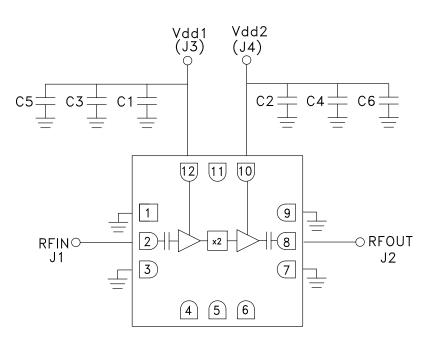
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]	
HMC814LC3B	Alumina, White	Gold over Nickel	MSL3 ^[1]	H814 XXXX	

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0614


SMT GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 13 - 24.6 GHz OUTPUT

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 3, 7, 9	GND	Package bottom must also be connected to RF/DC ground.	
2	RFIN	This pin is AC coupled and matched to 50 Ohms.	
4 - 6, 11	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/ DC ground.	
8	RFOUT	This pin is AC coupled and matched to 50 Ohms.	○ RFOUT
10, 12	Vdd2, Vdd1	Supply voltage 5V \pm 0.5V. External bypass capacitors of 100 pF, 1,000 pF and 2.2 μF are recommended.	Vdd1, Vdd2

Application Circuit

_		
	Component	Value
	C1, C2	100 pF
	C3, C4	1,000 pF
	C5, C6	2.2 µF

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.