

Smart Integrated Matrix LED Driver with Touch Key Controller

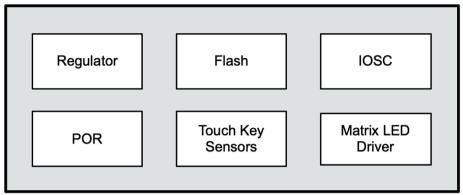
GENERAL DESCRIPTION

IS31FL3800 is an ultra-low power, fully integrated 18x4 matrix LED driver with a touch key controller. It is designed with an easy to use GUI for touch key tuning and GPIO configuration. The application of IS31FL3800 requires the presence of a host MCU with an I2C master, to poll the status and control the LED drivers. Each LED in the matrix can be dimmed individually with 8-bit PWM data and 8-bit DC scaling (Color Calibration) data. This allows 256 steps of linear PWM dimming and 256 steps of adjustable DC current level. Additionally, each LED's open/short state can be detected. The host MCU can poll for the open/short information stored in the Open/Short Registers.

An eleven-channel capacitive touch controller is integrated with on-chip calibration logic which continuously monitors the environment and automatically adjusts the threshold levels to prevent false triggers. An on-chip I²C slave controller with 400kHz capability and programmable slave addresses serves as the communication port for the host MCU. An interrupt, INTB, can be configured so it is generated when a trigger event (touched or released) occurs. Trigger or clear condition can be configured by setting the interrupt register.

IS31FL3800 is available in RoHS compliant package QFN-60 (7mm×7mm). It operates from 2.7V to 5.5V over the temperature range of -40°C to +105°C.

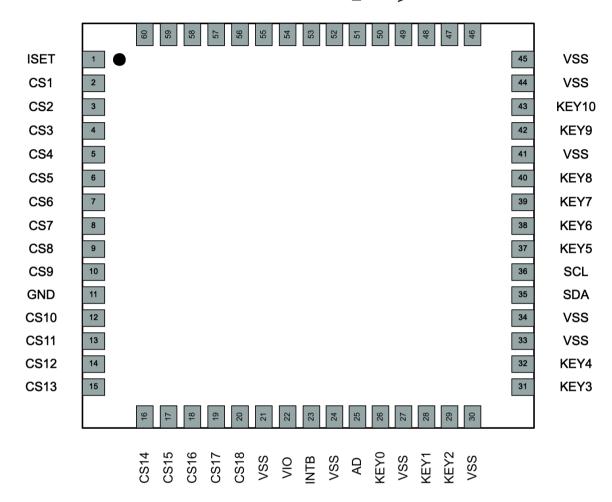
FEATURES


- ♦ Matrix LED Driver
 - 18 current sinks
 - 2.7 to 5.5V LED driver supply (VCC)
 - Support 18xn (n=1~4) LED matrix configurations
 - Individual 256 PWM control steps
 - Individual 256 DC current steps
 - Global 256 current steps
 - Programmable H/L logic: 1.4V/0.4V, 2.4V/0.6V
 - 29kHz PWM frequency
 - State lookup registers
 - Individual open and short error detect function
 - 180 degree phase delay operation to reduce power noise
- ♦ Capacitive Touch Sensor
 - Capacitive touch controller with readable key value through shared GPIO
 - Individual sensitivity threshold setting for each touch key
 - Optional multiple-key function
 - Press and hold function
 - Automatic calibration
 - Individual key calibration
 - Interrupt output with auto-clear and repeating
 - Auto sleep mode for extremely low power
 - Key wake up from sleep mode
- ♦ 400kHz fast-mode I2C interface
- ◆ Operating temperature between -40°C ~ +105°C
- ◆ QFN-60 package

APPLICATIONS

- Home appliance touch control keys
- Industrial applications
- Gaming devices
- ♦ IoT devices

BLOCK DIAGRAM



Block Diagram of IS31FL3800

PACKAGE TYPE

GND
VCC
VCC
SW1
SW2
SW3
SW3
SW4
Cref
Cref
VDD
VDD
VDD
VSS
VSS

PIN CONFIGURATION

No.	Pin	Description	
1	ISET	An external resistor to ground is required for setting the LED current	
2-10, 12-20	CS1-CS18	Current sinks for LED matrix	
11,60,21,24,27,30,33,34 ,41,44,45,46,47,48	vss	Ground connection	
22, 50	VDD	Power supply. Typical decoupling capacitors of 0.1uF and 10uF should be connected between VDD and VSS	
23	INTB	Interrupt output, active low.	
25	AD	I2C address setting.	
26,28,29,31,32,37,38,39 ,40,42,43	KEY0- KEY10	Input sense channel 0 -10. Can be programmed as GPIOs.	
35	SDA	I2C data, need to pull up with 4.7K resistor	
36	SCL	I2C clock, need to pull up with 4.7K resistor	
49	VDDC	Internal regulator output around 1.8V. Typical decoupling capacitors of 0.1uF and 10uF should be connected between VDDC and VSS	
51	RSTN	Low active. A resistor to VDD and a capacitor to VSS are typically connected. RSTN is pulled low when LVR occurs. The threshold of RSTN is set at 0.3VDD. RSTN is also used for special test mode and writer mode entry.	
52	Cref	External capacitor must be connected for touch key controller.	
53-56	SW1-SW4	Power SW.	
57-59	VCC	Supply of LED power switch.	

ORDERING INFORMATION

Industrial Range: -40°C to +105°C

Order Part No.	Package	QTY
IS31FL3800-QFLS3-TR	QFN-60, Lead-free	2500

Copyright © 2020 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances

TYPICAL APPLICATION CIRCUIT (QFN-60)

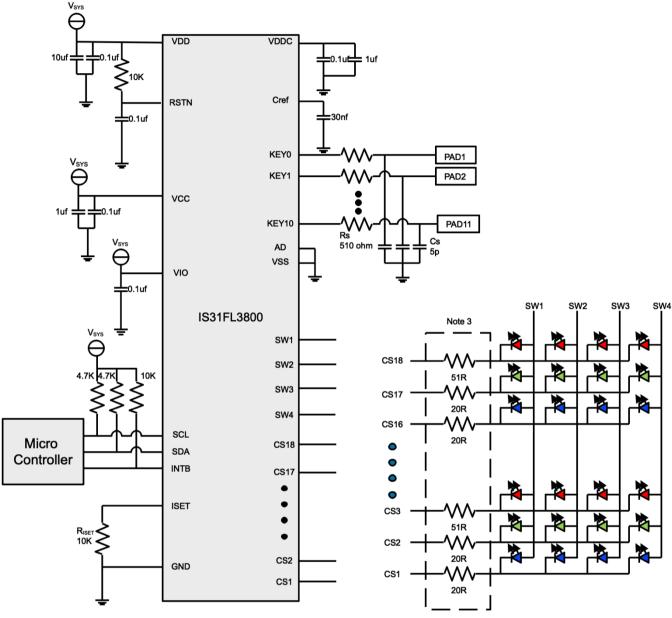
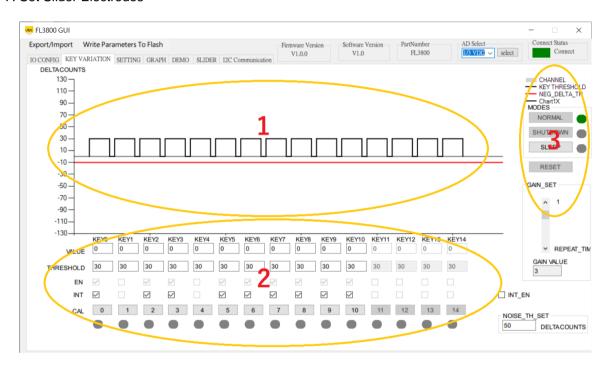
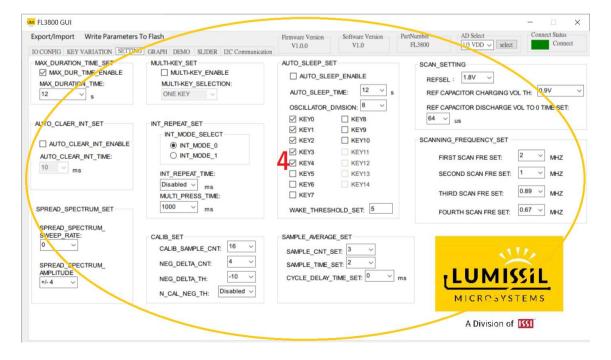


Figure 1 Typical Application Circuit (QFN-60)

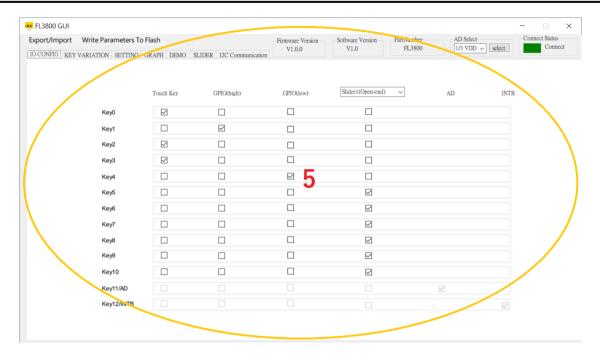
- Note 1: The chip should be placed far away from the noise points in order to prevent the EMI.
- Note 2: The R_S and C_S should place as close to the chip as possible to reduce EMI.
- Note 3: The 20R or 51R resistors between LED and the chip are only for thermal reduction. For mono red LED, if Vcc=3.3V, these resistors are not required.

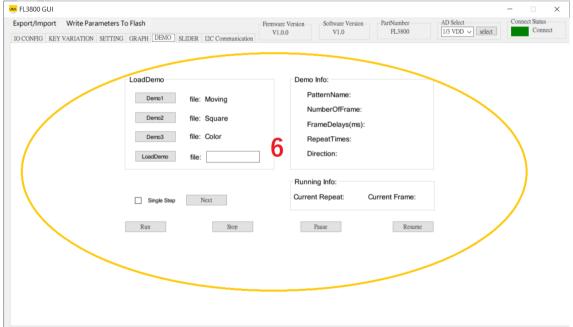


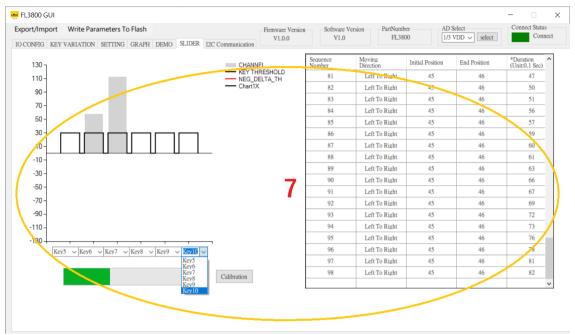

1. **DETAILED DESCRIPTION**

1.1 <u>IS31FL3800 GUI</u>

IS31FL3800 GUI is a windows-based Integrated Design Environment (IDE). User can use it to develop touch key applications without firmware coding. With the GUI user can design the touch key system easily. With the GUI you can:


- 1. Monitor the Key value
- 2. Set touch threshold and enable keys
- 3. Switch the operating modes
- 4. Tune System parameters
- 5. Set LED and GPIO parameters
- 6. LED demo
- 7. Set Slider Electrodes





Please refer to the User's Guide for other details.

IS31FL3800 A Division of [55]

ABSOLUTE MAXIMUM RATINGS

Supply voltage, VCC (for LED driving)	-0.3V ~ +6.0V
Supply voltage, VDD	+5.5V
Voltage at any input pin	-0.3V ~ Vcc+0.3V
Maximum junction temperature, T _{JMAX}	+150°C
Storage temperature range, T _{STG}	-65°C ~ +150°C
Operating temperature range, T _A =T _J	-40°C ~ +105°C
Junction Package thermal resistance, junction to ambient (4 layer standard test PCB based on JESD 51-2A), θ_{JA}	35°C/W
ESD (HBM)	±2kV
ESD (CDM)	±750V

Note 4: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1.2 **ELECTRICAL CHARACTERISTICS**

 $T_A = 25$ °C, $V_{DD} = 2.7 \text{V} \sim 5.5 \text{V}$, unless otherwise noted. Typical value are $T_A = 25$ °C, $V_{DD} = 5 \text{V}$.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V_{DD}	Supply voltage		2.7		5.5	V
Vcc	Supply voltage		2.7		5.5	V
I _{OUT}	Maximum constant current of CSy	R _{ISET} =10kΩ, GCC=0xFF SL=0xFF		34.5		mA
I _{DD} , stop	Quiescent power supply current	V _{DD} = 5.5V		2.5		mA
	Electrical Cl	naracteristics (LED Driver)				
ILED	Average current on each LED I _{LED} = I _{OUT(PEAK)} /Duty(4.14)	R _{ISET} =10kΩ, GCC=0xFF SL=0xFF		8.33		mA
M	Current switch headroom voltage SWx	Iswitch=612mA Riset =10kΩ, GCC=0xFF, SL=0xFF		450		\/
V _{HR}	Current sink headroom voltage CSy	I _{SINK} =34mA, R _{ISET} =10kΩ, GCC=0xFF, SL=0xFF		250		mV
t _{SCAN}	Period of scanning			33		μs
t _{NOL1}	Non-overlap blanking time during scan, the SWx and CSy are all off during this time			0.83		μs
t _{NOL2}	Delay total time for CS1 to CS 18, during this time, the SWx is on but CSy is not all turned on	(Note 5)		0.3		μs
	Electrical C	haracteristics (Touch Key)				
ΔCs	Normal detectable capacitance			40		pF
tscan, TK	Period of scanning for 11 Touch Key channels			55		mS

1.3 <u>I2C SWITCHING CHARACTERISTICS (Note 5)</u>

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fscL	Serial-Clock frequency				400	kHz
t BUF	Bus free time between a STOP and a START condition		1.3			μs
t _{HD} , STA	Hold time (repeated) START condition		0.6			μs
tsu, sta	Repeated START condition setup time		0.6			μs
t _{SU, STO}	STOP condition setup time		0.6			μs
thd, dat	Data hold time				0.9	μs
tsu, dat	Data setup time		100			ns
tLOW	SCL clock low period		1.3			μs
t _{HIGH}	SCL clock high period		0.7			μs
t _R	Rise time of both SDA and SCL signals, receiving	(Note 6)		20+0. 1C _b	300	ns
tF	Fall time of both SDA and SCL signals, receiving	(Note 6)		20+0. 1C _b	300	Ns
loL	Low level sink current			10		mA
ViH	Logic "0" input voltage	VDD = 5.5V	1.4			V
V _{IL}	Logic "0" input voltage	VDD = 2.7V			0.4	V

Note 5: Guaranteed by design.

Note 6: Cb = total capacitance of one bus line in pF. ISINK \leq 6mA. tR and tF measured between 0.3 \times VDD and 0.7 \times VDD.

1.4 <u>I2C INTERFACE</u>

IS31FL3800 uses a serial bus, which conforms to the I2C protocol, to control the chip's functions with two wires: SCL and SDA. IS31FL3800 has a 7-bit slave address (A7:A1), followed by the R/W bit, A0. Set A0 to "0" for a write command and set A0 to "1" for a read command. The value of bits A1 and A2 are determined by the connection of the AD pin, to GND, 1/3 VDD, 2/3VDD, and VDD.

The complete slave address is:

Bit	A7:A3	A2:A1	Α0
Value	01111	AD	1/0

AD connected to GND, AD = 00;

AD connected to 1/3VDD, AD = 01;

AD connected to 2/3VDD = 10;

AD connected to VDD = 11;

AD pin can also be configured as a Touch Key channel. When then AD pin is used for a Touch Key channel, A2: A1 = 00.

The SCL and SDA are open-drain IO so an external pull-up resistor (typically $4.7k\Omega$) is required. The maximum clock frequency specified by the I2C standard is 400kHz. In this discussion, the master is the host microcontroller and the slave is IS31FL3800.

The timing diagram for the I2C is shown in Figure 2. When there is no interface activity, both the SDA and SCL should be held high.

The "START" signal is generated by lowering the SDA signal while the SCL signal is high. The start signal will alert all devices attached to the I2C bus to check the incoming address against their own chip address.

The 8-bit chip address is sent next, most significant bit first. Each address bit must be stable while the SCL level is high.

After the last bit of the chip address is sent, the master checks for IS31FL3800's acknowledge. The master releases the SDA line which gets pulled to high (through a pull-up resistor). Then the master sends an SCL pulse. If

IS31FL3800 has received the address correctly, it holds the SDA line low during the SCL pulse. If the SDA line is not low, the master should send a "STOP" signal (discussed later) and abort the transfer.

Following acknowledge of IS31FL3800, the header byte is sent, most significant bit first. IS31FL3800 must generate another acknowledge indicating that the header has been received.

Following acknowledge of IS31FL3800, the commands or register address byte is sent, most significant bit first. IS31FL3800 must generate another acknowledge indicating that the register address has been received.

Then 8-bit of data byte are sent next, most significant bit first. Each data bit should be valid while the SCL level is stable high. After the data byte is sent, IS31FL3800 must generate another acknowledge to indicate that the data was received.

The "STOP" signal ends the transfer. To signal "STOP", the SDA signal goes high while the SCL signal is high.

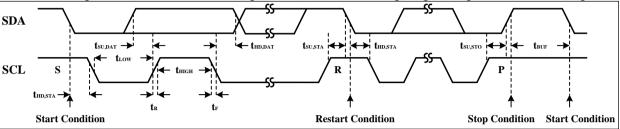
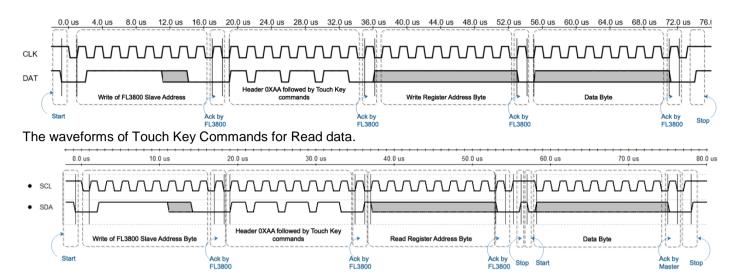


Figure 2 Interface Timing

1.5 READING PORT REGISTERS

To read the device data, the bus master must first send to IS31FL3800's address with the R/\overline{W} bit set to "0", followed by the header byte. The address of the register of interest is then specified. After a restart, the bus master must then send to IS31FL3800's address with the R/\overline{W} bit set to "1". Data from the register defined by the command byte is then sent from IS31FL3800 to the master.

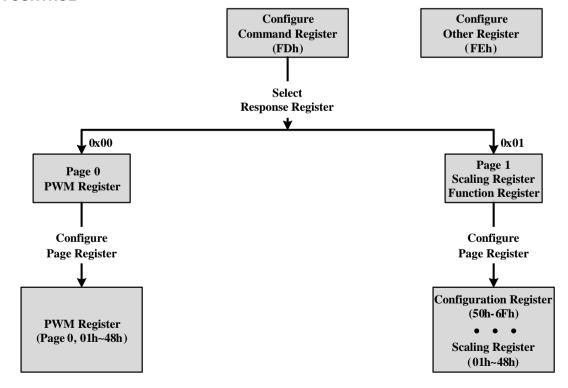
1.6 <u>I2C Command Format</u>


In the I2C bus, some devices are masters, and they have to generate the bus clock and initiate communication. To select the IS31FL3800 device, they must choose the right slave address and follow it by a header. If the header is 55h, the commands and data that follows are for the matrix LED driver. If the header is AAh, the commands and data that follows are for the Touch Key controller. If the header is A5h, IS31FL3800 will immediately save the current data in the registers. Saved data will become the default value of IS31FL3800. Commands are always ended by a stop signal.

First byte				Second byte	Other bytes	Ending
Slave address				Header		
				55h	Matrix LED Commands and data	Stop signal
Bit	A7:A3	A2:A1	A0			SCL High
Value	01111	AD	1/0			SDA Rising edge
				AAh	Touch Key Commands and data	Stop signal
				A5h	A special header is no following bytes. It is used for saving parameters	Stop signal

Two examples for the I2C Command are as follows:

The waveforms of Touch Key Commands for Write data.



1.7 Matrix LED Operation

Command Register Definition

Address	Name	Function	Table	R/W	Default
FEh	Command Register Write Lock	To unlock Command Register	-	W	0000 0000
FDh	Command Register	Available Page 0 to Page 1 registers	-	W	xxxx xxxx

REGISTER CONTROL

FDh Command Register

Data	Function
0000 0000	Point to Page 0 (PG0, PWM Register is available)
0000 0001	Point to Page 1 (PG1, White Balance Scaling and Function Register is available)
Others	Reserved

Note: FDh is locked when power up, need to unlock this register before write command to it. The Command Register should be configured first after writing in the slave address to choose the available register. Then write data in the choosing register. Power up default state is "0000 0000".

For example, when write "0000 0001" in the Command Register (FDh), the data which writing after will be stored in PG1 registers. Write new data can configure other registers.

FEh Command Register Write Lock (Read/Write)

Bit	D7:D0
Name	CRWL
Default	0000 0000 (FDh write disable)

To select the PG0~PG1, need to unlock this register first, with the purpose to avoid mis-operation of this register. When FEh is written with 0xC5, FDh is allowed to modify once, after the FDh is modified the FEh will reset to be 0x00 at once

Register Definition

Address	Name	Function	Figure	R/W	Default	
	PG0 (0x00): PWM Registers					
01h~48h	PWM Register	Set PWM for each LED	3	W	0000 0000	
	PG1 (0x0	01): LED Scaling & Function Registers				
01h~48h	Scaling Register	Set Scaling for each LED	4	W	0000 0000	
50h	Configuration Register	Configure the operation mode	-	W	0000	
51h	Global Current Control Register	Set the global current	-	W	0000	
52h	Pull Down/Up Resistor Selection Register	Set the pull down resistor for SWx and pull up resistor for CSy	-	W	0011 0011	
5Fh	Temperature Status	Store the temperature point of the IC	-	W	0000 0000	
60h	Spread Spectrum Register	Spread spectrum function enable	-	W	0000 0000	
8Fh	Reset Register	Reset all register to POR state	-	W	0000 0000	
E0h	PWM Frequency Enable Register	Enable PWM frequency setting	-	W	0000 0000	
E2h	PWM Frequency Setting Register	Set the PWM frequency	-	W	000x xxxx	

Page 0 (PG0, FDh= 0x00): PWM Register

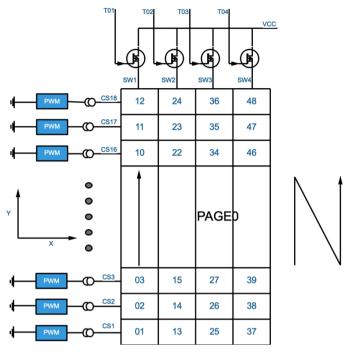


Figure 3 PWM Register

PG0: 01h ~ 48h PWM Register

Bit	D7:D0
Name	PWM
Default	0000 0000

Each dot has a byte to modulate the PWM duty in 256 steps.

The value of the PWM Registers decides the average current of each LED noted I_{LED}.

ILED computed by Formula (1):

$$I_{LED} = \frac{PWM}{256} \times I_{OUT(PEAK)} \times Duty$$
 (1)

Where Duty is the duty cycle of SWx,

Duty =
$$\frac{33 \mu s}{(33 \mu s + 0.83 \mu s + 0.3 \mu s)} \times \frac{1}{4} = \frac{1}{4.14}$$
 (2)

Iou⊤ is the output current of CSy (y=1~18),

$$I_{OUT(PEAK)} = \frac{343}{R_{ISFT}} \times \frac{GCC}{256} \times \frac{SL}{256}$$
 (3)

GCC is the Global Current Control Register (PG1, 51h) value, SL is the Scaling Register value as PG1 registers below and R_{ISET} is the external resistor of ISET pin. For example: if PWM=1011 0101 (0xB5, 181), GCC=1111 1111, R_{ISET} =10k Ω , SL=1111 1111:

$$I_{LED} = \frac{343}{10k\Omega} \times \frac{255}{256} \times \frac{255}{256} \times \frac{1}{4.14} \times \frac{181}{256}$$

Page 1 (PG1, FDh= 0x01): Scaling Register

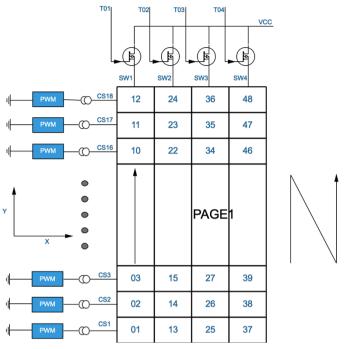


Figure 4 Scaling Register

PG1: 01h ~ 48h Scaling Register

Bit	D7:D0
Name	SL
Default	0000 0000

Scaling register control the DC output current of each dot. Each dot has a byte to modulate the scaling in 256 steps. The value of the Scaling Register decides the peak current of each LED noted IOUT(PEAK). IOUT(PEAK) computed by Formula (3).

Page 1 (PG1, FDh= 0x01): Function Register

Register	Name	Function	R/W	Default
50h	Configuration Register	Configure the operation mode	W	0000 0000
51h	Global Current Control Register	Set the global current	W	0000 0000
52h	Pull Down/Up Resistor Selection Register	Set the pull down resistor for SWx and pull up resistor for CSy	W	0011 0011
5Fh	Temperature Status	Store the temperature point of the IC	W	0000 0000
60h	Spread Spectrum Register	Spread spectrum function enable	W	0000 0000
8Fh	Reset Register	Reset all register to POR state	W	0000 0000
E0h	PWM Frequency Enable Register	Enable PWM frequency setting	W	0000 0000
E2h	PWM Frequency Setting Register	Set the PWM frequency	W	000x xxxx

50h Configuration Register

Bit	D7:D4	D3	D2:D1	D0
Name	SWS	-	OSDE	SSD
Default	0000	0	00	0

The Configuration Register sets operating mode of IS31FL3800.

SWS SWx Setting 0000 SW1~SW4, 1/4 0001 SW1~SW3, 1/3, SW4 no-active

0010 SW1~SW2, 1/2, SW3~SW4 no-active

0011 All CSy work as current sinks only, no scan

Others SW1~SW4, 1/4

OSDE Open/Short Detection Enable 00 Disable open/short detection 01/11 Enable open detection 10 Enable short detection SSD Software Shutdown Control Software shutdown 0

1 Normal operation

When OSDE set to "01", open detection will be trigger once, the user could trigger open detection again by set OSDE from "00" to "01".

When OSDE set "10", short detection will be trigger once, the user could trigger short detection again by set OSDE from "00" to "10".

When SSD is "0", IS31FL3800 works in software shutdown mode and to normal operate the SSD bit should set to "1". SWS control the duty cycle of the SWx, default mode is 1/4.

51h Global Current Control Register

Bit	D7:D0
Name	GCC
Default	0000 0000

The Global Current Control Register modulates all CSy (y=1~18) DC current which is noted as IOUT in 256 steps. IOUT is computed by the Formula (3):

52h Pull Down/Up Resistor Selection Register

Bit	D7	D6:D4	D3	D2:D0
Name	PHC	SWPDR	-	CSPUR
Default	0	011	0	011

Set pull down resistor for SWx and pull up resistor for CSy.

PHC Phase Choice 0 degree phase delay 0 180 degree phase delay 1

SWPDR SWx Pull Down Resistor Selection Bit

000 No pull down resistor 001 $0.5k\Omega$ only in SWx off time 010 $1.0k\Omega$ only in SWx off time $2.0k\Omega$ only in SWx off time 011

100 $1.0k\Omega$ all the time

101	2.0kΩ all the time
110	$4.0k\Omega$ all the time
111	$8.0k\Omega$ all the time
CSPUR	CSy Pull up Resistor Selection Bit
000	No pull up resistor
001	$0.5k\Omega$ only in CSy off time
010	1.0k Ω only in CSy off time
011	$2.0k\Omega$ only in CSy off time
100	1.0k Ω all the time
101	$2.0k\Omega$ all the time
110	$4.0k\Omega$ all the time

 $8.0k\Omega$ all the time

5Fh Temperature Status

111

Bit	D7:D4	D3:D2	D1:D0
Name	-	TS	TROF
Default	0000	00	00

TS store the temperature point of the IC. If the IC temperature reaches the temperature point the IC will trigger the thermal roll off and will decrease the current as TROF set percentage.

TS	Temperature Point (Thermal Roll Off Start Point)
00	140°C
01	120°C
10	100°C
11	90°C
TROF	Percentage Of Output Current
00	100%
01	75%
10	55%
10 11	55% 30%

60h Spread Spectrum Register

Bit	D7:D6	D4	D3:D2	D1:D0
Name	-	SSP	RNG	CLT
Default	00	0	00	00

When SSP enable, the spread spectrum function will be enabled and the RNG & CLT bits will adjust the range and cycle time of spread spectrum function.

SSP 0	Spread Spectrum Function Enable Disable
1	Enable
RNG	Spread Spectrum Range
00	±5%
01	±15%
10	±24%
11	±34%
CLT	Spread Spectrum Cycle Time
00	1980µs
01	1200µs
10	820µs
11	660µs

8Fh Reset Register

Once user writes the Reset Register with 0xAE, IS31FL3800 will reset all IS31FL3800 registers to their default value. On initial power-up, IS31FL3800 registers are reset to their default values for a blank display.

E0h PWM Frequency Enable Register

Bit	D7:D1	D0
Name	-	PFEN
Default	0000 000	0

The PWM Frequency Enable Register enables or disables to change the PWM frequency. If PFEN= "1", user can change the PWM frequency by modifying the E2h register.

PFEN PWM Frequency Enable

0 Disable1 Enable

E2h PWM Frequency Setting Register

Bit	D7:D5	D4:D0
Name	PF	-
Default	000	x xxxx

PWM Frequency Setting Register is used to set the PWM frequency.

PF **PWM Frequency** 000/111 29kHz 14.5kHz 001 7.25kHz 010 011 3.63kHz 1.81kHz 100 906Hz 101 110 453Hz

APPLICATION INFORMATION

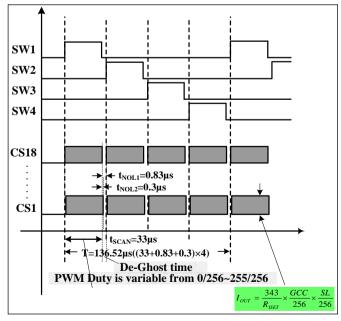


Figure 6 Scanning Timing

SCANNING TIMING

As shown in Figure 6, the SW1~SW4 is turned on by serial, LED is driven 4 by 4 within the SWx ($x=1\sim4$) on time (SWx, $x=1\sim4$ is source and it is high when LED on), including the non-overlap blanking time during scan, the duty cycle of SWx (active high, $x=1\sim4$) is formula (2).

Where 33 μ s is t_{SCAN}, the period of scanning, 0.83 μ s is t_{NOL1}, 0.3 μ s is t_{NOL2}, the non-overlap time and CSy(y=1~18) delay time.

PWM CONTROL

After setting the I_{OUT} and GCC, the brightness of each LEDs (LED average current (I_{LED})) can be modulated with 256 steps by PWM Register, as described in Formula (1).

Where PWM is PWM Registers (PG0, 01h~48h /PG0) data. For example, in Figure 1, if R_{ISET} = 10k Ω , PWM= 255, and GCC= 255, SL= 255, then writing new data continuously to the registers can modulate the brightness of the LEDs to achieve a breathing effect.

GAMMA CORRECTION

In order to perform a better visual LED breathing effect, we recommend using a gamma corrected PWM value to set the LED intensity. This results in a reduced number of steps for the LED intensity setting, but causes the change in intensity to appear more linear to the human eye.

Gamma correction, also known as gamma compression or encoding, is used to encode linear luminance to match the non-linear characteristics of display. Since IS31FL3800 can modulate the brightness of the LEDs with 256 steps, a gamma correction function can be applied when computing each subsequent LED intensity setting such that the changes in brightness matches the human eye's brightness curve.

32 Gamma Steps with 256 PWM Steps

C(0)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)
0	1	2	4	6	10	13	18
C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)	C(15)
22	28	33	39	46	53	61	69
C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)
78	86	96	106	116	126	138	149
C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)
161	173	186	199	212	226	240	255

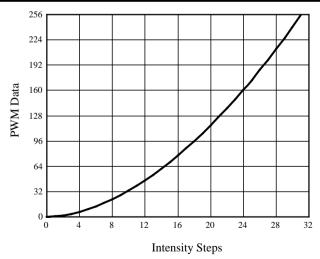


Figure 7 Gamma Correction (32 Steps)

Choosing more gamma steps provides for a more continuous looking breathing effect. This is useful for very long breathing cycles. The recommended configuration is defined by the breath cycle T. When T=1s, choose 32 gamma steps, when T=2s, choose 64 gamma steps. The user must decide the final number of gamma steps not only by the LED itself, but also based on the visual performance of the finished product.

64 Gamma Steps with 256 PWM Steps

C(0)	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)
0	1	2	3	4	5	6	7
C(8)	C(9)	C(10)	C(11)	C(12)	C(13)	C(14)	C(15)
8	10	12	14	16	18	20	22
C(16)	C(17)	C(18)	C(19)	C(20)	C(21)	C(22)	C(23)
24	26	29	32	35	38	41	44
C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(30)	C(31)
47	50	53	57	61	65	69	73
C(32)	C(33)	C(34)	C(35)	C(36)	C(37)	C(38)	C(39)
77	81	85	89	94	99	104	109
C(40)	C(41)	C(42)	C(43)	C(44)	C(45)	C(46)	C(47)
114	119	124	129	134	140	146	152
C(48)	C(49)	C(50)	C(51)	C(52)	C(53)	C(54)	C(55)
158	164	170	176	182	188	195	202
C(56)	C(57)	C(58)	C(59)	C(60)	C(61)	C(62)	C(63)
209	216	223	230	237	244	251	255

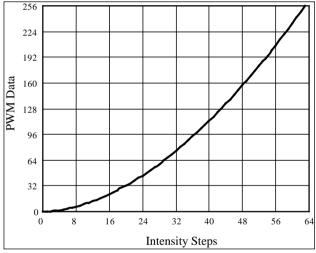


Figure 8 Gamma Correction (64 Steps)

Note: The data of 32 gamma steps is the standard value and the data of 64 gamma steps is the recommended value.

1.8 <u>Touch Key Operation</u>

Register Function

Address	Name	Function	R/W	Default
00h	Main Control Register	Controls general power states and power dissipation		0000 0000
01h	INT Configuration Register	Interrupt configuration		0000 1000
02h	Key Status Register 1	Key0~Key7 status bits		0000
03h	Key Status Register 2	Key8~Key10 status bits	R	0000
04h	Interrupt Enable Register 1	Key0~key7 Enables Interrupts associated with capacitive touch sensor inputs		1111 1111
05h	Interrupt Enable Register 2	errupt Enable Register 2 Key8~key10 Enables Interrupts associated with capacitive touch sensor inputs		0000 0111
06h	Key Enable Register 1	Key0~key7 sets the channels enable		1111

Multiple Touch Key Configure Register 2 Multiple Touch Key Configure Register Multiple Touch Key Configure Register Multiple Touch Key Configure Register Set auto-clean interrupt time and enable OAh Interrupt Repeat Time Register Set auto-clean interrupt time and enable OAh Interrupt Repeat Time Register Set repeat cycle for pressing key interrupt OBh Auto-SLEEP Mode Register Set press Key0–Key7 to exit SLEEP Mode OCh Exit SLEEP Mode Register Set press Key8–Key10 to exit SLEEP Mode OCh Exit SLEEP Mode Register Set press Key8–Key10 to exit SLEEP Mode OCh Exit SLEEP Mode Register Set gain and pressing trigger time Set gain and pressing trigger time Set gain and pressing trigger time Set auto-calibration cycle and negative value trigger setting Set auto-calibration enable forcibly Set noise Indication Register Key0-Key7 calibration enable forcibly Set noise Indication Register Set noise threshold value Set noise Indication Register Set noise threshold value Set noise indication Register Set noise indication Register Set megative threshold and compel calibration threshold Set noise Indication Register Set scanning voltage Register Set scanning voltage Register Set scanning voltage Register Set scanning voltage Register Set the first and second scanning frequencies Rey0-Key10 Variation Value Key0-Key10 Variation Register Key0-Key10 Variation Register Key0-Key10 Calibration Low Internal calibration high 8-bit for Key0-Key10 Calibration High Bit Register Key0-Key10 Sets the GPIO enable Set S	
08h Multiple Touch Key Configure Register Multiple touch key function setting 09h Auto-Clean Interrupt Register Set auto-clean interrupt time and enable 0Ah Interrupt Repeat Time Register Set repeat cycle for pressing key interrupt 0Bh Auto-SLEEP Mode Register Set zuto enter SLEEP Mode time 0Ch Exit SLEEP Mode Register 1 Set press Key0~Key7 to exit SLEEP Mode 0Dh Exit SLEEP Mode Register 2 Set press Key8~Key10 to exit SLEEP Mode 0Eh Gain and Press Time Setting Register Set gain and pressing trigger time 0Fh Key Touch Sampling Configure Register Set gain and pressing trigger time 10h Calibration Configure Register Set sampling times and cycle time 11h Force Calibration Register 1 Key0~Key7 calibration cycle and negative value trigger setting 12h Force Calibration Register 2 Key8-Key10 calibration enable forcibly 13h Noise Indication Register 3 Set noise threshold value 14h Noise Indication Register 4 Key8~key10 noise indication Rey8-key10 noise indication 18h Wake Up Threshold Register Set wake up threshold 18h<	1111
O9h Auto-Clean Interrupt Register Set auto-clean interrupt time and enable OAh Interrupt Repeat Time Register Set auto-clean interrupt time and enable OAh Interrupt Repeat Time Register Set auto-clean interrupt time and enable OBh Auto-SLEEP Mode Register Set auto enter SLEEP Mode time OCh Exit SLEEP Mode Register 1 Set press Key0-Key7 to exit SLEEP Mode OBh Exit SLEEP Mode Register 2 Set press Key8-Key10 to exit SLEEP Mode OBh Gain and Press Time Setting Register Set auto enter SLEEP Mode time OCh Exit SLEEP Mode Register 2 Set press Key8-Key10 to exit SLEEP Mode OBH Register Set gain and pressing trigger time OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration cycle and negative value trigger setting OFH Register Set sampling times and cycle time Set auto-calibration evalue from the set of set sampling times and cycle time Set auto-calibration evalue from Set sampling times and cycle time Set auto-calibration evalue fr	0000 0111
OAh Interrupt Repeat Time Register Set repeat cycle for pressing key interrupt OBh Auto-SLEEP Mode Register Set auto enter SLEEP Mode time OCh Exit SLEEP Mode Register 1 Set press Key0-Key7 to exit SLEEP Mode ODh Exit SLEEP Mode Register 2 Set press Key0-Key7 to exit SLEEP Mode OBh Gain and Press Time Setting Register Set gain and pressing trigger time OFh Key Touch Sampling Configure Register Set sampling times and cycle time Calibration Configure Register Interpretation Calibration Register 1 Set auto-calibration enable forcibly 10h Calibration Register 1 Key0-Key7 calibration enable forcibly 12h Force Calibration Register 2 Set noise threshold value 14h Noise Indication Register 1 Key0-Key7 noise indication 15h Noise Indication Register 2 Key8-Key10 noise indication 15h Noise Indication Register 1 Key0-Key7 noise indication 16h Wake Up Threshold Register Set wake up threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 1Bh Scan Frequency Register 2 Keys value setting 1Bh Scan Frequency Register 1 Key0-Key10 Register 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 1Bh Scan Frequency Register 1 Keys value setting 1Bh Scan Frequency Register 1 Keys value setting 1Bh Scan Frequency Register 1 Keys value setting 1Bh KEY0-KEY10 Variation Low Bit Register 1Bh KEY0-KEY10 Calibration Low Bit Register 1Bh KEY0-KEY10 Calibration Low Bit Register 1Bh KEY0-KEY10 Calibration High Bit Register 1Bh KEY0-KEY10 Calibration High Bit Register	0000
OBh Auto-SLEEP Mode Register OCh Exit SLEEP Mode Register 1 Set press Key0-Key7 to exit SLEEP Mode ODh Exit SLEEP Mode Register 2 Set press Key0-Key7 to exit SLEEP Mode OEh Gain and Press Time Settling Register OFh Key Touch Sampling Configure Register OFh Calibration Configure Register 10h Calibration Configure Register 11h Force Calibration Register 1 Key0-Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8-Key10 calibration enable forcibly 13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0-Key7 noise indication 15h Noise Indication Register 2 Key8-key10 noise indication 17h Negative Threshold Register Set wake up threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register 1 Set wake up threshold 19h Scan Frequency Register 2 Set the first and second scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h KEY0-KEY10 Variation Value Register Key8 value setting 18h KEY0-KEY10 Threshold Set Register Key8-Key10 destring Register 18h KEY0-KEY10 Calibration Low Bit Register Key8-Key10 noise indication 18h KEY0-KEY10 Calibration Low Bit Register Set wake up threshold 19h Scan Frequency Register 1 Set the first and second scanning frequencies 18h KEY0-KEY10 Calibration Low Bit Register Key8 value setting 18h KEY0-KEY10 Calibration Low Bit Register Key9-KEY10 Calibration high 8-bit for KEY0-KEY10 18h KEY0-KEY10 Calibration High Bit Register KEY0-KEY10 Calibration High Bit Register	0000
OCh Exit SLEEP Mode Register 1 Set press Key0~Key7 to exit SLEEP Mode ODh Exit SLEEP Mode Register 2 Set press Key8~Key10 to exit SLEEP Mode OEh Gain and Press Time Setting Register Set gain and pressing trigger time OFh Key Touch Sampling Configure Register Set sampling times and cycle time 10h Calibration Configure Register Key0~Key7 calibration enable forcibly 11h Force Calibration Register 1 Key0~Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8~Key10 calibration enable forcibly 13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set wake up threshold and compel calibration threshold 18h Wake Up Threshold Register Set scanning voltage RAW 1Ah Scan Frequency Register Set scanning voltage RAW 1Ah Scan Frequency Register Set the first and second scanning frequencies 1Bh Scan Frequency Register Set the third and fourth scanning frequencies 1Bh Scan Frequency Register Keys value setting RAW 1Ah Scan Frequency Register Keys value setting RAW 1Ah KEY0~KEY10 Variation Value Register Keys value setting RAW 1Ah,42h KEY0~KEY10 Calibration Low Bit Register REy0-KEY10 Calibration High Bit Register REY0~KEY10 Calibration High Bit Register REY0~KEY10 Internal calibration high 8-bit for KEY0~KEY10 Internal calibration high 8-bit for KEY0~KEY10	0000 1111
ODh Exit SLEEP Mode Register 2 Set press Key8–Key10 to exit SLEEP Mode OEh Gain and Press Time Setting Register Set gain and pressing trigger time OFh Key Touch Sampling Configure Register Set sampling times and cycle time 10h Calibration Configure Register Set auto-calibration cycle and negative value trigger setting 11h Force Calibration Register 1 Key0–Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8–Key10 calibration enable forcibly 13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0–Key7 noise indication 15h Noise Indication Register 2 Key8–key10 noise indication 17h Negative Threshold Register Set wake up threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage R/W 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies KEY0–KEY10 Variation Value Register Keys value setting R/W 10h,42h CREY10 Calibration Low Bit Register R/W KEY0–KEY10 Calibration Low Bit Register R/W KEY0–KEY10 Calibration High Bit Register R/EY0–KEY10 Calibration L/EY0–KEY10 Calibration	0011 1111
Gain and Press Time Setting Register OFh Key Touch Sampling Configure Register 10h Calibration Configure Register 11h Force Calibration Register 1 Key0~Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8~Key10 calibration enable forcibly 13h Noise Threshold Register 1 Key0~Key7 noise indication enable forcibly 14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 15h Negative Threshold Register Set noise threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage Rew 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 1Bh Key0~Key10 Variation Value Register Regis	0000
Register Set gain and pressing trigger time 0Fh Key Touch Sampling Configure Register Set sampling times and cycle time 10h Calibration Configure Register Set auto-calibration cycle and negative value trigger setting 11h Force Calibration Register 1 Key0~Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8~Key10 calibration enable forcibly 13h Noise Indication Register 1 Key0~Key7 noise indication 14h Noise Indication Register 2 Key8~key10 noise indication 15h Noise Indication Register 3 Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register 3 Set wake up threshold 19h Scan Voltage Register 3 Set scanning voltage 3 14h Scan Frequency Register 1 Set the first and second scanning frequencies 3 15h Scan Frequency Register 2 Set the third and fourth scanning frequencies 3 16h KEY0~KEY10 Variation Value Register 4 Keys value setting 3 17h Key0~KEY10 Threshold Set Register 4 Keys threshold setting 4 18h KEY0~KEY10 Calibration Low Bit Register 5 Internal calibration high 8-bit for KEY0~KEY10 Bit Register 6	0000
10h Calibration Configure Register 10h Calibration Configure Register 11h Force Calibration Register 1 Key0~Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8~Key10 calibration enable forcibly 13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage RAW 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 1Bh KEY0~KEY10 Variation Value Register 20h~2Ah KEY0~KEY10 Variation Value Register 30h~3Ah KEY0~KEY10 Threshold Set Register Keys value setting KEY0~KEY10 Calibration Low Bit Register Internal calibration high 8-bit for KEY0~KEY10 KEY0~KEY10 Calibration High Bit Register Internal calibration high 8-bit for KEY0~KEY10 KEY0~KEY10 Calibration High Bit Register	0010 1100
11h Force Calibration Register 1 Key0~Key7 calibration enable forcibly 12h Force Calibration Register 2 Key8~Key10 calibration enable forcibly 13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h-2Ah KEY0~KEY10 Variation Value Register 30h-3Ah KEY0~KEY10 Threshold Set Register 40h,42h KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration High Bit Register KEY0~KEY10 Calibration High Bit Register Internal calibration high 8-bit for KEY0~KEY10 Register KEY0~KEY10 Calibration High Bit Register	0010 0100
12h Force Calibration Register 2 Key8~Key10 calibration enable forcibly 13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register 30h~3Ah KEY0~KEY10 Threshold Set Register KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration High Bit Register Internal calibration high 8-bit for KEY0~KEY10 KEY0~KEY10 Calibration High Bit Register	0011 0000
13h Noise Threshold Register Set noise threshold value 14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage Register Set the first and second scanning frequencies 18h Scan Frequency Register 1 Set the first and second scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register Keys value setting Register 30h~3Ah KEY0~KEY10 Threshold Set Register 40h,42h Sch,54h Sit Register KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration High Bit Register Key0~KEY10 Calibration High Bit Register	0000
14h Noise Indication Register 1 Key0~Key7 noise indication 15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage R/W 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register Keys value setting R 30h~3Ah KEY0~KEY10 Threshold Set Register 40h,42h KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration High Bit Register KEY0~KEY10 Calibration High Bit Register Internal calibration high 8-bit for KEY0~KEY10 KEY0~KEY10	0000
15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage Remaiks Sean Frequency Register 1 Set the first and second scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the third and fourth scanning frequencies 18h Scan Frequency Register 2 Set the first and second scanning frequencies 18h Scan Frequency Register 2 Set the first and second scanning frequencies 18h Scan Frequency Register 3 Set wake up threshold 19h Scan Voltage Register 5 Set wake up threshold 19h Scan Voltage Register 5 Set wake up threshold 19h Scan Voltage Register 5 Set wake up threshold 19h Scan Voltage Register 5 Set wake up threshold 19h Scan Voltage Register 5 Set wake up threshold 19h Scan Voltage Register 5 Set wake up threshold 19h Scan Voltage Register 6 Set wake up threshold 19h Scan Voltage Register 9 Set wake up threshold 19h Scan Voltage Register 9 Set wake up threshold 19h Scan Voltage Register 9 Set wake up threshold 19h Scan Voltage Register 9 Set wake up threshold 19h Scan Voltage Register 9 Set wake up threshold 19h Scan Voltage Person 1 Set wake up threshold	0011 0010
15h Noise Indication Register 2 Key8~key10 noise indication 17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage R/W 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register Keys value setting R 30h~3Ah KEY0~KEY10 Threshold Set Register 40h,42h Set Set Second Scanning frequencies Keys value setting R/W KEY0~KEY10 Calibration Low Bit Register Internal calibration low 8-bit for KEY0~KEY10 KEY0~KEY10 Calibration High Bit Register KEY0~KEY10 Calibration High Bit Register KEY0~KEY10 Calibration High Bit Register KEY0~KEY10	0000
17h Negative Threshold Register Set negative threshold and compel calibration threshold 18h Wake Up Threshold Register Set wake up threshold 19h Scan Voltage Register Set scanning voltage 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register Keys value setting R 30h~3Ah KEY0~KEY10 Threshold Set Register 40h,42h Set Y0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration High Bit Register KEY0~KEY10 Calibration High Bit Register	0000
19h Scan Voltage Register Set scanning voltage R/W 1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h-2Ah KEY0~KEY10 Variation Value Register Keys value setting R 30h~3Ah KEY0~KEY10 Threshold Set Register 40h,42h	0000 1001
1Ah Scan Frequency Register 1 Set the first and second scanning frequencies 1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register 30h~3Ah KEY0~KEY10 Threshold Set Register 40h,42h 52h,54h 41h,43h KEY0~KEY10 Calibration High Bit Register Set the first and second scanning frequencies Keys value setting R Keys value setting R Keys threshold setting Internal calibration low 8-bit for KEY0~KEY10 R R R R R R R R R R R R R	0000 0101
1Bh Scan Frequency Register 2 Set the third and fourth scanning frequencies 20h~2Ah KEY0~KEY10 Variation Value Register 30h~3Ah KEY0~KEY10 Threshold Set Register Keys value setting R/W 40h,42h S2h,54h KEY0~KEY10 Calibration Low Bit Register Keys threshold setting Internal calibration low 8-bit for KEY0~KEY10 R R R R R R R R R R R R R	0111 0000
20h~2Ah KEY0~KEY10 Variation Value Register 30h~3Ah KEY0~KEY10 Threshold Set Register Keys threshold setting Keys threshold setting R/W KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration Low Bit Register Internal calibration low 8-bit for KEY0~KEY10 KEY0~KEY10 Calibration High Bit Register Internal calibration high 8-bit for KEY0~KEY10	0111 0011
Register 30h~3Ah KEY0~KEY10 Threshold Set Register Keys value setting R Keys value setting R Keys value setting R Keys value setting R Keys threshold setting R/W Keys threshold setting R Internal calibration low 8-bit for KEY0~KEY10 R R Internal calibration high 8-bit for KEY0~KEY10 Bit Register Keys value setting R R/W	1011 1000
40h,42h 52h,54h KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration Low Bit Register KEY0~KEY10 Calibration High Bit Register Keys threshold setting R/W Internal calibration low 8-bit for KEY0~KEY10 R R R R R R R R R R R R R	0000
S2h,54h Bit Register Internal calibration low 8-bit for KEY0~KEY10 R	0011 0000
41h,43h S3h,55h KEY0~KEY10 Calibration High Internal calibration high 8-bit for KEY0~KEY10	0000
	0000
They have the straine the straine of the straine	
61h GPIO Enable Register 2 Key8~key10 sets the GPIO enable	0000
62h GPIO Value Register 1 Key0~key7 set the GPIO values	0000
63h GPIO Value Register 2 Key8~key10 set the GPIO values R/W	
64h Slider Enable Register 1 Key0~key7 sets the slider enable	1110 0000
65h Slider Enable Register 2 Key8~key10 sets the slider enable	0000 0111

66h 67h	Slider Status Register1 Slider Status Register2	Slider status reply1 Slider status reply2	R	0000 0000
68h	Slider Status Register3	Slider status reply3		1000 0000
69h	Key position 1-2 of Slider1	Shows the position of Slider1	R/W	0101 0110
6Ah	Key position 3-4 of Slider1 Shows the position of Slider1		IX/VV	0111 1000
6Bh	Key position 5-6 of Slider1	Shows the position of Slider1		1001 1010
6Fh	Version Control Register	Shows the firmware version	R	0100 0000
70h~75h	Slider Calibration Register 1-6 Slider calibration from the first Key to the sixth Key		DAM	0001 0101
76h	Spread Spectrum Configuration	Spread spectrum setting	R/W	0000 0000

00h Main Control Register (Write Only)

Bit	D7	D6	D5	D4	D3	D2:D0
Name	SR	-	SDM	SP	-	-
Default	0	0	0	0	0	000

SR System Reset 0 Normal Mode 1 System Reset SDM Shutdown Mode 0 Normal Mode Shutdown Mode 1 SP Sleep Mode 0 Normal Mode SLEEP Mode

00h Main Control Register (Read Only)

Bit	D7:D0
Name	PID
Default	0X30

PID Product ID, It is read only. User cannot modify the value.

Default 0X30

01h Interrupt Configuration Register

Bit	D7:D4	D3	D2	D1	D0
Name	-	MDEND	INM	INE	-
Default	0000	1	0	0	0

MDEN Maximum Duration Time Enable

0 Disable1 Enable

Maximum press function is used to prevent key pressing all the time by accident. When maximum press function is enabled, once key keep pressing at programmed time the key calibration value will be updated.

INM	Interrupt Mode
0	Interrupt Mode 0(Touch key trigger once interrupt)
1	Interrupt Mode 1(Touch key trigger repeated interrupt)

IS31FL3800

INM bit sets interrupt time for once or multiple. Multiple interrupt is used for key pressing detection.

INE Interrupt Function Enable

0 Disable 1 Enable

02h Key Status Register 1 (Read only)

Bit	D7:D0
Name	KS[7:0]
Default	0000 0000

03h Key Status Register 2 (Read only)

Bit	D7:D3	D2:D0
Name	-	KS[10:8]
Default	0000 0	000

KS[10:0] Key0~Key10 Status

0 No action

1 Press or release keys

If the value of KSx is detected over programmed threshold, the corresponding bit will be set to "1".

04h Interrupt Enable Register 1

Bit	D7:D0
Name	KINT[7:0]
Default	1111 1111

05h Interrupt Enable Register 2

Bit	D7:D3	D2:D0
Name	-	KINT[10:8]
Default	0000 0	111

The Interrupt Enable Register determines whether a sensor pad touch or release (if enabled) causes the interrupt pin to be asserted.

KINT[10:0] Key Interrupt Enable

0 Disable1 Enable

The default value for Interrupt Enable Registers is interrupt enable. Only set INE bit of Interrupt Configuration Register (01h) to "0", INTB pin will generate interrupt signal.

06h Key Enable Register 1

Bit	D7:D0
Name	KEN[7:0]
Default	1111 1111

07h Key Enable Register 2

Bit	D7:D3	D2:D0
Name	-	KEN[10:8]
Default	0000 0	111

KEN[10:0] Touch Key Enable Setting

0 Disable

1 Enable

08h Multiple Touch Key Configure Register

Bit	D7:D3	D2	D1:D0
Name	-	MKEN	MTK[1:0]
Default	0000 0	0	00

MKEN Multi- Key Enable
0 Disable
1 Enable

MTK[1:0] Multi -Key Selection

Allow one key triggered at same time
 Allow two keys triggered at same time
 Allow three keys triggered at same time

09h Auto-Clear Interrupt Register

Bit	D7:D4	D3	D2:D0
Name	-	ACEN	ACT[2:0]
Default	0000	0	000

ACEN Auto-Clear Interrupt Enable 0 Disable 1 Enable ACT[2:0] Auto-Clear Interrupt Time 000 10ms 20ms 001 010 30ms 011 40ms 100 50ms 101 100ms 110 150ms 200ms 111

When ACEN=0, the INTB will keep low until MCU read 02h and 03h registers. When ACEN=1, if MCU don't read 02h and 03h registers within programmed time (ACT=10ms~200ms), INTB pin will be release automatically.

0Ah Interrupt Repeat Time Register

Bit	D7:D4	D3:D0
Name	INTRT[3:0]	MPT[3:0]
Default	0000	1111

INTRT[3:0]	Interrupt Repeat Time
0000	Close
0001	50ms
0010	100ms
0011	150ms
0100	200ms
0101	250ms
0110	300ms
0111	350ms
1000	400ms
1001	450ms
1010	500ms
1011	600ms

Lumissil Microsystems - www.lumissil.com

1100	700ms
1101	800ms
1110	900ms
1111	1s
MPT[3:0]	Multi-key Press Time
0000	Close
0001	50ms
0010	100ms
0011	150ms
0100	200ms
0101	250ms
0110	300ms
0111	350ms
1000	400ms
1001	450ms
1010	500ms
1011	600ms
1100	700ms
1101	800ms
1110	900ms
1111	1s

When set the INM as 1 and several keys are pressed, it will generate the second interrupt until M_PRESS_TIME after the first interrupt. Then wait for INT_RPT_TIME to trigger the third interrupt. After all of these if the keys are still pressing, wait for INT_RPT_TIME to trigger others interrupt until keys release.

0Bh Auto-SLEEP Set Register

Bit	D7	D6:D4	D3:D0
Name	ASEN	OSCD[2:0]	AST[3:0]
Default	0	011	1111

ASEN	Auto-SLEEP Enable
0	Disable
1	Enable
OSCD[2:0]	Auto-Sleep Oscillator Division
000	1
001	2
010	4
011	8
100	16
101	32
110	64
111	128
AST[3:0]	Auto-SLEEP Time
0000	0.5s
0001	1s
0010	1.5s
0011	2s
0100	2.5s
0101	3s
0110	3.5s
0111	4s
1000	5s

1001	6s
1010	7s
1011	8s
1100	9s
1101	10s
1110	11s
1111	12s

When ASEN=1 and no actions on touch key and I2C interface, the IC will enter into SLEEP Mode after programmed time (AST).

0Ch Exit SLEEP Mode Register 1

Bit	D7:D1
Name	ESMEN[7:0]
Default	0000 0000

0Dh Exit SLEEP Mode Register 2

Bit	D7:D3	D2:D0
Name	-	ESMEN[10:8]
Default	0000 0	000

ESMEN[10:0] Exit Sleep Mode Enable

0 Touch key can't trigger exiting SLEEP Mode

1 Touch key trigger exiting SLEEP Mode

When IC is in Normal Mode and ASEN=1, set ESMENx=1 will exit from SLEEP Mode by pressing the corresponding key.

0Eh Gain and Press Time Setting Register

Bit	D7:D4	D3:D0
Name	GAIN[3:0]	MDT[3:0]
Default	0010	1100

GAIN[3:0]	Gain Control
0000	1X
0001	2X
0010	3X
0011	4X
0100	5X
0101	6X
0110	7X
0111	8X
1000	9X
1001	10X
1010	11X
1011	12X
1100	13X
1101	14X
1110	15X
1111	16X

The GAIN bits are used to set the gain factor. Internal count will count the final value and put it into KEYx_ΔCOUNT.

MDT[3:0]	Max Duration Time
0000	0.5s
0001	1s
0010	2s

0011	3s
0100	4s
0101	5s
0110	6s
0111	7s
1000	8s
1001	9s
1010	10s
1011	11s
1100	12s
1101	13s
1110	14s
1111	15s

MPT bits set the pressing time. When key pressed continue over the programmed time (MDT), system will force to calibrate the pressed key. Set MDEN to "1" will enable this function.

0Fh Key Touch Sampling Configure Register

Bit	D7:D4	D3:D2	D1:D0
Name	SC[3:0]	ST[1:0]	CDS[1:0]
Default	0010	01	00

SC[3:0]	Touch Key Sampling Count Setting
0000	1
0001	2
0010	3
0011	4
0100	5
0101	6
0110	7
0111	8
1000	9
1001	10
1010	11
1011	12
1100	13
1101	14
1110	15
1111	16
unand to ant avera	as compling times for each channel I

SC is used to set average sampling times for each channel. Higher SC value will increase stability and anti-interference ability, but decrease reaction speed.

ST[1:0]	Sampling Time (Single Channel)
00	1
01	2
10	4
11	8
CDS[1:0]	Cycle Delay Time
00	0ms
00 01	0ms 10ms
01	10ms

Sampling 16 channels is for one cycle.

10h Calibration Configure Register

Bit	D7	D6:D4	D3:D2	D1:D0
Name	-	CSC[2:0]	-	NDC[1:0]
Default	0	011	00	00

CSC[2:0]	Calibrate Sample Count
000	2
001	4
010	8
011	16
100	32
101	64
110	128
111	256

If there is no action on keys, environmental capacitance will be calibrated after CSC times.

NDC[1:0]	Negative Delta Coun
00	4
01	8
10	16
11	32

If channel detects the value over negative threshold (NDTH) for NDC times, it will be calibrated forcibly.

11h Force Calibration Register 1

Bit	D7:D0
Name	FCK[7:0]
Default	0000 0000

12h Force Calibration Register 2

Bit	D7:D3	D2:D0
Name	-	FCK[10:8]
Default	0000 0	000

FCK[10:0] Individual Force Calibrate Key
0 Close
1 Enable

When enable FCKx, the corresponding bit will be set to "0".

13h Noise Threshold Register

Bit	D7:D0
Name	NTH
Default	0011 0010

The noise threshold is from 0~127. It is invalid if NTH>127.

If difference value between samplings is over the programmed threshold, the corresponding noise bit will be set to "1".

14h Noise Indication Register 1 (Read Only)

Bit	D7:D0
Name	NK[7:0]
Default	0000 0000

15h Noise Indication Register 2 (Read Only)

Bit	D7:D3	D2:D0
Name	-	NK[10:8]
Default	0000 0	000

NK[10:0] Noise Indication 0 No noise 1 Noise

17h Negative Threshold Register

Bit	D7:D4	D3:D0
Name	NCTH[3:0]	NDTH[3:0]
Default	0000	1001

0000 Disabled 0001 -10 0010 -20 0011 -30 0100 -40 0101 -50 0110 -60 0111 -70 1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	NCTH[3:0]	Negative Calibrate Threshold Setting
0010 -20 0011 -30 0110 -40 0101 -50 0110 -60 0111 -70 1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1111 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0000	Disabled
0011 -30 0100 -40 0101 -50 0110 -60 0111 -70 1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1111 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0001	-10
0100	0010	-20
0101 -50 0110 -60 0111 -70 1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0011	-30
0110 -60 0111 -70 1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1110 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0100	-40
0111 -70 1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1110 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0101	-50
1000 -80 1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1110 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0110	-60
1001 -90 1010 -100 1011 -110 1100 -120 1101 Not available 1110 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1001 -11 1010 -13 1101 -14 1110 -15 1111 -16	0111	-70
1010 -100 1011 -110 1100 -120 1101 Not available 1110 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1000	-80
1011 -110 1100 -120 1101 Not available 1110 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1001	-90
1100 -120 1101 Not available 1110 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1010	-100
1101 Not available 1110 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1011	-110
1110 Not available 1111 Not available NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1100	-120
NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1101	Not available
NDTH[3:0] Negative Delta Threshold Setting 0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1110	Not available
0000 -1 0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1111	Not available
0001 -2 0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	NDTH[3:0]	Negative Delta Threshold Setting
0010 -3 0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0000	-1
0011 -4 0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0001	-2
0100 -5 0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0010	-3
0101 -6 0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0011	-4
0110 -7 0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0100	-5
0111 -8 1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0101	-6
1000 -9 1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0110	-7
1001 -10 1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	0111	-8
1010 -11 1011 -12 1100 -13 1101 -14 1110 -15 1111 -16	1000	-9
1011 -12 1100 -13 1101 -14 1110 -15 1111 -16		-10
1100 -13 1101 -14 1110 -15 1111 -16		
1101 -14 1110 -15 1111 -16	1011	-12
1110 -15 1111 -16		
1111 -16		A A
	1110	-15

When negative value is over the programmed threshold (NCTH), the channel will be calibrated forcibly. If negative value is detected over threshold for NDTH times continually, the channel will be calibrated forcibly.

18h Wake Up Threshold Register

Bit	D7	D6:D0
Name	-	WTH[6:0]
Default	0	000 0101

Wake up threshold, the range is 0 - 127

19h Scan Voltage Register

Bit	D7	D6:D4	D3	D2:D0
Name	VTH	ZERO_Time [2:0]	REFSEL	-
Default	0	111	0	000

VTH Scan Voltage

If REFSEL = 0

O CREF charges to 0.9V
CREF charges to 1.35V

If REFSEL = 1

0 C_{REF} charges to VDDH/21 C_{REF} charges to VDDH*3/4

ZERO_Time [2:0] Discharge time of CREF

8 us 000 001 16 us 010 24 us 32 us 011 100 40 us 48 us 101 110 56 us 111 64 us

REFSEL C_{REF} charges source selection
0 The C_{REF} charging source is 1.8V
1 The C_{REF} charging source is VDDH

1Ah Scan Frequency Register 1

Bit	D7:D4	D3:D0
Name	SSF[3:0]	FSF[3:0]
Default	0111	0011

FSF[3:0]	First scan frequency
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ

1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5M HZ
SSF[3:0]	Second scan frequency
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5M HZ

1Bh Scan Frequency Register 2

Bit	D7:D4	D3:D0
Name	OSF[3:0]	TSF[3:0]
Default	1011	1000

TSF[3:0]	Third scan frequency
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ
1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5M HZ
OSF[3:0]	Fourth scan frequency
0000	8 MHZ
0001	4 MHZ
0010	2.67 MHZ
0011	2 MHZ
0100	1.6 MHZ
0101	1.33 MHZ
0110	1.14 MHZ
0111	1 MHZ
1000	0.89 MHZ
1001	0.8 MHZ

1010	0.73 MHZ
1011	0.67 MHZ
1100	0.62 MHZ
1101	0.57 MHZ
1110	0.53 MHZ
1111	0.5M HZ

20h~2Ah KEY0~KEY10 Variation Value Register (Read Only)

Bit	D7	D6:D0
Name	SIGN	KEYx_ΔCOUNT[6:0]
Default	0	000 0000

SIGB Sign bit 0 Positive Negative 1

KEYx_ΔCOUNT[6:0] **Key Value Count**

30h~3Ah KEY0~KEY10 Threshold Set Register

Bit	D7	D6:D0
Name	-	KEYx_TH[6:0]
Default	0	011 0000

KEYx_TH[6:0] Key Threshold 0~127

40h, 42h ... 52h, 54h KEY0~KEY10 Calibration Low Byte Register (Read Only)

Bit	D7:D0
Name	KEY0_CAL_L
Default	0000 0000

41h, 43h ... 53h, 55h KEY0~KEY10 Calibration High Byte Register (Read only)

Bit	D7:D0
Name	KEY0_CAL_H
Default	0000 0000

60h GPIO Enable Register 1

Bit	D7:D0
Name	GPIOEN[7:0]
Default	0000 0000

61h GPIO Enable Register 2

Bit	D7:D3	D2:D0
Name	-	GPIOEN[10:8]
Default	0000 0	000

GPIOEN[10:0] Enable KEY0~KEY10 GPIO Mode

Disable Touch key channel enter GPIO Mode

1 Enable Touch key channel enter GPIO Mode; A channel cannot be a Touch key or Slider

sensor while it's was set to be a GPIO.

62h GPIO Value Register 1

Bit	D7:D0
Name	GPV[7:0]
Default	0000 0000

63h GPIO Value Register 2

Bit	D7:D3	D2:D0
Name	-	GPV[10:8]
Default	0000 0	000

GPV[10:0]
 62h and 63h registers define the KEY0~KEY10 GPIO values.
 GPIO = 0, if the related Enable GPIO Register 1/2 is enabled.
 GPIO = 1, if the related Enable GPIO Register 1/2 is enabled.

64h Slider Enable Register 1

Bit	D7:D0
Name	SLEN[7:0]
Default	1110 0000

65h Slider Enable Register 2

Bit	D7:D3	D2:D0
Name	-	SLEN[10:8]
Default	0000 0	111

SLEN[10:0] Enable KEY0~KEY10 Slider Mode

O Disable Touch key channel enter Slider Mode

1 Enable Touch key channel enter Slider Mode; A channel cannot be a Touch key sensor or

GPIO while it's was set to be a Slider.

A slider is composed of six Touch Key sensors. Users can use a GUI to select certain Touch Key sensors.

66h Slider Status Register1 (Read Only)

Bit	D7	D6:D0	
Name	ACT	Initial position[6:0]	
Default	0	000 0000	

ACT Indicator.

0 No action

1 Activated

Initial position[6:0] The initial position of slider

67h Slider Status Register2 (Read Only)

Bit	D7	D6:D0	
Name	Direction	End position[6:0]	
Default	0	000 0000	

Direction Direction of slider.
0 Rotated to left.
1 Rotated to right

End position[6:0] The end position of slider

68h Slider Status Register3

Bit	D7	D6:D0	
Name	STA	Duration[6:0]	
Default	1	000 0000	

STA Status of slider. 0 Wheel mode Slider mode

Duration[6:0] Duration from initial position to end position

69h Key position 1-2 of Slider1

Bit	Bit D7:D4	
Name	S1K1[3:0]	S1K2[3:0]
Default	0101	0110

S1Kx[3:0] This register shows which Key represents Slider1 the first Key, S1K1, and the second Key S1K2.

6Ah Key position 3-4 of Slider1

Bit	D7:D4	D3:D0
Name	S1K3[3:0]	S1K4[3:0]
Default	0111	1000

S1Kx[3:0] This register shows which Key represents Slider1 the third Key S1K3, and the fourth key S1K4.

6Bh Key position 5-6 of Slider1

Bit	D7:D4	D3:D0
Name	S1K5[3:0]	S1K6[3:0]
Default	1001	1010

S1Kx[3:0] This register shows which Key represents Slider1 the fifth Key S1K5, and the sixth key S1K6.

6Fh Version Control Register (Read Only)

Bit	D7:D6	D5:D3	D2:D0
Name	VCR1[1:0]	VCR2[2:0]	VCR3[2:0]
Default	01	000	000

VCRx This register shows the firmware version.

VCR1[1:0] The major modification that cannot compatible with previous version VCR2[2:0] Added functions and the functions should be backward compatible. VCR3[2:0] Shows the bug modification and the revision should be backward compatible.

70h~75h Slider Calibration Register 1-6

Bit	D7:D0
Name	SCRKx
Default	0001 0101

SCRKx[3:0] These registers are used for slider calibration. The slider is composed of six touch keys. The range of x is from 1 to 6 which means as key 1 to key 6.

IS31FL3800 A Division of [55]

76h Spread Spectrum Configuration Register

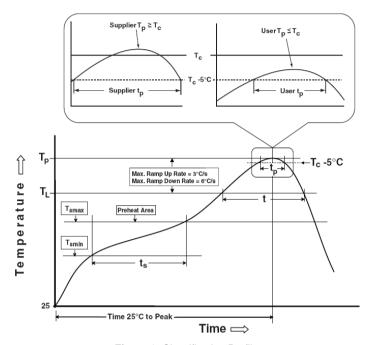
Bit	D7:D4	D3:D2	D1:D0
Name	SSR[3:0]	SSA[1:0]	-
Default	0000	00	-
SSC	Spread spectrum configuration register. Spread spectrum is a technique by which electromagnetic energy produced over a particular bandwidth is spread in the frequency domain. Two parameters are listed as follows:		
SSR[3:0]	SSR[3:0] defines the spread spectrum sweep rate. If the $SCR[3:0] = 0$, then spread spectrum is disabled.		
SSA[1:0] 11	SSA[1:0] defines the amplitude of spread spectrum frequency change. The frequency is changed by adding SSA[1:0] range to the actual internal OSC control register. +/- 32		

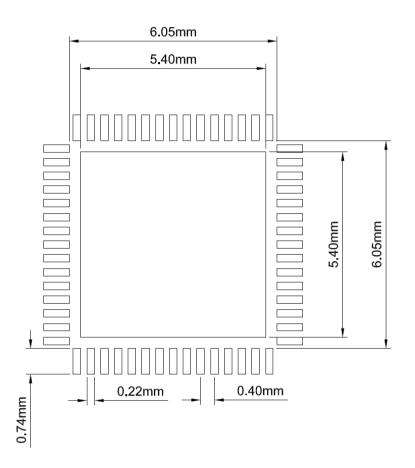
CLASSIFICATION REFLOW PROFILES

10 01 00 +/- 16 +/- 8

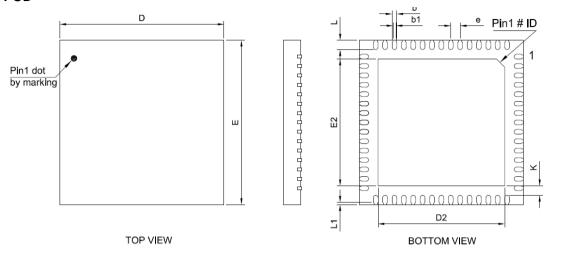
+/- 4

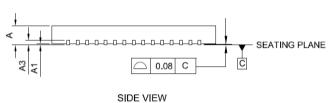
Profile Feature	Pb-Free Assembly	
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds	
Average ramp-up rate (Tsmax to Tp) Liquidous temperature (TL)	3°C/second max. 217°C	
Time at liquidous (tL) Peak package body temperature (Tp)*	60-150 seconds Max 260°C	
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds	
Average ramp-down rate (Tp to Tsmax)	6°C/second max.	
Time 25°C to peak temperature	8 minutes max.	




Figure 9 Classification Profile

PACKAGE INFORMATION


QFN-60
RECOMMENDED LAND PATTERN



POD

SYM	MILLIMETER		
BOL	MIN	NOM	MAX
Α	0.70	0.75	0.80
A1	0.00	0.02	0.05
АЗ	0	.20RE	F
b1	0.	125R	EF
b	0.15	0.20	0.25
D	6.90	7.00	7.10
Е	6.90	7.00	7.10
D2	4.95	-	5.55
E2	4.95	-	5.55
L	0.30	0.40	0.50
L1	0.10REF		
е	0.40BSC		
K	0.20	-	-

NOTE:

- 1. CONTROLLING DIMENSION: MM
- 2. REFERENCE DOCUMENT: JEDEC MO-220
- 3. THE PIN'S SHARP AND THERMAL PAD SHOWS DIFFERENT SHAPE AMONG DIFFERENT FACTORIES.