

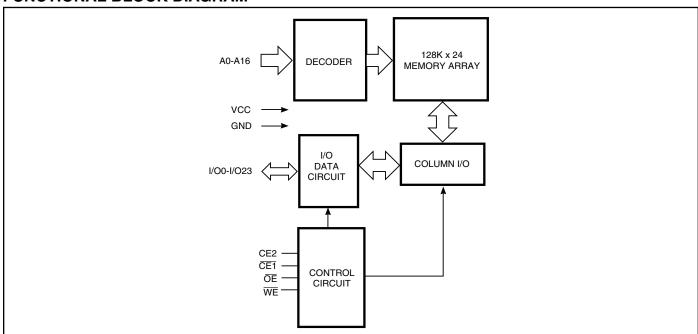
128K x 24 HIGH-SPEED CMOS STATIC RAM WITH 3.3V SUPPLY

SEPTEMBER 2020

FEATURES

- · High-speed access time: 8, 10 ns
- · High-performance, low-power CMOS process
- · TTL compatible interface levels
- Single power supply VDD 3.3V ± 5% for 8ns
 VDD 2.4V to 3.6V for 10ns
- Fully static operation: no clock or refresh required
- · Three state outputs
- Available in 119-pin Ball Grid Array (BGA) package
- · Industrial temperature available
- · Lead-free available

DESCRIPTION


The ISSI IS61WV12824 is a high-speed, static RAM organized as 131,072 words by 24 bits. It is fabricated using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 8 ns with low power consumption.

When CE1 is HIGH and CE2 is LOW (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs, $\overline{CE1}$, CE2 and \overline{OE} . The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

The IS61WV12824 is packaged in the JEDEC standard 119-pin BGA.

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2020 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATION - 119-pin BGA

	1	2	3	4	5	6	7
Α	NC	A11	A14	A15	A16	A4	NC
В	NC	A12	A13	CE1	A5	А3	NC
С	I/O16	NC	CE2	NC	NC	NC	I/O0
D	I/O17	Vcc	GND	GND	GND	Vcc	I/O1
Е	I/O18	GND	Vcc	GND	Vcc	GND	1/02
F	I/O19	Vcc	GND	GND	GND	Vcc	I/O3
G	I/O20	GND	Vcc	GND	Vcc	GND	I/O4
Н	I/O21	Vcc	GND	GND	GND	Vcc	I/O5
J	Vcc	GND	Vcc	GND	Vcc	GND	Vcc
K	1/022	Vcc	GND	GND	GND	Vcc	1/06
L	I/O23	GND	Vcc	GND	Vcc	GND	1/07
М	I/O12	Vcc	GND	GND	GND	Vcc	I/O8
N	I/O13	GND	Vcc	GND	Vcc	GND	I/O9
Р	I/O14	Vcc	GND	GND	GND	Vcc	I/O10
R	I/O15	NC	NC	NC	NC	NC	I/O11
Т	NC	A10	A8	WE	A0	A1	NC
U	NC	A9	A7	ŌĒ	A6	A2	NC

PIN DESCRIPTIONS

A0-A16	Address Inputs
I/O0-I/C	023 Data Inputs/Outputs
CE1	Chip Enable Input LOW
CE2	Chip Enable Input HIGH
ŌĒ	Output Enable Input
WE	Write Enable Input
NC	No Connection
Vcc	Power
GND	Ground

IS61WV12824

TRUTH TABLE

Mode	WE	CE1	CE2	ŌĒ	I/O0-I/O23	Vcc Current
Not Selected	Х	Н	Х	Х	High-Z	ISB1, ISB2
	Χ	Χ	L	Χ		
Output Disabled	Н	L	Н	Н	High-Z	Icc
Read	Н	L	Н	L	Dout	Icc
Write	L	L	Н	Х	Din	Icc

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter		Value	Unit
Vcc	Power Supply Voltage Relative	to GND	-0.5 to 5.0	V
VTERM	Terminal Voltage with Respect	ninal Voltage with Respect to GND		V
Тѕтс	Storage Temperature		-65 to + 150	°C
TBIAS	Temperature Under Bias:	Com.	-10 to + 85	°C
		Ind.	-45 to + 90	°C
Рт	Power Dissipation		2.0	W
Іоит	DC Output Current		±20	mA

Note:

OPERATING RANGE

Range	Ambient Temperature	Vcc (8 ns)	Vcc (10 ns)	
Commercial	0°C to +70°C	$3.3V \pm 5\%$	2.4V ~ 3.6V	
Industrial	-40°C to +85°C	3.3V ± 5%	2.4V ~ 3.6V	

Note:

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} When operated in the range of $2.4V \sim 3.6V$, the device meets 10ns. When operated in the range of $3.3V \pm 5\%$, the device meets 8ns.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$VDD = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Voн	Output HIGH Voltage	VDD = Min., IOH = -4.0 mA	2.4	_	V
VoL	Output LOW Voltage	VDD = Min., IOL = 8.0 mA	_	0.4	V
ViH	Input HIGH Voltage		2	VDD + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.8	V
ILI	Input Leakage	$GND \leq Vin \leq Vdd$	-2	2	μA
ILO	Output Leakage	$GND \leq Vout \leq Vdd$, Outputs Disabled	-2	2	μΑ

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

VDD = 2.4V-3.6V

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	VDD = Min., IOH = -1.0 mA	1.8	_	V
VoL	Output LOW Voltage	VDD = Min., IOL = 1.0 mA	_	0.4	V
VIH	Input HIGH Voltage		2.0	VDD + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	8.0	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	-2	2	μΑ
lLO	Output Leakage	$GND \leq Vout \leq Vdd$, Outputs Disabled	-2	2	μΑ

Note:

^{1.} VIL (min.) = -0.3V DC; VIL (min.) = -2.0V AC (pulse width 2.0 ns). Not 100% tested. VIH (max.) = VDD + 0.3V DC; VIH (max.) = VDD + 2.0V AC (pulse width 2.0 ns). Not 100% tested.

^{1.} VIL (min.) = -0.3V DC; VIL (min.) = -2.0V AC (pulse width 2.0 ns). Not 100% tested.
VIH (max.) = VDD + 0.3V DC; VIH (max.) = VDD + 2.0V AC (pulse width 2.0 ns). Not 100% tested.

POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

				-8	ns	-10	ns	
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
Icc	Vcc Dynamic Operating	Vcc = Max.,	Com.	_	110	_	90	mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	_	115	_	95	
ISB1	TTL Standby Current	Vcc = Max.,	Com.	_	30	_	30	mA
	(TTL Inputs)	$\frac{V_{IN} = V_{IH} \text{ or } V_{IL}, f = max.}{CE1} \ge V_{IH}, CE2 \le V_{IL}$	Ind.	_	35	_	35	
IsB2	CMOS Standby	Vcc = Max.,	Com.	_	20	_	20	mA
	Current (CMOS Inputs)		Ind. 2V,	_	25	_	25	

Note:

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Note:

AC TEST CONDITIONS

Parameter	Unit (2.4V-3.6V)	Unit (3.3V + 5%)	
Innut Dulas Laval	<u> </u>	· - /	
Input Pulse Level	0.4V to VDD-0.3V	0.4V to VDD-0.3V	
Input Rise and Fall Times	1.5ns	1.5ns	
Input and Output Timing	VDD/2	$V_{DD}/2 + 0.05$	
and Reference Level (VRef)			
Output Load	See Figures 1 and 2	See Figures 1 and 2	

ACTEST LOADS

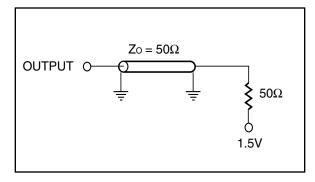


Figure 1

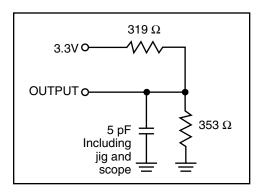


Figure 2

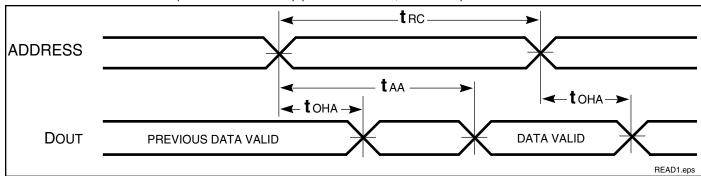
^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{1.} Tested initially and after any design or process changes that may affect these parameters.

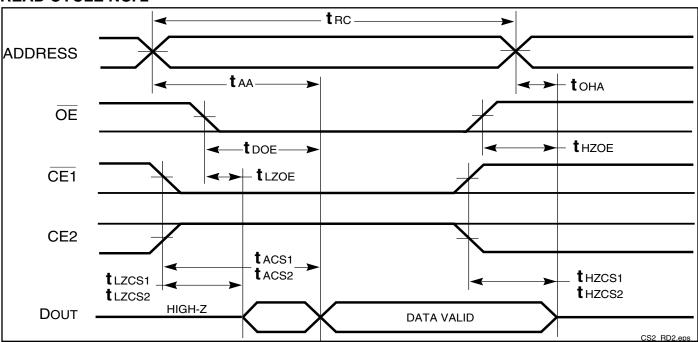
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-	8		-10	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	8	_	10	_	ns
taa	Address Access Time	_	8	_	10	ns
tона	Output Hold Time	2.5	_	2.5	_	ns
tace	CE1 Access Time	8	_	_	10	ns
tACE2	CE2 Access Time					
t DOE	OE Access Time	_	5.5	_	6.5	ns
thzoe(2)	OE to High-Z Output	0	3	0	4	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	ns
thzce(2)	CE1 to High-Z Output	0	3	0	4	ns
thzce2(2)	CE2 to High-Z Output					
tlzce ⁽²⁾	CE to Low-Z Output CE2 to Low-Z Output	3	_	3	_	ns

Notes:


^{1.} Test conditions assume signal transition times of 2 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±200 mV from steady-state voltage. Not 100% tested.



AC WAVEFORMS

READ CYCLE NO. 1(1,2) (Address Controlled) ($\overline{CE1} = \overline{OE} = VIL; CE2 = VIH)$

READ CYCLE NO. 2^(1,3)

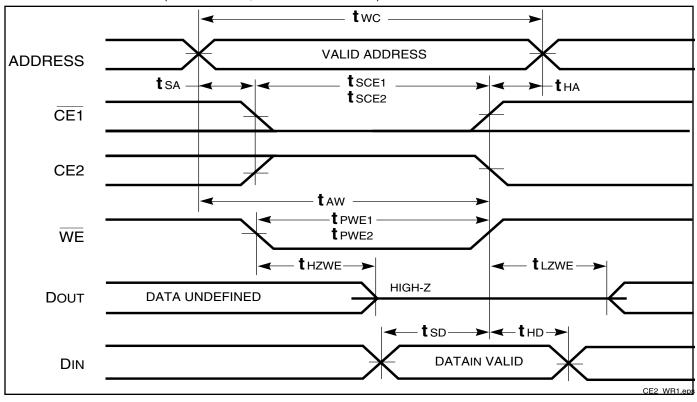
- Notes:
 1. WE is HIGH for a Read Cycle.
 2. The device is continuously selected. OE, CE1 = VIL. CE2 = VIH.
- 3. Address is valid prior to or coincident with $\overline{\text{CE1}}$ LOW and CE2 HIGH transition.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

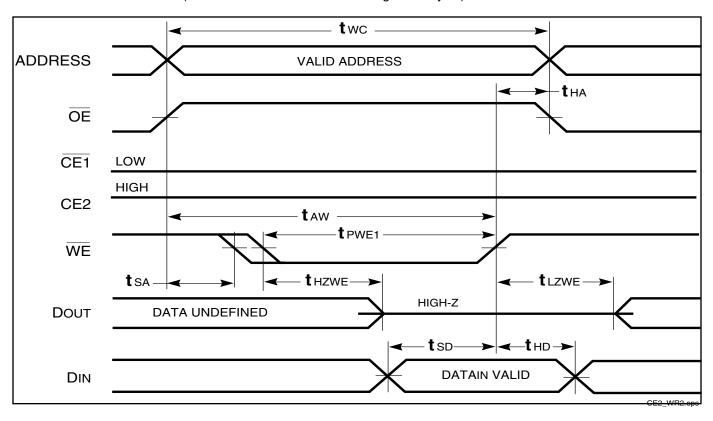
			-8	-10	
Symbol	Parameter	Min.	Max.	Min. Max.	Unit
twc	Write Cycle Time	8	_	10 —	ns
tsce	CE1 to Write End	6.5	_	8 —	ns
tsce2	CE2 to Write End	6.5	_	8 —	
taw	Address Setup Time to Write End	6.5	_	8 —	ns
tha	Address Hold from Write End	0	_	0 —	ns
t sa	Address Setup Time	0	_	0 —	ns
tpwe1	WE Pulse Width (OE = HIGH)	6.5	_	8 —	ns
tPWE2	WE Pulse Width (OE = LOW)	8	_	10 —	ns
tsp	Data Setup to Write End	5	_	6 —	ns
tho	Data Hold from Write End	0	_	0 —	ns
thzwe ⁽²⁾	WE LOW to High-Z Output	_	3.5	– 5	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	2		2 —	ns

Notes:

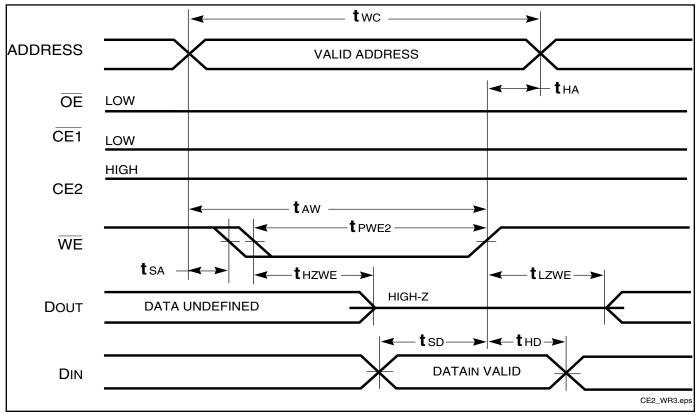
^{1.} Test conditions assume signal transition times of 1.5 ns or less, timing reference levels of VDD/2, input pulse levels of 0.4v to V_{DD}-0.3V and output loading specified in Figure 1.


2. Tested with the load in Figure 2. Transition is measured ±200 mV from steady-state voltage. Not 100% tested.

3. The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to


initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

WRITE CYCLE NO. 1 (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)



WRITE CYCLE NO. 2⁽¹⁾ ($\overline{\text{WE}}$ Controlled: $\overline{\text{OE}}$ = HIGH during Write Cycle)

WRITE CYCLE NO. 3(1) (WE Controlled: OE IS LOW DURING WRITE CYLE)

Note:

1. The internal Write time is defined by the overlap of $\overline{CE1}$ = LOW, CE2 = HIGH and \overline{WE} = LOW. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The Data Input Setup and Hold timing is referenced to the rising or falling edge of the signal that terminates the Write.

ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
8	IS61WV12824-8BL	Ball Grid Array, Lead-free
10	IS61WV12824-10BL	Ball Grid Array, Lead-free