

ISL54200EVAL1Z

Evaluation Board User's Manual

AN1330 Rev 0.00 June 13, 2007

Description

The ISL54200EVAL1Z evaluation board is designed to provide a quick and easy method for evaluating the ISL54200 USB Switch IC.

The ISL54200 device is a unique IC. To use this evaluation board properly requires a thorough knowledge of the operation of the IC. Refer to the data sheet for an understanding of the functions and features of the device. Studying the device's truth-table along with its pin-out diagram on page 2 of the data sheet is the best way to get a quick understanding of how the part works.

A picture of the main evaluation board is shown in Figure 1. The ISL54200 μ TQFN IC is soldered onto the evaluation board. It is located in the center of the board and is designated as U1.

The evaluation board contains USB connectors to allow the user to easily interface with the IC to evaluate its functions, features, and performance. For example, with the board properly powered and configured as shown in Figure 2 you can control the logic pins, IN and EN, to switch between a high-speed device and a full-speed device while connected to a single USB host (computer).

In a typical application, the ISL54200 dual SPDT device is used to select between two different USB transceiver sections of a media player. Logic control from a $\mu processor$ determines which section to connect to the computer. To change channels, the following sequence would possibly be followed:

- A signal would be sent to take the EN pin Low, to open all switches. The off-isolation of the ISL54200 device would allow the present active channel to properly disconnect from the computer.
- 2. The IN pin would be set to select the other USB channel.
- The EN pin would then be taken High to close the switches to make the connection between the computer and the other USB section of the player.

This application note will guide the user through the process of configuring and using the evaluation board to evaluate the ISL54200 device.

Features

- · Standard USB Connectors
- Standard Banana Jacks for Power, Ground, V_{BUS} and Logic Connections
- Jumpers to allow a device to be powered through the Host Controller
- Convenient Test Points and Connections for Test Equipment

Picture of Evaluation Board (Top View)

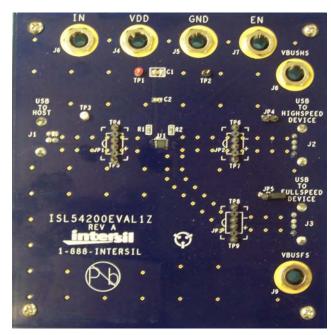


FIGURE 1. ISL54200EVAL1Z EVALUATION BOARD

RENESAS

Board Architecture/Layout

Basic Layout of Evaluation Board

The basic layout of the main board is as follows: Refer to Figure 1.

- Power and Ground connections are at the top of the board at banana jacks (J4 and J5).
- Logic connections, IN and EN, are at the top of the board at banana jacks (J6 and J7).
- USB connection to an upstream host controller (Computer) is made at J1, located on the left under-side of the board.
- USB connections to downstream USB devices are made at connectors J2 and J3, located on right under-side of the board.
- V_{BUS} voltage for the USB devices are made through banana jacks J8 and J9. Optionally, V_{BUS} for the USB devices can be connected to the Host Controller V_{BUS} through jumpers JP4 and JP5.
- Located in the center of the board is the ISL54200 IC (U1).
 The eval board has a pin 1 dot, to show how the IC should be oriented on to the evaluation board. The IC pin 1 indicator dot needs to be aligned with the evaluation board pin 1 dot indicator.

IC Power Supply

A DC power supply connected at banana jacks J4 (VDD) and J5 (GND) provides power to the ISL54200 IC. The IC requires a 3.3VDC to 5VDC power supply for proper operation. The power supply should be capable of delivering $100\mu\text{A}$ of current.

V_{BUS} Power Supply

A DC power supply connected at banana jacks J8 (VBUSHS) and J9 (VBUSFS) provides the V_{BUS} voltage required by the USB devices. The devices require a DC power supply in the range of 4.4V to 5.25V for proper operation. The power supply should be capable of delivering 100 μ A of current.

The J8 banana jack is connected to the VBUS pin of the J2 "A" type USB receptacle. The J9 banana jack is connected to the VBUS pin of the J3 "A" type receptacle.

The V_{BUS} voltage can be provide from the USB host controller (computer) by installing a jumper at either JP4 or JP5.

With a jumper at JP4, the V_{BUS} voltage from J1 gets routed to the J2 connector. With this jumper installed, no DC supply should be connected at the J8 (VBUSHS) banana jack.

With a jumper at JP5, the V_{BUS} voltage from J1 gets routed to the J3 connector. With this jumper installed, no DC supply should be connected at the J9 (VBUSFS) banana jack.

Logic Control

The state of the ISL54200 device is determined by the voltage at the IN pin and the EN pin. Access to the IN pin is through the banana jack J6 (IN) and access to the EN pin is through the banana jack J7 (EN).

If IN is driven Low (to ground) and EN = High (>1.4V), the full-speed (FS) switches will be ON. In this state, the USB host controller (computer) connected at J1 will be connected through to the USB device connected at J3 and data will be able to be transmitted between the computer and the device.

If IN is driven High (>1.4V) and EN = High (>1.4V), the high-speed (HS) switches will be ON. In this state, the USB host controller (computer) connected at J1 will be connected through to the USB device connected at J2 and data will be able to be transmitted between the computer and the device.

If EN = Low (driven to ground or floating), all switches will be OFF. Neither device will be connected through to the host controller.

In a typical application, the ISL54200 dual SPDT device is used to select between two different USB transceiver sections of a media player. Logic control from a $\mu processor$ determines which section to connect to the computer. To change channels, the following sequence would possibly be followed:

- A signal would be sent to take the EN pin Low, to open all switches. The off-isolation of the ISL54200 device would allow the present active channel to properly disconnect from the computer.
- Then the IN pin would be set to select the other USB channel.
- The EN pin would then be taken High to close the switches to make the connection between the computer and the other USB section of the player.

USB Connections

A "B" type USB receptacle labeled "USB TO HOST" (J1) is located on the left under-side of the board. This receptacle should be connected, using a standard USB cable, to the upstream USB host controller, which is usually a PC computer or hub. When this connection is made, the ISL54200 device will connect the computer through to the USB device determined by the voltage at the IN logic control pin.

An "A" type USB receptacle labeled "USB TO HIGHSPEED DEVICE" (J2) is located on the right under-side of the board. The USB device can be plugged directly into this receptacle or through a standard USB cable.

An "A" type USB receptacle labeled "USB TO FULLSPEED DEVICE" (J3) is located on the right under-side of the board. The USB device can be plugged directly into this receptacle or through a standard USB cable.

The USB switches are bi-directional, which allows the host (computer) and downstream USB device to both send and receive data.

Full-Speed Switches

The two FSx switches (FSD1, FSD2) are bi-directional switches that can pass rail-to-rail signals. When powered with a 3.3V supply, these switches have a nominal r_{ON} resistance of 7Ω over the signal range of 0V to 3.3V. They were

specifically designed to pass USB full-speed (12Mbps) differential signals and meet the USB 2.0 full-speed signal quality specifications.

The FSx switches can also pass USB high speed signals (480Mbps) but do not quite meet the USB 2.0 high speed signal quality eye diagram compliance requirement.

The maximum signal range for the FSx switches is from -1.5V to V_{DD} . The signal voltage should not be allowed to exceed the V_{DD} voltage rail or go below ground by more than -1.5V.

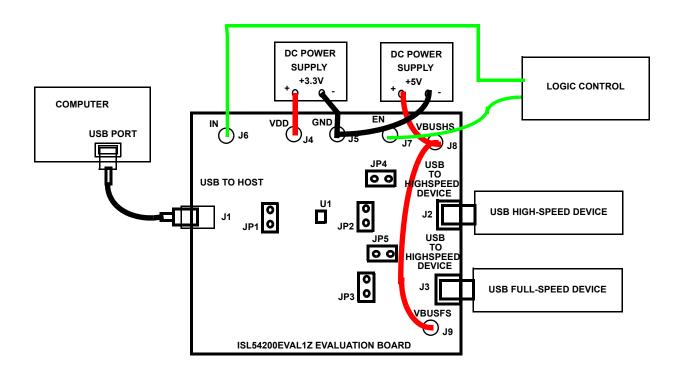
When operated with a 3.3V to 3.6V supply, the FSx switches are active (turned ON) whenever the IN logic control voltage is \leq 0.5V and the EN logic voltage is \geq 1.4V.

High-Speed Switches

The two HSx switches (HSD2, HSD1) are bi-directional switches that can pass rail-to-rail signals. When powered with a 3.3V supply, these switches have a nominal r_{ON} of 4.5Ω over the signal range of 0V to 400mV with a r_{ON} flatness of 0.4Ω . The r_{ON} matching between the HSD1 and HSD2 switches over this signal range is only 0.01Ω ensuring minimal impact by the switches to USB high speed signal transitions. As the signal level increases, the r_{ON} switch resistance increases. At signal level of 3.3V the switch resistance is nominally 20Ω .

The HSx switches were specifically designed to pass USB 2.0 high-speed (480Mbps) differential signals typically in the range of 0V to 400mV. They have low capacitance and high bandwidth to pass the USB high-speed signals with minimum edge and phase distortion to meet USB 2.0 high speed signal quality specifications.

The HSx switches can also pass USB full-speed signals (12Mbps) with minimal distortion and meet all the USB requirements for USB 2.0 full-speed signaling.


The maximum signal range for the HSx switches is from -1.5V to V_{DD} . The signal voltage should not exceed the V_{DD} voltage rail or go below ground by more than -1.5V.

The HSx switches are active (turned ON) whenever the IN voltage is \geq 1.4V and the EN logic voltage \geq 1.4V when operated with a 3.3V to 3.6V supply.

Board Component Definitions

DESIGNATOR	DESCRIPTION
U1	ISL54200IRUZ IC
J1	"B" type USB Receptacle
J2, J3	"A" type USB Receptacle
J4	VDD Positive Connection
J5	VDD Negative Connection
J6	IN Logic Control
J7	EN Logic Control
J8	VBUS Voltage for Highspeed Device
J9	VBUS Voltage for Fullspeed Device
JP1, JP2, JP3	D-/D+ Differential Probe Connection
JP4, JP5	Host Controller VBUS Jumper

Note: Disconnect the +5V power supply connected to J8 and J9 when powering through Host Controller Bus.

FIGURE 2. BASIC EVALUATION TEST SETUP BLOCK DIAGRAM

Using The Board (Refer to Figure 2)

Lab Equipment

The equipment, external supplies and signal sources needed to operate the board are listed below:

- 1. +3.3V to +5V DC Power Supply
- 2. +5V DC Power Supply
- High-Speed USB device (i.e. USB memory stick, MP3 Player, etc.)
- Full-Speed USB device (i.e. USB memory stick, Mouse, etc.)
- 5. Computer with 2.0 High-Speed USB port
- 6. Standard USB cable
- 7. Logic Controller

Initial Board Setup Procedure

- Attach the main evaluation board to a DC power supply at J4 (VDD) and J5 (GND). Positive terminal at J4 and negative terminal at J5. The supply should be capable of delivering 3.3V to 5V and 100μA of current. Set the supply voltage to 3.3V.
- Connect a DC power supply at J8 (VBUSHS) and J9 (VBUSFS). Positive terminal at J8 and J9 and negative terminal at J5 (GND). The supply should be capable of delivering 5V and 100mA of current. Set the supply voltage to 5V. This supply will provide 5V at the V_{BUS} pin of the USB "A" type connectors, J8 and J9.

- Connect a high-speed USB device at USB connector J2 and connect a full-speed USB device at USB connector J3. These connectors are located on the right under-side of the evaluation board.
- 4. Drive the EN control pin LOW to open all switches of the ISL54200 IC.
- Connect USB cable from host (PC computer) to the USB "B" type receptacle, J1 (USB TO HOST).

Full-Speed Device Operation

- 1. Apply a logic LOW to the IN pin.
- 2. Apply a logic HIGH to the EN pin.
- You should now be able to send and receive data between the computer and the full-speed USB device.
- To disconnect the full-speed device from the computer take the EN pin LOW.

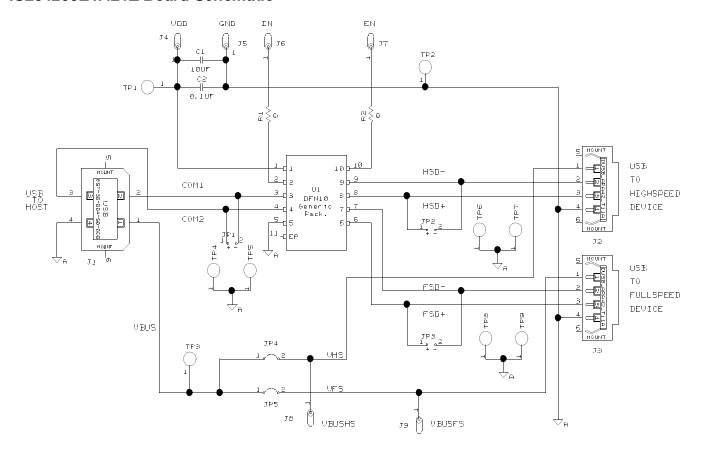
High-Speed Device Operation

- 1. Apply a logic HIGH to the IN pin.
- 2. Apply a logic HIGH to the EN pin
- You should now be able to send and receive data between the computer and high-speed USB device.

Test Points

The board has various test points for ease of connecting probes to make measurements. The test points available are described in Table 1.

TABLE 1.


DESIGNATOR	DESCRIPTION
TP1	V _{DD} test point
TP2, TP4, TP5, TP6, TP7, TP8, TP9	Ground Test Point
TP3	VBUS Test Point From Computer
JP1	D-/D+ Differential Probe Connection - COM Side of Switch
JP2	D-/D+ Differential Probe Connection - High-Speed Device Side of Switch
JP3	D-/D+ Differential Probe Connection - Full-speed Device Side of Switch

You can observe the D- and D+ USB signal of the full-speed channel on an oscilloscope or other test equipment by connecting a differential probe at JP3.

You can observe the D- and D+ USB signal of the high-speed channel on an oscilloscope or other test equipment by connecting a differential probe at JP2.

You can observe the D- and D+ USB signal at the COM side of the switch on an oscilloscope or other test equipment by connecting a differential probe at JP1.

ISL54200EVAL1Z Board Schematic

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system, Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- e contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited Dukes Meadow, Milliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +44-1628-651-700, Fax: +44-1628-651-804

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics Europe GmbH

Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0898, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amco

Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangiae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

ISL54200EVAL1Z

Evaluation Board User's Manual

AN1330 Rev 0.00 June 13, 2007

Description

The ISL54200EVAL1Z evaluation board is designed to provide a quick and easy method for evaluating the ISL54200 USB Switch IC.

The ISL54200 device is a unique IC. To use this evaluation board properly requires a thorough knowledge of the operation of the IC. Refer to the data sheet for an understanding of the functions and features of the device. Studying the device's truth-table along with its pin-out diagram on page 2 of the data sheet is the best way to get a quick understanding of how the part works.

A picture of the main evaluation board is shown in Figure 1. The ISL54200 μ TQFN IC is soldered onto the evaluation board. It is located in the center of the board and is designated as U1.

The evaluation board contains USB connectors to allow the user to easily interface with the IC to evaluate its functions, features, and performance. For example, with the board properly powered and configured as shown in Figure 2 you can control the logic pins, IN and EN, to switch between a high-speed device and a full-speed device while connected to a single USB host (computer).

In a typical application, the ISL54200 dual SPDT device is used to select between two different USB transceiver sections of a media player. Logic control from a $\mu processor$ determines which section to connect to the computer. To change channels, the following sequence would possibly be followed:

- A signal would be sent to take the EN pin Low, to open all switches. The off-isolation of the ISL54200 device would allow the present active channel to properly disconnect from the computer.
- 2. The IN pin would be set to select the other USB channel.
- The EN pin would then be taken High to close the switches to make the connection between the computer and the other USB section of the player.

This application note will guide the user through the process of configuring and using the evaluation board to evaluate the ISL54200 device.

Features

- · Standard USB Connectors
- Standard Banana Jacks for Power, Ground, V_{BUS} and Logic Connections
- Jumpers to allow a device to be powered through the Host Controller
- Convenient Test Points and Connections for Test Equipment

Picture of Evaluation Board (Top View)

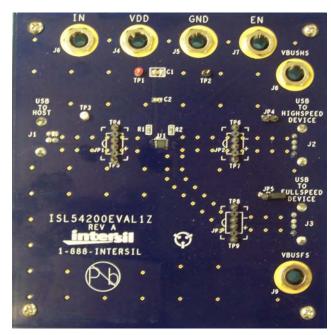


FIGURE 1. ISL54200EVAL1Z EVALUATION BOARD

RENESAS

Board Architecture/Layout

Basic Layout of Evaluation Board

The basic layout of the main board is as follows: Refer to Figure 1.

- Power and Ground connections are at the top of the board at banana jacks (J4 and J5).
- Logic connections, IN and EN, are at the top of the board at banana jacks (J6 and J7).
- USB connection to an upstream host controller (Computer) is made at J1, located on the left under-side of the board.
- USB connections to downstream USB devices are made at connectors J2 and J3, located on right under-side of the board.
- V_{BUS} voltage for the USB devices are made through banana jacks J8 and J9. Optionally, V_{BUS} for the USB devices can be connected to the Host Controller V_{BUS} through jumpers JP4 and JP5.
- Located in the center of the board is the ISL54200 IC (U1).
 The eval board has a pin 1 dot, to show how the IC should be oriented on to the evaluation board. The IC pin 1 indicator dot needs to be aligned with the evaluation board pin 1 dot indicator.

IC Power Supply

A DC power supply connected at banana jacks J4 (VDD) and J5 (GND) provides power to the ISL54200 IC. The IC requires a 3.3VDC to 5VDC power supply for proper operation. The power supply should be capable of delivering $100\mu\text{A}$ of current.

V_{BUS} Power Supply

A DC power supply connected at banana jacks J8 (VBUSHS) and J9 (VBUSFS) provides the V_{BUS} voltage required by the USB devices. The devices require a DC power supply in the range of 4.4V to 5.25V for proper operation. The power supply should be capable of delivering 100 μ A of current.

The J8 banana jack is connected to the VBUS pin of the J2 "A" type USB receptacle. The J9 banana jack is connected to the VBUS pin of the J3 "A" type receptacle.

The V_{BUS} voltage can be provide from the USB host controller (computer) by installing a jumper at either JP4 or JP5.

With a jumper at JP4, the V_{BUS} voltage from J1 gets routed to the J2 connector. With this jumper installed, no DC supply should be connected at the J8 (VBUSHS) banana jack.

With a jumper at JP5, the V_{BUS} voltage from J1 gets routed to the J3 connector. With this jumper installed, no DC supply should be connected at the J9 (VBUSFS) banana jack.

Logic Control

The state of the ISL54200 device is determined by the voltage at the IN pin and the EN pin. Access to the IN pin is through the banana jack J6 (IN) and access to the EN pin is through the banana jack J7 (EN).

If IN is driven Low (to ground) and EN = High (>1.4V), the full-speed (FS) switches will be ON. In this state, the USB host controller (computer) connected at J1 will be connected through to the USB device connected at J3 and data will be able to be transmitted between the computer and the device.

If IN is driven High (>1.4V) and EN = High (>1.4V), the high-speed (HS) switches will be ON. In this state, the USB host controller (computer) connected at J1 will be connected through to the USB device connected at J2 and data will be able to be transmitted between the computer and the device.

If EN = Low (driven to ground or floating), all switches will be OFF. Neither device will be connected through to the host controller.

In a typical application, the ISL54200 dual SPDT device is used to select between two different USB transceiver sections of a media player. Logic control from a $\mu processor$ determines which section to connect to the computer. To change channels, the following sequence would possibly be followed:

- A signal would be sent to take the EN pin Low, to open all switches. The off-isolation of the ISL54200 device would allow the present active channel to properly disconnect from the computer.
- Then the IN pin would be set to select the other USB channel.
- The EN pin would then be taken High to close the switches to make the connection between the computer and the other USB section of the player.

USB Connections

A "B" type USB receptacle labeled "USB TO HOST" (J1) is located on the left under-side of the board. This receptacle should be connected, using a standard USB cable, to the upstream USB host controller, which is usually a PC computer or hub. When this connection is made, the ISL54200 device will connect the computer through to the USB device determined by the voltage at the IN logic control pin.

An "A" type USB receptacle labeled "USB TO HIGHSPEED DEVICE" (J2) is located on the right under-side of the board. The USB device can be plugged directly into this receptacle or through a standard USB cable.

An "A" type USB receptacle labeled "USB TO FULLSPEED DEVICE" (J3) is located on the right under-side of the board. The USB device can be plugged directly into this receptacle or through a standard USB cable.

The USB switches are bi-directional, which allows the host (computer) and downstream USB device to both send and receive data.

Full-Speed Switches

The two FSx switches (FSD1, FSD2) are bi-directional switches that can pass rail-to-rail signals. When powered with a 3.3V supply, these switches have a nominal r_{ON} resistance of 7Ω over the signal range of 0V to 3.3V. They were

specifically designed to pass USB full-speed (12Mbps) differential signals and meet the USB 2.0 full-speed signal quality specifications.

The FSx switches can also pass USB high speed signals (480Mbps) but do not quite meet the USB 2.0 high speed signal quality eye diagram compliance requirement.

The maximum signal range for the FSx switches is from -1.5V to V_{DD} . The signal voltage should not be allowed to exceed the V_{DD} voltage rail or go below ground by more than -1.5V.

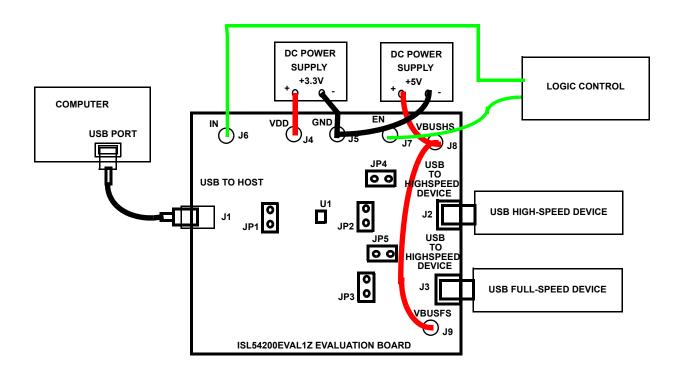
When operated with a 3.3V to 3.6V supply, the FSx switches are active (turned ON) whenever the IN logic control voltage is \leq 0.5V and the EN logic voltage is \geq 1.4V.

High-Speed Switches

The two HSx switches (HSD2, HSD1) are bi-directional switches that can pass rail-to-rail signals. When powered with a 3.3V supply, these switches have a nominal r_{ON} of 4.5Ω over the signal range of 0V to 400mV with a r_{ON} flatness of 0.4Ω . The r_{ON} matching between the HSD1 and HSD2 switches over this signal range is only 0.01Ω ensuring minimal impact by the switches to USB high speed signal transitions. As the signal level increases, the r_{ON} switch resistance increases. At signal level of 3.3V the switch resistance is nominally 20Ω .

The HSx switches were specifically designed to pass USB 2.0 high-speed (480Mbps) differential signals typically in the range of 0V to 400mV. They have low capacitance and high bandwidth to pass the USB high-speed signals with minimum edge and phase distortion to meet USB 2.0 high speed signal quality specifications.

The HSx switches can also pass USB full-speed signals (12Mbps) with minimal distortion and meet all the USB requirements for USB 2.0 full-speed signaling.


The maximum signal range for the HSx switches is from -1.5V to V_{DD} . The signal voltage should not exceed the V_{DD} voltage rail or go below ground by more than -1.5V.

The HSx switches are active (turned ON) whenever the IN voltage is \geq 1.4V and the EN logic voltage \geq 1.4V when operated with a 3.3V to 3.6V supply.

Board Component Definitions

DESIGNATOR	DESCRIPTION
U1	ISL54200IRUZ IC
J1	"B" type USB Receptacle
J2, J3	"A" type USB Receptacle
J4	VDD Positive Connection
J5	VDD Negative Connection
J6	IN Logic Control
J7	EN Logic Control
J8	VBUS Voltage for Highspeed Device
J9	VBUS Voltage for Fullspeed Device
JP1, JP2, JP3	D-/D+ Differential Probe Connection
JP4, JP5	Host Controller VBUS Jumper

Note: Disconnect the +5V power supply connected to J8 and J9 when powering through Host Controller Bus.

FIGURE 2. BASIC EVALUATION TEST SETUP BLOCK DIAGRAM

Using The Board (Refer to Figure 2)

Lab Equipment

The equipment, external supplies and signal sources needed to operate the board are listed below:

- 1. +3.3V to +5V DC Power Supply
- 2. +5V DC Power Supply
- High-Speed USB device (i.e. USB memory stick, MP3 Player, etc.)
- Full-Speed USB device (i.e. USB memory stick, Mouse, etc.)
- 5. Computer with 2.0 High-Speed USB port
- 6. Standard USB cable
- 7. Logic Controller

Initial Board Setup Procedure

- Attach the main evaluation board to a DC power supply at J4 (VDD) and J5 (GND). Positive terminal at J4 and negative terminal at J5. The supply should be capable of delivering 3.3V to 5V and 100μA of current. Set the supply voltage to 3.3V.
- Connect a DC power supply at J8 (VBUSHS) and J9 (VBUSFS). Positive terminal at J8 and J9 and negative terminal at J5 (GND). The supply should be capable of delivering 5V and 100mA of current. Set the supply voltage to 5V. This supply will provide 5V at the V_{BUS} pin of the USB "A" type connectors, J8 and J9.

- Connect a high-speed USB device at USB connector J2 and connect a full-speed USB device at USB connector J3. These connectors are located on the right under-side of the evaluation board.
- 4. Drive the EN control pin LOW to open all switches of the ISL54200 IC.
- Connect USB cable from host (PC computer) to the USB "B" type receptacle, J1 (USB TO HOST).

Full-Speed Device Operation

- 1. Apply a logic LOW to the IN pin.
- 2. Apply a logic HIGH to the EN pin.
- You should now be able to send and receive data between the computer and the full-speed USB device.
- To disconnect the full-speed device from the computer take the EN pin LOW.

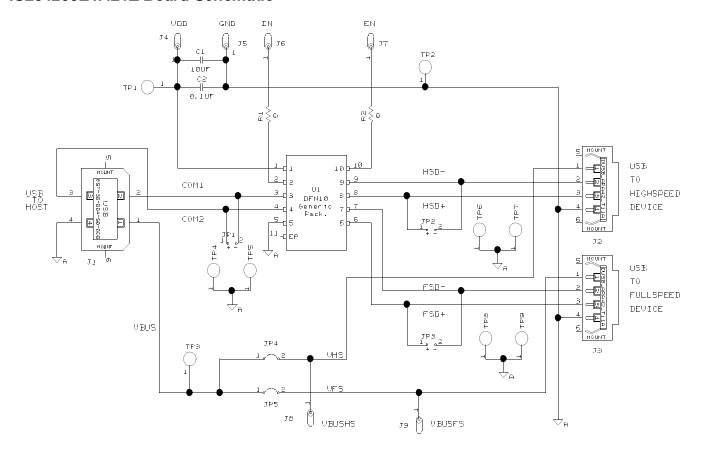
High-Speed Device Operation

- 1. Apply a logic HIGH to the IN pin.
- 2. Apply a logic HIGH to the EN pin
- You should now be able to send and receive data between the computer and high-speed USB device.

Test Points

The board has various test points for ease of connecting probes to make measurements. The test points available are described in Table 1.

TABLE 1.


DESIGNATOR	DESCRIPTION
TP1	V _{DD} test point
TP2, TP4, TP5, TP6, TP7, TP8, TP9	Ground Test Point
TP3	VBUS Test Point From Computer
JP1	D-/D+ Differential Probe Connection - COM Side of Switch
JP2	D-/D+ Differential Probe Connection - High-Speed Device Side of Switch
JP3	D-/D+ Differential Probe Connection - Full-speed Device Side of Switch

You can observe the D- and D+ USB signal of the full-speed channel on an oscilloscope or other test equipment by connecting a differential probe at JP3.

You can observe the D- and D+ USB signal of the high-speed channel on an oscilloscope or other test equipment by connecting a differential probe at JP2.

You can observe the D- and D+ USB signal at the COM side of the switch on an oscilloscope or other test equipment by connecting a differential probe at JP1.

ISL54200EVAL1Z Board Schematic

